A Spatiotemporal Analysis of Nitrogen Pollution in a Coastal Region with Mangroves of the Southern Gulf of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Analysis
2.2.1. Spatial Analysis
2.2.2. Temporal Analysis
3. Results
3.1. Spatial Variations
3.2. Temporal Variations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muñoz-Sevilla, N.P.; Le Bail, M. Latin American and Caribbean regional perspective on Ecosystem Based Management (EBM) of Large Marine Ecosystems goods and services. Environ. Dev. 2017, 22, 9–17. [Google Scholar] [CrossRef]
- Yañez-Arancibia, A.; Day, J.W.; Reyes, E. Understanding the Coastal Ecosystem-Based Management Approach in the Gulf of Mexico. J. Coast. Res. 2013, 63, 244–262. [Google Scholar] [CrossRef]
- Bianchi, T.S.; DiMarco, S.F.; Cowan, J.H., Jr.; Hetland, R.D.; Chapman, P.; Day, J.W.; Allison, M.A. The science of hypoxia in the Northern Gulf of Mexico: A review. Sci. Total Environ. 2010, 408, 1471–1484. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.; Fennel, K.; Cai, W.-J.; Huang, W.-J.; Barbero, L.; Wanninkhof, R. Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model. Geophys. Res. Lett. 2017, 44, 946–956. [Google Scholar] [CrossRef]
- Bargu, S.; Baustian, M.M.; Rabalais, N.N.; Del Rio, R.; Von Korff, B.; Turner, R.E. Influence of the Mississippi River on Pseudo-nitzschia spp. Abundance and Toxicity in Louisiana Coastal Waters. Estuari. Coasts 2016, 39, 1345–1356. [Google Scholar] [CrossRef]
- He, S.; Xu, Y.J. Three Decadal Inputs of Nitrogen and Phosphorus from Four Major Coastal Rivers to the Summer Hypoxic Zone of the Northern Gulf of Mexico. Water Air Soil Pollut. 2015, 226, 311. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W. Differences in Phosphorus and Nitrogen Delivery to The Gulf of Mexico from the Mississippi River Basin. Environ. Sci. Technol. 2008, 42, 822–830. [Google Scholar] [CrossRef]
- Álvarez Torres, P.; Rabalais, N.N.; Piña Gutiérrez, J.M.; Padrón López, R.M. Research and community of practice of the Gulf of Mexico large marine ecosystem. Environ. Dev. 2017, 22, 166–174. [Google Scholar] [CrossRef]
- Martinez, M.L.; Silva, R.; Lithgow, D.; Mendoza, E.; Flores, P.; Martínez, R.; Cruz, C. Human Impact on Coastal Resilience along the Coast of Veracruz, Mexico. J. Coast. Res. 2017, 77, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Macauley, J.M.; Harwell, L.C.; Alafita, H.V. The ecological condition of Veracruz, Mexico Estuaries. Environ. Monit. Assess. 2007, 133, 177–185. [Google Scholar] [CrossRef]
- Rivera-Guzmán, N.E.; Moreno-Casasola, P.; Ibarra-Obando, S.E.; Sosa, V.J.; Herrera-Silveira, J. Long term state of coastal lagoons in Veracruz, Mexico: Effects of land use changes in watersheds on seagrasses habitats. Ocean Coast. Manag. 2014, 87, 30–39. [Google Scholar] [CrossRef]
- Anguiano-Cuevas, J.R.; Olivos-Ortiz, A.; Cervantes, O.; Azuz-Adeath, I.; Ramírez-Álvarez, N.; Rivera-Rodríguez, M.C. Evaluation of trophic state in the Palo Verde estuary (Colima, México), action to regulating agricultural activities. Rev. Gest. Costeira Integr. 2015, 15, 507–522. [Google Scholar] [CrossRef]
- Okolodkov, Y.B.; Campos-Bautista, G.; Gárate-Lizárraga, I. Circadian rhythm of a red-tide dinoflagellate Peridinium quadridentatum in the port of Veracruz, Gulf of Mexico, its thecal morphology, nomenclature and geographical distribution. Mar. Pollut. Bull. 2016, 108, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, M.J.; Álvarez-Torres, P.; Horak-Romo, K.P.; Ortega-Izaguirre, R. Harmful algal blooms and eutrophication along the mexican coast of the Gulf of Mexico large marine ecosystem. Environ. Dev. 2017, 22, 120–128. [Google Scholar] [CrossRef]
- Mokondoko, P.; Manson, R.H.; Pérez-Maqueo, O. Assessing the service of water quality regulation by quantifying the effects of land use on water quality and public health in central Veracruz, Mexico. Ecosyst. Serv. 2016, 22, 161–173. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Holguin, G.; Gonzalez-Zamorano, P.; de-Bashan, L.E.; Mendoza, R.; Amador, E.; Bashan, Y. Mangrove health in an arid environment encroached by urban development—A case study. Sci. Total Environ. 2006, 363, 260–274. [Google Scholar] [CrossRef]
- Thorhaug, A.L.; Poulos, H.M.; López-Portillo, J.; Barr, J.; Lara-Domínguez, A.L.; Ku, T.C.; Berlyn, G.P. Gulf of Mexico estuarine blue carbon stock, extent and flux: Mangroves, marshes, and seagrasses: A North American hotspot. Sci. Total Environ. 2019, 653, 1253–1261. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Hernandez Trejo, H.; del Carmen Jesus Garcia, M.; Heider, C.; Contreras, W.M. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetl. Ecol. Manag. 2016, 24, 203–216. [Google Scholar] [CrossRef]
- Feller, I.C.; Friess, D.A.; Krauss, K.W.; Lewis, R.R. The state of the world’s mangroves in the 21st century under climate change. Hydrobiologia 2017, 803, 1–12. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.-O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A World Without Mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, J.R.; Infante-Mata, D.; Sánchez, A.J.; Espinoza-Tenorio, A.; Barba, E. Degradación de hojarasca y aporte de nutrientes del manglar en la Laguna Mecoacán, Golfo de México. Rev. Biol. Trop. 2018, 66, 892–907. [Google Scholar] [CrossRef]
- Holguin, G.; Vazquez, P.; Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 2001, 33, 265–278. [Google Scholar] [CrossRef]
- Reis, C.R.G.; Nardoto, G.B.; Oliveira, R.S. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant Soil 2017, 410, 1–19. [Google Scholar] [CrossRef]
- Geedicke, I.; Oldeland, J.; Leishman, M.R. Urban stormwater run-off promotes compression of saltmarshes by freshwater plants and mangrove forests. Sci. Total Environ. 2018, 637, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Adame, M.F.; Najera, E.; Lovelock, C.E.; Brown, C.J. Avoided emissions and conservation of scrub mangroves: Potential for a Blue Carbon project in the Gulf of California, Mexico. Biol. Lett. 2018, 14. [Google Scholar] [CrossRef]
- López-Portillo, J.; Lara-Domínguez, A.L.; Vázquez, G.; Aké-Castillo, J.A. Water Quality and Mangrove-Derived Tannins in Four Coastal Lagoons from the Gulf of Mexico with Variable Hydrologic Dynamics. J. Coast. Res. 2017, 77, 28–38. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Oliveira-Junior, E.S.; Tang, Y.; van den Berg, S.J.P.; Cardoso, S.J.; Lamers, L.P.M.; Kosten, S. The impact of water hyacinth (Eichhornia crassipes) on greenhouse gas emission and nutrient mobilization depends on rooting and plant coverage. Aquat. Bot. 2018, 145, 1–9. [Google Scholar] [CrossRef]
- Ruiz Téllez, T.; Martín, E.; López, R.; Granado, G.L.; Albano Pérez, E.; Morán López, R.; Manuel, J.; Guzmán, S. The Water Hyacinth, Eichhornia crassipes: An invasive plant in the Guadiana River Basin (Spain). Aquat. Invasions 2008, 3, 42–53. [Google Scholar] [CrossRef]
- Tabla-Hernandez, J.; Rodriguez-Espinosa, P.F.; Mendoza-Pérez, J.A.; Sánchez-Ortíz, E.; Martinez-Tavera, E.; Hernandez-Ramirez, A.G.; Tabla-Hernandez, J.; Rodriguez-Espinosa, P.F.; Mendoza-Pérez, J.A.; Sánchez-Ortíz, E.; et al. Assessment of Potential Toxic Metals in a Ramsar Wetland, Central Mexico and Its Self-Depuration through Eichhornia crassipes. Water 2019, 11, 1248. [Google Scholar] [CrossRef]
- Fox, L.J.; Struik, P.C.; Appleton, B.L.; Rule, J.H. Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms). Water Air Soil Pollut. 2008, 194, 199–207. [Google Scholar] [CrossRef]
- Luisa Martínez, M.; Mendoza-González, G.; Silva-Casarín, R.; Mendoza-Baldwin, E. Land use changes and sea level rise may induce a “coastal squeeze” on the coasts of Veracruz, Mexico. Glob. Environ. Chang. 2014, 29, 180–188. [Google Scholar] [CrossRef]
- Pérez-Maqueo, O.; Martínez, M.L.; Cóscatl Nahuacatl, R. Is the protection of beach and dune vegetation compatible with tourism? Tour. Manag. 2017, 58, 175–183. [Google Scholar] [CrossRef]
- González-Marín, R.M.; Moreno-Casasola, P.; Castro-Luna, A.A.; Castillo, A. Regaining the traditional use of wildlife in wetlands on the coastal plain of Veracruz, Mexico: Ensuring food security in the face of global climate change. Reg. Environ. Chang. 2017, 17, 1343–1354. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Hernández Alarcón, M.E.; Silva Rivera, E.; Moreno-Casasola, P. Perceptions about environmental services and loss of forested wetlands in Monte Gordo community, Veracruz. Madera y Bosques 2016, 22, 53–69. [Google Scholar]
- Ali, T.A.; Mortula, M.; Atabay, S.; Navadeh, E. A GIS-based spatiotemporal study of the variability of water quality in the Dubai creek, UAE. Water Qual. Res. J. Can. 2016, 51, 219–232. [Google Scholar] [CrossRef]
- Kitsiou, D.; Karydis, M. Coastal marine eutrophication assessment: A review on data analysis. Environ. Int. 2011, 37, 778–801. [Google Scholar] [CrossRef]
- Primpas, I.; Tsirtsis, G.; Karydis, M.; Kokkoris, G.D. Principal component analysis: Development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol. Indic. 2010, 10, 178–183. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melesse, A.M. Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. Catena 2017, 151, 247–258. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Dutta, D. Mann-Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environ. Monit. Assess. 2014, 186, 4719–4742. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Romero, A.; Rico-Sánchez, A.; Mendoza-Martínez, E.; Gómez-Ruiz, A.; Sedeño-Díaz, J.; López-López, E.; Rodríguez-Romero, A.J.; Rico-Sánchez, A.E.; Mendoza-Martínez, E.; Gómez-Ruiz, A.; et al. Impact of Changes of Land Use on Water Quality, from Tropical Forest to Anthropogenic Occupation: A Multivariate Approach. Water 2018, 10, 1518. [Google Scholar] [CrossRef]
- SAGARPA. Uso de Fertilizantes Químicos en la Superficie Sembrada 2016. Available online: https://www.gob.mx/cms/uploads/attachment/file/220645/Boletines_superficie_sembrada.pdf (accessed on 9 March 2018).
- Guezo, N.C.; Fiogbe, E.D.; Azon, M.T.C.; Kouamelan, P.E.; Ouattara, A. Evaluation of sodium chloride (NaCl) effects on water hyacinth. EWASH TI J. 2017, 1, 34–40. [Google Scholar]
- Toft, J.D.; Simenstad, C.A.; Cordell, J.R.; Grimaldo, L.F. The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 2003, 26, 746–758. [Google Scholar] [CrossRef]
- Ulrich-Schad, J.D.; García de Jalón, S.; Babin, N.; Pape, A.; Prokopy, L.S. Measuring and understanding agricultural producers’ adoption of nutrient best management practices. J. Soil Water Conserv. 2017, 72, 506–518. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Biggs, J.S.; Palmer, J.; Meier, E.A.; Verburg, K.; Skocaj, D.M. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops. Front. Plant Sci. 2017, 8, 1504. [Google Scholar] [CrossRef] [PubMed]
- Van Meter, K.J.; Basu, N.B.; Van Cappellen, P. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Glob. Biogeochem. Cycles 2017, 31, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Zaldívar-Jiménez, A.; Ladrón-de-Guevara-Porras, P.; Pérez-Ceballos, R.; Díaz-Mondragón, S.; Rosado-Solórzano, R. US-Mexico joint Gulf of Mexico large marine ecosystem based assessment and management: Experience in community involvement and mangrove wetland restoration in Términos lagoon, Mexico. Environ. Dev. 2017, 22, 206–213. [Google Scholar] [CrossRef]
- Hudson, A. Restoring and Protecting the world’s large marine ecosystems: An engine for job creation and sustainable economic development. Environ. Dev. 2017, 22, 150–155. [Google Scholar] [CrossRef]
- Vázquez-González, C.; Moreno-Casasola, P.; Hernández, M.E.; Campos, A.; Espejel, I.; Fermán-Almada, J.L. Mangrove and Freshwater Wetland Conservation through Carbon Offsets: A Cost-Benefit Analysis for Establishing Environmental Policies. Environ. Manag. 2017, 59, 274–290. [Google Scholar] [CrossRef] [PubMed]
- Adame, M.F.; Brown, C.J.; Bejarano, M.; Herrera-Silveira, J.A.; Ezcurra, P.; Kauffman, J.B.; Birdsey, R. The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conserv. Lett. 2018, 11, e12445. [Google Scholar] [CrossRef]
Code | Name | Location | Distance to Sea | Mean Salinity (g·L−1) |
---|---|---|---|---|
T1 | Espinal bridge | Tecolutla river | 65 | 0.13 |
T2 | Paso Valencia | Tecolutla river | 55 | 0.12 |
T3 | Remolino bridge | Tecolutla river | 35 | 0.14 |
T4 | Tecolutla bridge | Tecolutla river | 10 | 0.31 |
T5 | Cruz de los esteros | Tecolutla river | 2 | 1.56 |
T6 | Los Naranjos | Tecolutla river | 1 | 6.35 |
T7 | Tecolutla estuary | Tecolutla esturay | 0.2 | 15.97 |
T8 | Tecolutla beach | Coast | 0 | 36.61 |
N1 | Martinez de la Torre | Nautla river | 55 | 0.12 |
N2 | El Pital | Nautla river | 30 | 0.12 |
N3 | Nautla bridge | Nautla river | 4 | 0.30 |
N4 | Casitas bridge | Nautla river | 1 | 6.16 |
N5 | Nautla estuary | Nautla estuary | 0.5 | 8.81 |
N6 | Casitas beach | Coast | 0 | 31.29 |
N7 | El Palmar | Coast | 0 | 37.01 |
N8 | Monte Gordo | Coast | 0 | 37.31 |
Site | NH4+ | NO3− | ON | |||
---|---|---|---|---|---|---|
W | p-Value | W | p-Value | W | p-Value | |
T1 | 33 | n.s. | 40 | n.s. | 35 | n.s. |
T2 | 35 | n.s. | 28 | n.s. | 37 | n.s. |
T3 | 55 | 0.01 | 22 | n.s. | 36 | n.s. |
T4 | 25 | n.s. | 17 | n.s. | 33 | n.s. |
T5 | 26 | n.s. | 26 | n.s. | 32.5 | n.s. |
T6 | 16 | n.s. | 28 | n.s. | 34 | n.s. |
T7 | 33 | n.s. | 21 | n.s. | 36 | n.s. |
T8 | 21 | n.s. | 42 | n.s. | 31 | n.s. |
N1 | 40 | n.s. | 23.5 | n.s. | 39.5 | n.s. |
N2 | 34 | n.s. | 24 | n.s. | 29 | n.s. |
N3 | 43.5 | n.s. | 22 | n.s. | 45 | n.s. |
N4 | 9 | 0.01 | 40 | n.s. | 35 | n.s. |
N5 | 27 | n.s. | 35 | n.s. | 28 | n.s. |
N6 | 17 | n.s. | 19 | n.s. | 38 | n.s. |
N7 | 14 | n.s. | 32 | n.s. | 33 | n.s. |
N8 | 11 | 0.03 | 16 | n.s. | 34 | n.s. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temino-Boes, R.; Romero-López, R.; Romero, I. A Spatiotemporal Analysis of Nitrogen Pollution in a Coastal Region with Mangroves of the Southern Gulf of Mexico. Water 2019, 11, 2143. https://doi.org/10.3390/w11102143
Temino-Boes R, Romero-López R, Romero I. A Spatiotemporal Analysis of Nitrogen Pollution in a Coastal Region with Mangroves of the Southern Gulf of Mexico. Water. 2019; 11(10):2143. https://doi.org/10.3390/w11102143
Chicago/Turabian StyleTemino-Boes, Regina, Rabindranarth Romero-López, and Inmaculada Romero. 2019. "A Spatiotemporal Analysis of Nitrogen Pollution in a Coastal Region with Mangroves of the Southern Gulf of Mexico" Water 11, no. 10: 2143. https://doi.org/10.3390/w11102143