A Mass Balance of Nitrogen in a Large Lowland River (Elbe, Germany)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Laboratory Analyses
2.3. Mass Balance Calculation of NO3–N, TN, and Chlorophyll-a
- δ = uncertainty in associated term
- Mi = mass input or output at a given sampling site i
- Ci = concentration at a given sampling site i
- Qi = discharge at a given sampling site i
- δ = uncertainty in associated term
- TS = net loss or gain of the substance S
- Mi = mass input or output at a given sampling site i
2.4. Calculations on Algal N Uptake and Zooplankton Grazing
- total ingested chla = total ingested amount of chlorophyll-a for each campaign (g s−1)
- i = specific sampling site
- CR = clearance rate (µL Ind.−1 h−1)
- ZooAbi = zooplankton abundance in each evening (Ind. L−1)
- Chlai = chlorophyll-a concentration in each evening (µg L−1)
- Qi = average daily discharge (m3 s−1)
3. Results
3.1. Longitudinal Profiles of Chlorophyll-a, Dissolved Nutrients, TN, and Zooplankton
3.2. Mass Balance of NO3–N, TN, and Chlorophyll-a
3.3. Estimates of Algal N Uptake and Zooplankton Grazing
4. Discussion
4.1. N Retention Rates and Realtive Role of Assimilation and Other Retention Processes
4.2. Methodological Limitations
4.3. N-Retention Efficiency in Large Rivers
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galloway, J.N. The global nitrogen cycle: Changes and consequences. Environ. Pollut. 1998, 102, 15–24. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.; Klaff, J. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 2001, 443, 205–212. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 2000, 403, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Bernot, M.J.; Dodds, W.K. Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 2005, 8, 442–453. [Google Scholar] [CrossRef]
- Wollheim, W.M.; Peterson, B.J.; Deegan, L.A.; Hobbie, J.E.; Hooker, B.; Bowden, W.B.; Edwardson, K.J.; Arscott, D.B.; Hershey, A.E.; Finlay, J. Influence of stream size on ammonium and suspended particulate nitrogen processing. Limnol. Oceanogr. 2001, 46, 1–13. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O., Jr.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N.; et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 2008, 452, 202–206. [Google Scholar] [CrossRef]
- Thorp, J.H.; Delong, M.D. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 2002, 96, 543–550. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Styles, R.V.; Boyer, E.W.; Alexander, R.B.; Billen, G.; Howarth, R.W.; Mayer, B.; Van Breemen, N. Nitrogen retention in rivers: Model development and application to watersheds in the northeastern USA. Biogeochemistry 2002, 57, 199–237. [Google Scholar] [CrossRef]
- Ye, S.; Reisinger, A.J.; Tank, J.L.; Baker, M.A.; Hall, R.O.; Rosi, E.J.; Sivapalan, M. Scaling dissolved nutrient removal in river networks: A comparative modeling investigation. Water Resour. Res. 2017, 53, 9623–9641. [Google Scholar] [CrossRef]
- Sheibley, R.W.; Duff, J.H.; Jackmann, A.P.; Trsika, F.J. Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores. Limnol. Oceanogr. 2003, 3, 1129–1140. [Google Scholar] [CrossRef]
- McClain, M.E.; Boyer, E.W.; Dent, C.L.; Gergel, S.E.; Grimm, N.B.; Groffman, P.M.; Hart, S.C.; Harvey, J.W.; Johnston, C.A.; Mayorga, E.; et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 2003, 6, 301–312. [Google Scholar] [CrossRef]
- Fischer, H.; Kloep, F.; Wilczek, S.; Pusch, M.T. A river′s liver—Microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry 2005, 76, 349–371. [Google Scholar] [CrossRef]
- Trimmer, M.; Grey, J.; Heppell, C.M; Hildrew, A.G.; Lansdown, K.; Stahl, H.; Yvon-Durocher, G. River bed carbon and nitrogen cycling: State of play and some new directions. Sci. Total Environ. 2012, 434, 143–158. [Google Scholar] [CrossRef]
- Groffman, P.M.; Altabet, M.A.; Böhlke, J.K; Butterbach-Bahl, K.; David, M.B.; Firestone, M.K.; Giblin, A.E.; Kana, T.M.; Nielsen, L.P.; Voytek, M.A. Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol. Appl. 2006, 16, 2091–2122. [Google Scholar] [CrossRef]
- Von Schiller, D.; Bernal, S.; Marti, E. Technical note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake. Biogeosciences 2011, 8, 875–882. [Google Scholar] [CrossRef]
- Loken, L.C.; Crawford, J.T.; Dornblaser, M.M.; Striegl, R.G.; Houser, J.N.; Turner, P.A.; Stanley, E.H. Limited nitrate retention capacity in the Upper Mississippi River. Environ. Res. Lett. 2018, 13, 074030. [Google Scholar] [CrossRef]
- Deutsch, B.; Voss, M.; Fischer, H. Nitrogen transformation processes in the Elbe River: Distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate. Aquat. Sci. 2009, 71, 228–237. [Google Scholar] [CrossRef]
- Ritz, S.; Dähnke, K.; Fischer, H. Open—Channel measurement of denitrification in a large lowland river. Aquat. Sci. 2018, 80, 11. [Google Scholar] [CrossRef]
- Hardenbicker, P.; Rolinski, S.; Weitere, M.; Fischer, H. Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. Int. Rev. Hydrobiol. 2014, 99, 287–299. [Google Scholar] [CrossRef]
- Guhr, H.; Spott, D.; Bormki, G.; Baborowski, M.; Karrasch, B. The effects of nutrient concentrations in the river Elbe. Acta Hydrochim. Hydrobiol. 2003, 31, 282–296. [Google Scholar] [CrossRef]
- Simon, M.; Bekele, V.; Kulasova, B.; Maul, C.; Oppermann, R.; Rehak, P. Die Elbe und ihr Einzugsgebiet—Ein Geographisch-Hydrologischer und Wasserwirtschaftlicher Überblick; International Comission for the Protcetion of the Elbe: Magdeburg, Germany, 2005. [Google Scholar]
- Pusch, M.; Andersen, H.E.; Bäthe, J.; Behrendt, H.; Fischer, H.; Friberg, N.; Gancarczyk, A.; Hoffmann, C.C.; Hachol, J.; Kronvang, B.; et al. Rivers of the Central European Highlands and Plains. In Rivers of Europe; Tockner, K., Robinson, C.T., Uehlinger, U., Eds.; Elsevier Ltd.: Oxford, UK, 2009; pp. 525–576. [Google Scholar]
- Behrendt, H.; Kornmilch, M.; Opitz, D.; Schmoll, O.; Scholz, G. Estimation of the nutrient inputs into river systems—Experiences from German rivers. Reg. Environ. Chang. 2002, 3, 107–117. [Google Scholar] [CrossRef]
- Montenegro, H.; Holfelder, T.; Wawra, B. Modellierung der Austauschprozesse zwischen Oberflächen- und Flussauen. In Stoffhaushalt von Auenökosystemen; Friese, K., Witter, B., Miehlich, G., Rode, M., Eds.; Springer: Berlin, Germany, 2000; pp. 89–98. [Google Scholar]
- FGG Elbe Aktualisierung des Bewirtschaftungsplans nach § 83 WHG bzw. Artikel 13 der Richtlinie2000/60/EG für den Deutschen Teil der Flussgebietseinheit Elbe für den Zeitraum von 2016 bis 2021. 2015. Available online: https://www.fgg-elbe.de/berichte/aktualisierung-nach-art-13.html (accessed on 16 August 2019).
- Behrendt, H.; Bach, M.; Kunkel, R.; Opitz, D.; Pagenkopf, W.-G.; Scholz, G.; Wendland, F. Nutrient emissions into river basins of Germany on the basis of a harmonized procedure. UBA-Texte 2003, 82, 201. [Google Scholar]
- OSPAR Commission. Eutrophication Status of the OSPAR Maritime Area. In Third Integrated Report on the Eutrophication Status of the OSPAR Maritime Area; Publication Number: 694/2017; OSPAR Commission: Sintra, Portugal, 2017. [Google Scholar]
- Böhme, M.; Guhr, H.; Ockenfeld, K. Phytoplanktondynamik und pelagische Stoffumsetzungen. In Stoffdynamik und Habitatstruktur in der Elbe; Pusch, M., Fischer, H., Eds.; Weissensee Verlag Ökologie: Berlin, Germany, 2006; pp. 33–56. [Google Scholar]
- Wilczek, S.; Fischer, H.; Brunke, M.; Pusch, M.T. Microbial activity within a subaqueous dune in a large lowland river (River Elbe, Germany). Aquat. Microb. Ecol. 2004, 36, 83–97. [Google Scholar] [CrossRef]
- Doyle, M.W.; Ensign, S.H. Alternative reference frames in river system science. BioScience 2009, 59, 499–510. [Google Scholar] [CrossRef]
- Volkmar, E.C; Dahlgren, R.A; Stringfellow, W.T; Henson, S.S.; Borglin, S.E.; Kendall, C.; Van Nieuwenhuyse, E.E. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA. Chem. Geol. 2011, 283, 68–77. [Google Scholar] [CrossRef]
- Oppermann, R.; Schumacher, F.; Kirchesch, V. Hydrax—Ein hydrodynamisches 1-D Modell. BfG-Bericht 2015. [Google Scholar] [CrossRef]
- Quiel, K.; Becker, A.; Kirchesch, V.; Schöl, A.; Fischer, H. Influence of global change on phytoplankton and nutrient cycling in the Elbe River. Reg. Environ. Chang. 2011, 11, 405–421. [Google Scholar] [CrossRef]
- DEW. Deutsche Einheitsverfahren zur Wasser-, Abwasser-, und Schlammuntersuchung; DIN 38412-L16, DIN EN ISO 26777, DIN 6878-D11, DIN 38405-D21, EN ISO 13395-D28, DIN EN 12260 (H34), DIN EN ISO 10304-1; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Ritz, S. In-Stream Nitrogen Retention in A Large Nitrogen Rich River: Estimates from Open-Channel Methods. Ph.D. Thesis, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany, 12 July 2016. [Google Scholar]
- Rocha, O.; Duncan, A. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J. Plankton Res. 1985, 7, 279–294. [Google Scholar] [CrossRef]
- Wilczek, S.; Fischer, H.; Pusch, M.T. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river. Microb. Ecol. 2005, 50, 253–267. [Google Scholar] [CrossRef]
- Rothhaupt, K.O. Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle size. Limnol. Oceanogr. 1990, 35, 24–32. [Google Scholar] [CrossRef]
- Reynolds, C. Ecology of Phytoplankton; Cambridge Universtity Press: New York, NY, USA, 2006. [Google Scholar]
- Holst, H.; Zimmermann-Timm, H.; Kausch, H. Longitudinal and transverse distribution of plankton rotifers in the potamal of the river Elbe (Germany) during late summer. Int. Rev. Hydrobiol. 2002, 87, 267–280. [Google Scholar] [CrossRef]
- Gosselain, V.; Descy, J.-P.; Viroux, L.; Joaquim-Justo, C.; Hammer, A.; Metens, A.; Schweitzer, S. Grazing by large river zooplankton: A key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia 1998, 369, 199–216. [Google Scholar] [CrossRef]
- Kim, H.S.; Hwang, S.-J.; Joo, G.-J. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 2000, 22, 1559–1577. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, R.; Kozerski, H.-P. Sedimentation in Buhnenfeldern. In Stoffdynamik und Habitatstruktur in der Elbe; Pusch, M., Fischer, H., Eds.; Weissensee Verlag Ökologie: Berlin, Germany, 2006; pp. 105–117. [Google Scholar]
- Kloep, F.; Roeske, I. Transport of algal cells in hyporheic sediments of the river Elbe (Germany). Int. Rev. Hydrobiol. 2004, 89, 88–101. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Tank, J.L.; Sanzone, D.M.; Wollheim, W.M.; Peterson, B.J.; Webster, J.R.; Meyer, J.L. Nitrogen cycling in forest stream by a 15N tracer addition. Ecol. Monogr. 2000, 70, 471–493. [Google Scholar]
- Peterson, B.J.; Wollheim, W.M.; Mulholland, P.J.; Webster, J.R.; Bowden, W.B.; Valett, M.H.; Hershey, A.E.; McDowell, W.H.; Dodds, W.K.; Hamilton, S.K. Control of nitrogen export from watersheds by headwater streams. Science 2001, 292, 86–90. [Google Scholar] [CrossRef]
- Battin, T.J.; Kaplan, L.A.; Findlay, S.; Hopkinson, C.S.; Marti, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 2009, 1, 95–100. [Google Scholar]
- Stahl, U. Geohydraulisches Gutachten Rathenow; IHU Geologie und Analytik GmbH: Stendal, Germany, 2011; Available online: https://www.rathenow.de/fileadmin/dateien/PDF/Bau/Stadtentwicklung/Geohydraulisches_Gutachten_Rathenow_Text.pdf (accessed on 21 September 2019).
- Geider, R.; MacIntyre, H.; Kana, T.M. Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 1997, 148, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Riemann, B.; Simonsen, P.; Stensgaard, L. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. J. Plankton Res. 1989, 11, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Fanesi, A.; Wagner, H.; Becker, A.; Wilhelm, C. Temperature affects the partitioning of absorbed light energy in freshwater phytoplankton. Freshw. Biol. 2016, 61, 1356–1378. [Google Scholar] [CrossRef]
- Karrasch, B.; Mehrens, M.; Rosenlöcher, Y.; Peters, K. The dynamics of phytoplankton, bacteria and heterotrophic flagellates at two banks near Magdeburg in the river Elbe (Germany). Limnologica 2001, 31, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Gosselain, V.; Hamilton, P.; Descy, J. Estimating phytoplankton carbon from microscopic counts: An application for riverine systems. Hydrobiologia 2000, 438, 75–90. [Google Scholar] [CrossRef]
- Gosselain, V.; Joaquim-Justo, C.; Viroux, L.; Mena, M.; Metens, A.; Descy, J.-P.; Thome, J.-P. Laboratory and in-situ grazing rates of freshwater rotifers and their contribution to community grazing rates. Arch. Hydrobiol. 1996, 113, 353–361. [Google Scholar] [CrossRef]
- Hardenbicker, P.; Weitere, M.; Ritz, S.; Schöll, F.; Fischer, H. Longitudinal Plankton Dynamics in the Rivers Rhine and Elbe. River Res. Appl. 2015, 32, 1264–1278. [Google Scholar] [CrossRef]
- Dodds, W.K. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. J. N. Am. Benthol. Soc. 2003, 22, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Von Schiller, D.; Bernal, S.; Sabater, F.; Marti, E. A round-trip ticket: The importance of release processes for in-stream nutrient spiraling. Freshw. Sci. 2015, 34, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Wörner, U.; Zimmermann-Timm, H.; Kausch, H. Aggregate-Associated Bacteria and Heterotrophic Flagellates in the River Elbe—Their Relative Significance along the Longitudinal Profile from km 46 to km 583. Int. Rev. Hydrobiol. 2002, 87, 255–266. [Google Scholar] [CrossRef]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef] [Green Version]
- Kronvang, B.; Hezlar, J.; Boers, P.; Jensen, J.P.; Behrendt, H.; Anderson, T.; Arheimer, B.; Venohr, M.; Hoffmann, C.C. Nutrient retention handbook. In Software Manual for Euroharp-Nutret and scientific Review on Nutrient Retention; EUROHARP Report 9-2004, NIVA Report SNO 4878/2004; Norwegian Institute for Water Research (NIVA): Oslo, Norway, 2004. [Google Scholar]
- Gomez-Velez, J.D.; Harvey, J.W.; Cardenas, M.B; Kiel, B. Denitrification in the Mississippi River network controlled by flow through river bedforms. Nat. Geosci. 2015, 26, 941–945. [Google Scholar] [CrossRef]
- Marcé, R.; Von Schiller, D.; Aguilera, R.; Martí, E.; Bernal, S. Contribution of hydrologic opportunity and biogeochemical reactivity to the variability of nutrient retention in river networks. Glob. Biogeochem. Cycles 2018, 32, 376–388. [Google Scholar] [CrossRef]
- Helton, A.M.; Poole, G.C.; Meyer, J.L.; Wollheim, W.M.; Peterson, B.J.; Mulholland, P.J.; Bernhardt, E.S.; Stanford, J.A.; Arango, C.; Ashkenas, L.R.; et al. Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems. Front. Ecol. Environ. 2011, 9, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Fork, M.L.; Heffernan, J.B. Direct and indirect effects of dissolved organic matter source and concentration on denitrification in northern Florida rivers. Ecosystems 2014, 14, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, R.; Marcé, R.; Sabater, S. Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network? Biogeosciences 2013, 118, 728–740. [Google Scholar] [CrossRef] [Green Version]
Date | Elbe-km 2 | Elbe-km 536 | Schwarze Elster | Mulde | Saale | Havel | Travel Time |
---|---|---|---|---|---|---|---|
Q (m3 s−1) | Q (m3 s−1) | Q (m3 s−1) | Q (m3 s−1) | Q (m3 s−1) | Q (m3 s−1) | (h) | |
Aug. 2011 | 231 | 756 | 29 | 64 | 57 | 183 | 166 |
May. 2012 | 283 | 588 | 11 | 38 | 69 | 101 | 164 |
Aug. 2012 | 202 | 405 | 11 | 32 | 69 | 53 | 193 |
Aug. 2013 | 260 | 515 | 15 | 35 | 80 | 49 | 169 |
MQ | 304 | 683 | 18 | 65 | 115 | 109 |
Total Inputs of | August 2011 | May 2012 | August 2012 | August 2013 | ||||
---|---|---|---|---|---|---|---|---|
g s−1 | % of TN | g s−1 | % of TN | g s−1 | % of TN | g s−1 | % of TN | |
NH4–N | 25.2 | 1.2 | 28.6 | 1.6 | 25.7 | 1.9 | 23.4 | 1.6 |
NO2–N | 15.2 | 0.7 | 20.8 | 1.2 | 10.5 | 0.8 | 14.9 | 1.0 |
NO3–N | 1745 | 86.0 | 1166 | 65.0 | 911 | 66.9 | 1333 | 92.9 |
organic–N | 245 | 12.0 | 578 | 32.3 | 414 | 30.4 | 63.7 | 4.4 |
TN | 2030 | 100 | 1793 | 100 | 1361 | 100 | 1435 | 100 |
Mass Balance for Each Campaign | chla (g s−1) | NO3–N (g s−1) | TN (g s−1) | Cl− (kg s−1) | Discharge (m3 s−1) |
---|---|---|---|---|---|
AUGUST 2011 | |||||
Total input | 9.6 | 1745 | 2030 | 60.7 | 612.5 |
Output Elbe-km 582 | 57.3 | 1361 | 1713 | 75.9 | 756 |
Output–Input: (Δ load) | 47.7 ± 7.6 | −384 ± 120 | −316 ± 246 | 15.2 ± 4.3 | 143 ± 42.4 |
(Δ%) | 499 ± 80.0 | −22 ± 6.9 | −15.6 ± 12.1 | 25.1 ± 7.1 | 23.4 ± 6.9 |
Net turnover (mg m−2 h−1) | 1.8 ± 0.3 | −14.8 ± 4.6 | −12.2 ± 9.5 | ||
MAY 2012 | |||||
Total input | 20.5 | 1166 | 1793 | 60.5 | 569.6 |
Output Elbe-km 583 | 54.5 | 823 | 1352 | 64.2 | 587.8 |
Output–Input: (Δ load) | 34.0 ± 9.4 | −343 ± 118 | −441 ± 188 | 3.7 ± 3.9 | 18.2 ± 34.8 |
(Δ%) | 165 ± 45.8 | −29.4 ± 10.2 | −24.6 ± 10.5 | 6.1 ± 6.5 | 3.2 ± 6.1 |
Net turnover (mg m−2 h−1) | 1.3 ± 0.4 | −13.4 ± 4.6 | −17.3 ± 7.3 | ||
JULY/AUGUST 2012 | |||||
Total input | 4.2 | 910.5 | 1361 | 65.3 | 412.6 |
Output Elbe-km 583 | 47.6 | 275.1 | 836.2 | 60.3 | 404.6 |
Output–Input: (Δ load) | 43.4 ± 3.7 | −635 ± 90.7 | −525 ±146 | −5.0 ± 6.1 | 7.9 ± 26.8 |
(Δ%) | 1036 ± 89.3 | −69.8 ± 10.0 | −38.6 ± 10.7 | −7.7 ± 9.3 | 1.9 ± 6.5 |
Net turnover (mg m−2 h−1) | 1.4 ± 0.1 | −21.1 ± 3.0 | −17.4 ± 4.8 | ||
AUGUST 2013 | |||||
Total input | 16.3 | 1333 | 1435 | 83.7 | 490 |
Output Elbe-km 579 | 76.7 | 825.6 | 928 | 88.6 | 515 |
Output–Input: (Δ load) | 60.4 ± 5.4 | −507 ± 159 | −506 ± 158 | 4.8 ± 7.8 | 25.4 ± 32.6 |
(Δ%) | 371 ± 33.3 | −38.1 ± 11.9 | −35.3 ± 11.0 | 5.7 ± 9.3 | 5.1 ± 6.7 |
Net turnover (mg m−2 h−1) | 2.3 ± 0.2 | −19.3 ± 6.0 | −19.2 ± 6.0 |
Potentially Grazed Amounts | August 2011 | May 2012 | August 2012 | August 2013 |
---|---|---|---|---|
potentially grazed chla (g chla s−1) | 0.3 | 26.6 | 9.2 | 5.9 |
potentially grazed chla (% of net chla gain) | 0.7 | 78.4 | 21.2 | 9.8 |
potential N transformation into zooplankton biomass (mg N m−2 h−1) | 0.1 | 4.4 | 1.3 | 1.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritz, S.; Fischer, H. A Mass Balance of Nitrogen in a Large Lowland River (Elbe, Germany). Water 2019, 11, 2383. https://doi.org/10.3390/w11112383
Ritz S, Fischer H. A Mass Balance of Nitrogen in a Large Lowland River (Elbe, Germany). Water. 2019; 11(11):2383. https://doi.org/10.3390/w11112383
Chicago/Turabian StyleRitz, Stephanie, and Helmut Fischer. 2019. "A Mass Balance of Nitrogen in a Large Lowland River (Elbe, Germany)" Water 11, no. 11: 2383. https://doi.org/10.3390/w11112383
APA StyleRitz, S., & Fischer, H. (2019). A Mass Balance of Nitrogen in a Large Lowland River (Elbe, Germany). Water, 11(11), 2383. https://doi.org/10.3390/w11112383