Advances in Deriving the Exact Distribution of Maximum Annual Daily Precipitation
Abstract
:1. Introduction
2. Some General Results
3. Some Analytical Solutions
3.1. Analytical Solutions for Equation (2)
3.2. Analytical Solutions for Equation (3)
3.3. Non-Poisson Analytical Solutions
4. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Fréchet, M. Sur la loi de probabilité de l’écart maximum. Ann. Soc. Pol. Math. 1927, 6, 93–116. [Google Scholar]
- Fisher, R.A.; Tippet, H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Gnedenko, B. Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. Math. 1943, 44, 423–453. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- von Mises, R. La distribution de la plus grande de n valeurs. In Selected Papers; American Mathematical Society: Providence, RI, USA, 1954; Volume II, pp. 271–294. [Google Scholar]
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Coles, S.; Pericchi, L.R.; Sisson, S. A fully probabilistic approach to extreme rainfall modeling. J. Hydrol. 2003, 273, 35–50. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation. Hydrol. Sci. J. 2004, 49, 576–590. [Google Scholar] [CrossRef]
- Wilks, D.S. Comparison of three-parameter probability distributions for representing annual extreme and partial duration precipitation series. Water Resour. Res. 1993, 29, 3543–3549. [Google Scholar] [CrossRef]
- De Michele, C.; Avanzi, F. Superstatistical distribution of daily precipitation extremes: A worldwide assessment. Sci. Rep. 2018, 8, 14204. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records. Hydrol. Sci. J. 2004, 49, 591–610. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyannis, D. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res. 2013, 49, 187–201. [Google Scholar] [CrossRef]
- Veneziano, D.; Langousis, A.; Lepore, C. New asymptotic and preasymptotic results on rainfall maxima from multifractal theory. Water Resour. Res. 2009, 45, W11421. [Google Scholar] [CrossRef]
- De Michele, C.; Ignaccolo, M. New perspectives on rainfall from a discrete view. Hydrol. Process. 2013, 27, 2379–2382. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Zhang, Y.; Gehne, M. Intermittency in Precipitation: Duration, Frequency, Intensity, and Amounts Using Hourly Data. J. Hydrometeorol. 2017, 18, 1393–1412. [Google Scholar] [CrossRef] [Green Version]
- Bernardara, P.; De Michele, C.; Rosso, R. A simple model of rain in time: An alternating renewal process of wet and dry states with a fractional (non-Gaussian) rain intensity. Atmos. Res. 2007, 84, 291–301. [Google Scholar] [CrossRef]
- Zorzetto, E.; Botter, G.; Marani, M. On the emergence of rainfall extremes from ordinary events. Geophys. Res. Lett. 2016, 43, 8076–8082. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.P. The penultimate form of approximation to normal extremes. Adv. Appl. Probab. 1982, 14, 324–339. [Google Scholar] [CrossRef]
- Gomes, M.I. Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 1984, 236, 71–85. [Google Scholar] [CrossRef]
- Harris, R. Extreme value analysis of epoch maxima—Convergence, and choice of asymptote. J. Wind Eng. Ind. Aerodyn. 2004, 92, 897–918. [Google Scholar] [CrossRef]
- Cook, N.J.; Harris, R.I. Exact and general ft1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents. Struct. Saf. 2004, 26, 391–420. [Google Scholar] [CrossRef]
- Marani, M.; Ignaccolo, M. A metastatistical approach to rainfall extremes. Adv. Water Resour. 2015, 79, 121–126. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyannis, D. A global survey on the seasonal variation of the marginal distribution of daily precipitation. Adv. Water Resour. 2016, 94, 131–145. [Google Scholar] [CrossRef]
- Wilks, D.S.; Wilby, R.L. The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr. 1999, 23, 329–357. [Google Scholar] [CrossRef]
- Wilson, P.S.; Toumi, R. A fundamental probability distribution for heavy rainfall. Geophys. Res. Lett. 2005, 32, L14812-1-4. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. Entropy based derivation of probability distributions: A case study to daily rainfall. Adv. Water Resour. 2012, 45, 51–57. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D.; Makropoulos, C. How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol. Earth Syst. Sci. 2013, 17, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Serinaldi, F.; Kilsby, C.G. Rainfall extremes: Toward reconciliation after the battle of distributions. Water Resour. Res. 2014, 50, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Porporato, A.; Vico, G.; Fay, P.A. Superstatistics of hydro-climatic fluctuations and interannual ecosystem productivity. Geophys. Res. Lett. 2006, 33, L15402. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Lee, T.; Ouarda, T.B.M. Heterogeneous mixture distributions for modeling multisource extreme rainfalls. J. Hydrometeorol. 2015, 16, 2639–2657. [Google Scholar] [CrossRef]
- Furrer, E.M.; Katz, R.W. Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resour. Res. 2008, 44, W12439. [Google Scholar] [CrossRef]
- Hundecha, Y.; Pahlow, M.; Schumann, A. Modeling of daily precipitation at multiple locations using a mixture of distributions to characterize the extremes. Water Resour. Res. 2009, 45, W12412. [Google Scholar] [CrossRef]
- Johnson, G.L.; Hanson, C.L.; Hardegree, S.P.; Ballard, E.B. Stochastic weather simulation: Overview and analysis of two commonly used models. J. Appl. Meteorol. 1996, 35, 1878–1896. [Google Scholar] [CrossRef]
- Wilks, D.S. Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteorol. 1999, 93, 153–169. [Google Scholar] [CrossRef]
- Cameron, D.; Beven, K.; Tawn, J. Modelling extreme rainfalls using a modified pulse Barlett-Leweis stochastic rainfall model (with uncertainty). Adv. Water Resour. 2001, 24, 203–211. [Google Scholar] [CrossRef]
- Benjamin, J.R.; Cornell, C.A. Probability, Statistics, and Decision for Civil Engineers; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001. [Google Scholar]
- Reiss, R.D.; Thomas, M. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and other Fields, 3rd ed.; Birkhauser: Berlin, Germany, 2007. [Google Scholar]
- Salvadori, G.; De Michele, C.; Kottegoda, N.T.; Rosso, R. Extremes in Nature: An Approach Using Copulas; Springer: Berlin, Germany, 2007. [Google Scholar]
- Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Blackwell: Oxford, UK, 2008. [Google Scholar]
- Feller, W. On a general class of “contagious” distributions. Ann. Math. Stat. 1943, 14, 389–400. [Google Scholar] [CrossRef]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1971; Volume II. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Kemp, A.W. Univariate Discrete Distributions, 2nd ed.; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003, 322, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Beck, C. Superstatistics: Theory and applications. Contin. Mech. Thermodyn. 2004, 16, 293–304. [Google Scholar] [CrossRef]
- Marra, F.; Nikolopoulos, E.I.; Anagnostou, E.N.; Morin, E. Metastatistical extreme value analysis of hourly rainfall from short records: Estimation of high quantiles and impact of measurement errors. Adv. Water Resour. 2018, 117, 27–39. [Google Scholar] [CrossRef]
- De Luca, D.L.; Galasso, L. Stationary and non-stationary frameworks for extreme rainfall time series in southern Italy. Water 2018, 10, 1477. [Google Scholar] [CrossRef]
- Epstein, B. A modified extreme value problem. Ann. Math. Stat. 1949, 20, 99–103. [Google Scholar] [CrossRef]
- Todorovic, P.; Zelenhasic, E. A stochastic model for flood analysis. Water Resour. Res. 1970, 6, 1641–1648. [Google Scholar] [CrossRef]
- van Monfort, M.A.J.; van Putten, B. A comment on modelling extremes: Links between multi-component extreme value and generalized extreme value distribution. J. Hydrol. 2002, 41, 197–202. [Google Scholar]
- Rossi, F. Legami di connessione tra le distribuzioni di probabilità delle massime piogge e delle massime piene in una regione. In Proceedings of the Seminar on Extreme Hydrological Events: Floods and Droughts, Erice, Italy, 22–25 March 1980. [Google Scholar]
- Rossi, F.; Versace, P. Criteri e Metodi per L’analisi Statistica delle Piene; CNR pubs 165; CNR: Roma, Italy, 1982. [Google Scholar]
- Rossi, F.; Fiorentino, M.; Versace, P. Two-component extreme value distribution for flood frequency analysis. Water Resour. Res. 1984, 20, 847–856. [Google Scholar] [CrossRef]
- Cannarozzo, M.; D’Asaro, F.; Ferro, V. Regional rainfall and flood frequency analysis for Sicily using the two-component extreme value distribution. Hydrol. Sci. J. 1995, 40, 19–42. [Google Scholar] [CrossRef]
- Ferro, V.; Porto, P. Regional analysis of rainfall-depth duration equation for south Italy. J. Hydrol. Eng. 1997, 4, 326–336. [Google Scholar] [CrossRef]
- Revfeim, K.J.A. Annual maxima and totals of seasonally varying processes. Stoch. Hydrol. Hydraul. 1991, 5, 147–153. [Google Scholar] [CrossRef]
- Todorovic, P.; Rousselle, J. Some Problems of Flood Analysis. Water Resour. Res. 1971, 7, 1144–1150. [Google Scholar] [CrossRef]
- Dubey, S.D. A new derivation of the logistic distribution. Nav. Res. Logist. Q. 1969, 16, 37–40. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1995; Volume 2. [Google Scholar]
- Marani, M.; Zorzetto, E. Doubly stochastic distributions of extreme events. arXiv 2019, arXiv:1902.09862. [Google Scholar]
- Vrac, M.; Naveau, P. Stochastic downscaling of precipitation: From dry events to heavy rainfalls. Water Resour. Res. 2007, 43, W07402. [Google Scholar] [CrossRef]
- Carreau, J.; Bengio, Y. A hybrid Pareto model for asymmetric fat-tailed data: The univariate case. Extremes 2009, 12, 53–76. [Google Scholar] [CrossRef]
- Carreau, J.; Vrac, M. Stochastic downscaling of precipitation with neural network conditional mixture models. Water Resour. Res. 2011, 47, W10502. [Google Scholar] [CrossRef]
- Li, C.; Singh, V.P.; Mishra, A.K. Simulation of the entire range of daily precipitation using a hybrid probability distribution. Water Resour. Res. 2012, 48, W03521. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Michele, C. Advances in Deriving the Exact Distribution of Maximum Annual Daily Precipitation. Water 2019, 11, 2322. https://doi.org/10.3390/w11112322
De Michele C. Advances in Deriving the Exact Distribution of Maximum Annual Daily Precipitation. Water. 2019; 11(11):2322. https://doi.org/10.3390/w11112322
Chicago/Turabian StyleDe Michele, Carlo. 2019. "Advances in Deriving the Exact Distribution of Maximum Annual Daily Precipitation" Water 11, no. 11: 2322. https://doi.org/10.3390/w11112322
APA StyleDe Michele, C. (2019). Advances in Deriving the Exact Distribution of Maximum Annual Daily Precipitation. Water, 11(11), 2322. https://doi.org/10.3390/w11112322