Analysis of Raindrop Size Distribution Characteristics in Permafrost Regions of the Qinghai–Tibet Plateau Based on New Quality Control Scheme
Abstract
:1. Introduction
2. Sites, Data, and Methods
2.1. Study Sites
2.2. Instruments and Measurements
2.3. Raindrop Size Distribution
2.4. Quality Control of Data
3. Results
3.1. DSD Characteristics and Application of Data Control Schemes
3.2. DSD Characteristics for Different Rainfall Rates
3.3. Temperature and Dewpoint Thresholds of Different Types of Precipitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alazzy, A.A.; Lü, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of satellite precipitation products and their potential influence on hydrological modeling over the Ganzi River Basin of the Tibetan Plateau. Adv. Meteorol. 2017, 2017, 1–23. [Google Scholar] [CrossRef]
- Pan, X.; Yang, D.; Li, Y.; Barr, A.; Helgason, W.; Hayashi, M.; Marsh, P.; Pomeroy, J.; Janowicz, R.J.; Li, Y. Bias Corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. Cryosphere 2016, 10, 2347–2360. [Google Scholar] [CrossRef]
- Smith, C.D. Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and Alter wind shield. In Proceedings of the 87th American Meteorological Society Annual Meeting, San Antonio, TX, USA, 14–18 January 2007; Volume 36, pp. 13–18. [Google Scholar]
- Sugiura, K.; Ohata, T.; Yang, D. Catch characteristics of precipitation gauges in high winds. J. Hydrometeorol. 2006, 87, 1182–1183. [Google Scholar]
- Yang, D.; Ohata, T. A bias-corrected siberian regional precipitation climatology. J. Hydrometeorol. 2000, 2, 122–139. [Google Scholar] [CrossRef]
- Ye, B.; Yang, D.; Ding, Y.; Han, T.; Koike, T. A bias-corrected precipitation climatology for China. J. Hydrometeorol. 2004, 5, 1147–1160. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Xie, C.; Liu, G.; Gao, L.; Xiao, Y.; Shi, J.; Qiao, Y. Intercomparison of solid precipitation derived from the weighting rain gauge and optical instruments in the interior Qinghai-Tibetan Plateau. Adv. Meteorol. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Zhao, L.; Ping, C.-L.; Yang, D.; Cheng, G.; Ding, Y.; Liu, S. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob. Planet. Chang. 2004, 43, 19–31. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, T.; Li, R.; Wang, S.; Hu, G.; Wang, W.; Qin, Y.; Yang, S. Characteristics of the ratios of snow, rain and sleet to precipitation on the Qinghai-Tibet Plateau during 1961–2014. Quat. Int. 2017, 444, 137–150. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Tian, L.; Li, X. Elevation-dependent reductions in wind speed over and around the Tibetan Plateau. Int. J. Climatol. 2017, 37, 1117–1126. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Zhang, W.; Pepin, N.; Kang, S. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim. Dyn. 2015, 45, 791–806. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, K.; Ohata, T.; Yang, D.; Sato, T.; Sato, A. Application of a snow particle counter to solid precipitation measurements under Arctic conditions. Cold Reg. Sci. Technol. 2009, 58, 77–83. [Google Scholar] [CrossRef]
- Jin, H.; Li, S.; Cheng, G.; Shaoling, W.; Li, X. Permafrost and climatic change in China. Glob. Planet. Chang. 2000, 26, 387–404. [Google Scholar] [CrossRef]
- Suh, S.-H.; You, C.; Lee, D. Climatological characteristics of raindrop size distributions within a topographically complex area. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 4005–4045. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Pu, J. Statistical Characteristics of Raindrop Size Distribution in the Meiyu Season Observed in Eastern China. J. Meteorol. Soc. Jpn. 2013, 91, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Hu, Z.; Liu, L.; Zhang, G. Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos. 2017, 122, 11092–11106. [Google Scholar] [CrossRef]
- Raupach, T.H.; Berne, A. Small-scale variability of the raindrop size distribution and its effect on areal rainfall retrieval. J. Hydrometeorol. 2016, 17, 2077–2104. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, J.; Chen, S.; Hu, D.; Zhengqing, L. statistical characteristics of raindrop size distribution in the monsoon season observed in Southern China. Remote Sens. 2019, 11, 432. [Google Scholar] [CrossRef]
- Porcù, F.; D’Adderio, L.P.; Prodi, F.; Caracciolo, C. Rain drop size distribution over the Tibetan Plateau. Atmos. Res. 2014, 150, 21–30. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.; Gatlin, P.N.; Petersen, W.A.; Wingo, M.T. Measurements and modeling of the full rain drop size distribution. Atmosphere 2019, 10, 39. [Google Scholar] [CrossRef]
- Kathiravelu, G.; Lucke, T.; Nichols, P. Rain drop measurement techniques: A review. Water 2016, 8, 29. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Beguería, S.; Latorre, B.; Fernández-Raga, M. Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers. Hydrol. Earth Syst. Sci. 2018, 22, 2811–2837. [Google Scholar] [CrossRef]
- de Moraes Frasson, R.P.; da Cunha, L.K.; Krajewski, W.F. Assessment of the Thies optical disdrometer performance. Atmos. Res. 2011, 101, 237–255. [Google Scholar] [CrossRef]
- Lanzinger, E. Rainfall Amount and Intensity Measured by the Thies Laser Precipitation Monitor; TECO-2006; TECO: Geneva, Switzerland, 2006; pp. 1–9. [Google Scholar]
- Tokay, A.; Kruger, A.; Krajewski, W.F.; Kucera, P.A.; Filho, A.J.P. Measurements of drop size distribution in the southwestern Amazon basin. J. Geophys. Res. D Atmos. 2002, 107, LBA-19. [Google Scholar] [CrossRef]
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
- Bourgouin, P. A Method to Determine Precipitation Types. Weather Forecast. 2000, 15, 583–592. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, K.O.; You, C.H.; Uyeda, H.; Lee, D.I. Microphysical characteristics of a convective precipitation system observed on July 04, 2012, over Mt. Halla in South Korea. Atmos. Res. 2019, 222, 74–87. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Xue, M.; Zhou, B.; Liu, S.; Chen, X. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos. Res. 2016, 121, 2265–2282. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, Y.; Zhang, L.; Lei, H.; Xie, Y.; Wen, L.; Yang, J. Characteristics of summer season raindrop size distribution in three typical regions of western Pacific. J. Geophys. Res. Atmos. 2019, 124, 4054–4073. [Google Scholar] [CrossRef]
- Moumouni, S.; Gosset, M.; Houngninou, E. Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers. Geophys. Res. Lett. 2008, 35, 2–6. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci. 2017, 34, 727–736. [Google Scholar] [CrossRef]
- Mudiar, D.; Pawar, S.D.; Hazra, A.; Konwar, M.; Gopalakrishnan, V.; Srivastava, M.K.; Goswami, B.N. Quantification of observed electrical effect on the raindrop size distribution in tropical clouds. J. Geophys. Res. Atmos. 2018, 123, 4527–4544. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Reddy, K.K.; Shirooka, R.; Wang, P.K. A comparison study of summer season raindrop size distribution between Palau and Taiwan, two islands in Western Pacific. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- OTT Hydromet GmbH. Operating Instructions Present Weather Sensor OTT Parsivel2; OTT Hydromet GmbH: Kempten, Germany, 2016. [Google Scholar]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Ye, H.; Cohen, J.; Rawlins, M. Discrimination of solid from liquid precipitation over Northern eurasia using surface atmospheric conditions. J. Hydrometeorol. 2013, 14, 1345–1355. [Google Scholar] [CrossRef]
- Yuter, S.E.; Kingsmill, D.E.; Nance, L.B.; Löffler-Mang, M. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteorol. Climatol. 2006, 45, 1450–1464. [Google Scholar] [CrossRef]
- Battaglia, A.; Rustemeier, E.; Tokay, A.; Blahak, U.; Simmer, C. PARSIVEL snow observations: A critical assessment. J. Atmos. Ocean. Technol. 2010, 27, 333–344. [Google Scholar] [CrossRef]
- Raupach, T.H.; Berne, A. Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference. Atmos. Meas. Tech. 2015, 8, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Jung, S.H.; Park, H.M.; Kwon, S.; Lin, P.L.; Lee, G.W. Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements. Adv. Atmos. Sci. 2015, 32, 1277–1290. [Google Scholar] [CrossRef]
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Ocean. Technol. 2013, 30, 2063–2080. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; He, H.; Xie, Y.; Zeng, Q. Comparison of raindrop size distributions in a midlatitude continental squall line during different stages as measured by parsivel over East China. J. Appl. Meteorol. Climatol. 2017, 56, 2097–2111. [Google Scholar] [CrossRef]
- Ross, G.; Gilbert, D. Kinzer the terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci. 1949, 6, 423–428. [Google Scholar]
- Testik, F.Y.; Pei, B. Wind effects on the shape of raindrop size distribution. J. Hydrometeorol. 2017, 18, 1285–1303. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Ishizaka, M.; Motoyoshi, H.; NakaiI, S.; Shina, T.; Kumakura, T.; Muramoto, K. A new method for identifying the main type of solid hydrometeors contributing to snowfall from measured size-fall speed relationship. J. Meteorol. Soc. Jpn. 2013, 91, 747–762. [Google Scholar] [CrossRef]
- Liu, J.; Chen, R.; Song, Y.X.; Yang, Y.; Qing, W.; Han, C.; Liu, Z. Observations of precipitation type using a time-lapse camera in a mountainous region and calculation of the rain/snow proportion based on the critical air temperature. Environ. Earth Sci. 2014, 73, 1545–1554. [Google Scholar] [CrossRef]
- D’Adderio, L.P.; Porcù, F.; Tokay, A. Evolution of drop size distribution in natural rain. Atmos. Res. 2018, 200, 70–76. [Google Scholar] [CrossRef]
- Jaffrain, J.; Berne, A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeorol. 2011, 12, 352–370. [Google Scholar] [CrossRef]
- Gultepe, I. Measurements of light rain, drizzle and heavy fog. In Precipitation: Advances in Measurement, Estimation and Prediction; Springer: Berlin/Heidelberg, Germany, 2008; pp. 59–79. [Google Scholar]
- Mercier, F.; Chazottes, A.; Barthès, L.; Mallet, C. 4-D-VAR assimilation of disdrometer data and radar spectral reflectivities for raindrop size distribution and vertical wind retrievals. Atmos. Meas. Tech. 2016, 9, 3145–3163. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Chemke, R.; Demott, P.; Sullivan, R.C.; Rasmussen, R.; McDonough, F.; Comstock, J.; Schmid, B.; Tomlinson, J.; Jonsson, H.; et al. The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. J. Geophys. Res. Atmos. 2013, 118, 9819–9833. [Google Scholar] [CrossRef]
- Vanzanten, M.C.; Stevens, B.; Vali, G.; Lenschow, D.H. Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci. 2005, 62, 88–106. [Google Scholar] [CrossRef]
- Bloemink, H.I. Precipitation type from the Thies disdrometer. In Proceedings of the WMO Technical Conference on Instruments and Methods of Observation (TECO-2005), Bucharest, Romania, 4–7 May 2005; pp. 1–7. [Google Scholar]
- Chen, B. Characteristics of the raindrop size distribution for freezing precipitation observed in Southern. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Molotch, N.P. Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, S.W. A new temperature based method to separate rain and snow. Hydrol. Process. Int. J. 2008, 22, 5067–5085. [Google Scholar] [CrossRef]
- Froidurot, S.; Zin, I.; Hingray, B.; Gautheron, A. Sensitivity of precipitation phase over the Swiss Alps to different meteorological variables. J. Hydrometeorol. 2013, 15, 685–696. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X. Soil moisture and temperature dynamics in typical alpine ecosystems: A continuous multi-depth measurements-based analysis from the Qinghai-Tibet Plateau, China. Hydrol. Res. 2017, 49, 194–209. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Gao, S.; Hou, Y. Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region. Environ. Earth Sci. 2017, 76, 194. [Google Scholar] [CrossRef]
- Tang, Q.; Xiao, H.; Guo, C.; Feng, L. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res. 2014, 135–136, 59–75. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Wang, M.; Zhang, G. Seasonal variations of observed raindrop size distribution in East China. Adv. Atmos. Sci. 2019, 36, 346–362. [Google Scholar] [CrossRef]
- Ge, R.; Ruan, Z.; Huo, Z.; Wei, M.; Li, F.; Ruan, Y. Statistical characteristics of raindrop size distribution in south China summer based on the vertical structure derived from VPR-CFMCW. Atmos. Res. 2019, 222, 47–61. [Google Scholar]
- Wen, G.; Xiao, H.; Yang, H.; Bi, Y.; Xu, W. Characteristics of summer and winter precipitation over northern China. Atmos. Res. 2017, 197, 390–406. [Google Scholar] [CrossRef]
- Niu, S.; Jia, X.; Sang, J.; Liu, X.; Lu, C.; Liu, Y. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteorol. Climatol. 2010, 49, 632–645. [Google Scholar] [CrossRef]
- Minda, H.; Makino, T.; Tsuda, N.; Kaneko, Y. Performance of a laser disdrometer with hydrometeor imaging capabilities and fall velocity estimates for snowfall. IEE J. Trans. Electr. Electron. Eng. 2016, 11, 624–632. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Alhilali, M.; Lam, H.Y.; Din, J. Comparison of raindrop size distribution characteristics across the Southeast Asia region. Telkomnika 2018, 16, 2522–2527. [Google Scholar] [CrossRef]
- Sreekanth, T.S.; Varikoden, H.; Resmi, E.A.; Mohan Kumar, G. Classification and seasonal distribution of rain types based on surface and radar observations over a tropical coastal station. Atmos. Res. 2019, 218, 90–98. [Google Scholar] [CrossRef]
- Liu, D.; Yang, B.; Zhang, Y.; Qian, Y.; Huang, A.; Zhou, Y.; Zhang, L. Combined impacts of convection and microphysics parameterizations on the simulations of precipitation and cloud properties over Asia. Atmos. Res. 2018, 212, 172–185. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, G. Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J. Appl. Meteorol. Climatol. 2007, 46, 667–672. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M. Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and West Pacific Oceans. J. Atmos. Sci. 2015, 72, 4091–4125. [Google Scholar] [CrossRef]
- Liu, J.; Chen, R. Discriminating types of precipitation in Qilian Mountains, Tibetan Plateau. J. Hydrol. Reg. Stud. 2016, 5, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, G.; Sun, X.; Li, X. A new method to separate precipitation phases. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–38. [Google Scholar] [CrossRef]
- Ding, B.; Yang, K.; Qin, J.; Wang, L.; Chen, Y.; He, X. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol. 2014, 513, 154–163. [Google Scholar] [CrossRef]
Measurement Content | Instruments/Number | Sampling Interval |
---|---|---|
Precipitation | OTT Parsivel2 by OTT Hydromet GmbH, Germany/1 | 60 s |
Geonor T–200B by Norway/1 | 30 min | |
CSRG by China/1 | 1 day | |
Wind speed | RM Young 05103 series wind speed and direction sensors by Campell GmbH, USA/1 | 30 min |
Air temperature | HMP45C temperature and humidity sensor by Vaisal GmbH, Finland/1 | 30 min |
Relative humidity | 30 min |
Observation Sites | Latitude (°) | Longitude (°) | Altitude (m) | Disdrometer | Time Series | Samples (minutes) | Accumulated Precipitation (mm) |
---|---|---|---|---|---|---|---|
Tanggula | 32.58 | 91.86 | 5100 | OTT Parsivel2 | 1/1/2015–31/12/2015 | 6834 | 439 |
Wudaoliang | 35.22 | 91.08 | 4783 | OTT Parsivel2 | 1/1/2015–30/9/2015 | 7281 | 440 |
Naqu | 31.29 | 92.04 | 4508 | OTT Parsivel | 15/7/2015–30/8/2015 | 813 | 20.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Zhao, L.; Yang, D.; Xiao, Y.; Zhang, L.; Qiao, Y. Analysis of Raindrop Size Distribution Characteristics in Permafrost Regions of the Qinghai–Tibet Plateau Based on New Quality Control Scheme. Water 2019, 11, 2265. https://doi.org/10.3390/w11112265
Ma L, Zhao L, Yang D, Xiao Y, Zhang L, Qiao Y. Analysis of Raindrop Size Distribution Characteristics in Permafrost Regions of the Qinghai–Tibet Plateau Based on New Quality Control Scheme. Water. 2019; 11(11):2265. https://doi.org/10.3390/w11112265
Chicago/Turabian StyleMa, Lu, Lin Zhao, Daqing Yang, Yao Xiao, Lele Zhang, and Yongping Qiao. 2019. "Analysis of Raindrop Size Distribution Characteristics in Permafrost Regions of the Qinghai–Tibet Plateau Based on New Quality Control Scheme" Water 11, no. 11: 2265. https://doi.org/10.3390/w11112265
APA StyleMa, L., Zhao, L., Yang, D., Xiao, Y., Zhang, L., & Qiao, Y. (2019). Analysis of Raindrop Size Distribution Characteristics in Permafrost Regions of the Qinghai–Tibet Plateau Based on New Quality Control Scheme. Water, 11(11), 2265. https://doi.org/10.3390/w11112265