Spatiotemporal Variations of Extreme Precipitation and Study on Chaotic Characteristics in the Xijiang River Basin, China
Abstract
:1. Introduction
2. Study Area and Data Series
2.1. Study Area
2.2. Data Series
3. Research Methodology
3.1. Mann–Kendall Trend Test
3.2. Concentration Index and Lorenz Asymmetry Coefficient
3.3. Reconstruction Parameter of Phase Space
3.4. The Maximum Lyapunov Exponent (MLE)
4. Results
4.1. Spatiotemporal Variations of Precipitation in the Xijiang River Basin between 1960 and 2008
4.1.1. Temporary Distribution of Precipitation in Monthly and Seasonal Scales
4.1.2. Inhomogeneity of Spatial Distribution for Monthly Precipitation
4.1.3. Inhomogeneity of Spatial Distribution for Daily Precipitation
4.1.4. Characteristics and Trend in Frequency and Cumulative Distribution of Daily Precipitation
4.1.5. Spatial Variation of Extreme Precipitation Events
4.2. Study on Its Chaotic Characteristics of Precipitation in the Xijiang River Basin between 1989 and 2008
4.2.1. Determination of Delay Time
4.2.2. Determination of Minimum Embedding Dimension
4.2.3. Identification and Spatial Variation of Chaos Characteristics
5. Discussion
5.1. Variation Analysis of Conventional Precipitation and Extreme Precipitation
5.2. Vertification of Chaotic Characteristics for Daily Precipitation Time Series Near the Coastal Areas
6. Conclusions
- (1)
- LAC and ACI are smaller in the west and east of the basin. Precipitation tends to be unevenly distributed with time, which is mainly concentrated in a large number of low rainfall events on wet days, precipitation of the middle and west is more and more uniform.
- (2)
- Duan station has the highest frequency for Violent rain, and the probability of disasters caused by extreme precipitation near the station is the highest. Seventy five percent of the stations for tiny rain days show "decreasing at 0.05 significant level". The curve with the fastest change with cumulative fraction occurs at Yanshan.
- (3)
- There may be a risk of drought on the west of the basin in the future, and precipitation in other locations is still relatively abundant. The average rates of variation for RX1_day, RX5_day, SD_II, R10, R20, CDD, CWD, R95P, R99P, R95PTOT, R99PTOT, PRCPTOT are 0.093 mm/year, 0.035 mm/year, 0.013 mm/year, −0.016 days/year, 0.009 days/year, 0.029 days/year, 0.001 days/year, −0.006 days/year, 0 days/year, −0.01 mm/year, 0.063 mm/year, −0.308 mm/year, respectively.
- (4)
- This daily precipitation has been proved to have high dimension and high chaotic characteristics. The MLE is smaller in the middle and east of the basin. The maximum and minimum of chaotic intensity occur in Liuzhou and Laibin station, and MLE are 0.144 and 0.028, respectively.
Author Contributions
Funding
Conflicts of Interest
References
- Santos, M.; Fragoso, M.; Santos, J.A. Regionalization and susceptibility assessment to daily precipitation extremes in mainland Portugal. Appl. Geogr. 2017, 86, 128–138. [Google Scholar] [CrossRef]
- Gao, L.; Huang, J.; Chen, X.; Chen, Y.; Liu, M. Contributions of natural climate changes and human activities to the trend of extreme precipitation. Atmos. Res. 2018, 205, 60–69. [Google Scholar] [CrossRef]
- Ipcc, C.W.T. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Comput. Geom. 2007, 18, 95–123. [Google Scholar]
- Croitoru, A.E.; Chiotoroiu, B.C.; Ivanova Todorova, V.; Toricǎ, V. Changes in precipitation extremes on the Black Sea Western Coast. Glob. Planet. Chang. 2013, 102, 10–19. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Shi, W.; Yu, X.; Liao, W.; Wang, Y.; Jia, B. Spatial and temporal variability of daily precipitation concentration in the Lancang River basin, China. J. Hydrol. 2013, 495, 197–207. [Google Scholar] [CrossRef]
- Zheng, Y.; He, Y.; Chen, X. Spatiotemporal pattern of precipitation concentration and its possible causes in the Pearl River basin, China. J. Clean. Prod. 2017, 161, 1020–1031. [Google Scholar] [CrossRef]
- Some’e, B.S.; Ezani, A.; Tabari, H. Spatiotemporal trends and change point of precipitation in Iran. Atmos. Res. 2012, 113, 1–12. [Google Scholar]
- Gao, T.; Wang, H.J.; Zhou, T. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos. Res. 2017, 197, 379–389. [Google Scholar] [CrossRef]
- Sharma, C.S.; Panda, S.N.; Pradhan, R.P.; Singh, A.; Kawamura, A. Precipitation and temperature changes in eastern India by multiple trend detection methods. Atmos. Res. 2016, 180, 211–225. [Google Scholar] [CrossRef]
- Tang, X.; Miao, C.; Xi, Y.; Duan, Q.; Lei, X.; Li, H. Analysis of precipitation characteristics on the loess plateau between 1965 and 2014, based on high-density gauge observations. Atmos. Res. 2018, 213, 264–274. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Wang, Y. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob. Planet. Chang. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Halimatou, A.T.; Kalifa, T.; Kyei-Baffour, N. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961–2014. Weather Clim. Extrem. 2017, 18, 8–16. [Google Scholar] [CrossRef]
- Khoi, D.N.; Trang, H.T. Analysis of Changes in Precipitation and Extremes Events in Ho Chi Minh City, Vietnam. Procedia Eng. 2016, 142, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Jakob, D.; Walland, D. Variability and long-term change in Australian temperature and precipitation extremes. Weather Clim. Extrem. 2016, 14, 36–55. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Wen, G.H. Spatial and temporal variations of light rain events over China and the mid-high latitudes of the Northern Hemisphere. Sci. Bull. 2013, 58, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Rohwer, R. Order out of Chaos: Man’s New Dialogue with Nature. Phys. Bull. 1986, 37, 11. [Google Scholar] [CrossRef]
- Sivakumar, B. Chaos theory in hydrology: Important issues and interpretations. J. Hydrol. 2000, 227, 1–20. [Google Scholar] [CrossRef]
- Ng, W.W.; Panu, U.S.; Lennox, W.C. Chaos based Analytical techniques for daily extreme hydrological observations. J. Hydrol. 2007, 342, 17–41. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; Mehr, A.D.; Asadi, H. Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting. J. Hydrol. 2018, 562, 455–467. [Google Scholar] [CrossRef]
- Dhanya, C.T.; Kumar, D.N. Nonlinear ensemble prediction of chaotic daily rainfall. Adv. Water Resour. 2010, 33, 327–347. [Google Scholar] [CrossRef]
- Dhanya, C.T.; Kumar, D.N. Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate inputs. J. Hydrol. 2011, 403, 292–306. [Google Scholar] [CrossRef]
- Sivakumar, B.; Berndtsson, R.; Olsson, J.; Jinno, K. Evidence of chaos in the rainfall-runoff process. Hydrol. Sci. J. 2001, 46, 131–145. [Google Scholar] [CrossRef]
- Jothiprakash, V. Chaotic analysis of daily rainfall series in Koyna reservoir catchment area, India. Stoch. Environ. Res. Risk Assess. 2013, 27, 1371–1381. [Google Scholar] [CrossRef]
- Li, Y.; Fang, K.; Cao, C.; Li, D.; Gan, Z. A tree-ring chronology spanning the past 210 years in the coastal area of Southeast China and its relationship with climate change. Clim. Res. 2016, 67, 209–220. [Google Scholar] [CrossRef]
- Sadatzki, H.; Sarnthein, M.; Andersen, N. Changes in monsoon-driven upwelling in the South China Sea over glacial Terminations I and II: A multi-proxy record. Int. J. Earth Sci. 2016, 105, 1273–1285. [Google Scholar] [CrossRef]
- Fischer, T.; Gemmer, M.; Liu, L.; Su, B. Change-points in climate extremes in the Zhujiang River Basin, South China, 1961–2007. Clim. Chang. 2012, 110, 783–799. [Google Scholar] [CrossRef]
- Li, C.; Li, S.-L.; Yue, F.-J.; Liu, J.; Zhong, J.; Yan, Z.-F.; Zhang, R.-C.; Wang, Z.-J.; Xu, S. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Sci. Total Environ. 2019, 646, 801–810. [Google Scholar] [CrossRef]
- Sun, H.; Han, J.; Li, D.; Zhang, S.; Lu, X. Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Sci. Total Environ. 2010, 408, 4749–4760. [Google Scholar] [CrossRef]
- Niu, J.; Sivakumar, B.; Chen, J. Impacts of increased CO2 on the hydrologic response over the Xijiang (West River) basin, South China. J. Hydrol. 2013, 505, 218–227. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, C.-Q. Water geochemistry of the Xijiang basin rivers, South China: Chemical weathering and CO2 consumption. Appl. Geochem. 2010, 25, 1603–1614. [Google Scholar] [CrossRef]
- Niu, J.; Chen, J.; Sun, L. Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China. J. Hydrol. 2015, 526, 68–77. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, Z.; Singh, V.P.; Sadeghi, S.H.R.; He, H.; Lu, G. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China. J. Hydrol. 2017, 549, 512–524. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, P.; Li, X.; Zhang, S.; Ren, M. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in water and suspended particulate matter from the Xijiang River, China. J. Hazard. Mater. 2008, 152, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Zhang, J.; Wang, H.; Wang, M.; Khu, S.-T.; Li, Z.; Tan, Q. Deriving mixed reservoir operating rules for flood control based on weighted non-dominated sorting genetic algorithm II. J. Hydrol. 2018, 564, 967–983. [Google Scholar] [CrossRef]
- Yao, G.; Gao, Q.; Wang, Z.; Huang, X.; He, T.; Zhang, Y.; Jiao, S.; Ding, J. Dynamics Of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci. Total Environ. 2007, 376, 255–266. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Yuan, F.; Zhao, C.; Jiang, Y.; Ren, L.; Shan, H.; Zhang, L.; Zhu, Y.; Chen, T.; Jiang, S.; Yang, X.; et al. Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China. J. Hydrol. 2017, 554, 434–450. [Google Scholar] [CrossRef]
- Liu, B.; Chen, J.; Chen, X.; Lian, Y.; Wu, L. Uncertainty in determining extreme precipitation thresholds. J. Hydrol. 2013, 503, 233–245. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, M.; Sun, H.; Yang, R.; Chen, B.; Yang, M.; Zeng, Q.; Zeng, H. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: Coupled action of carbonate weathering and aquatic photosynthesis. Appl. Geochem. 2017, 78, 96–104. [Google Scholar] [CrossRef]
- Dang, L.; Xu, Y.; Tang, Q. The pattern of available construction land along the Xijiang River in Guangxi, China. Land Use Policy 2015, 42, 102–112. [Google Scholar] [CrossRef]
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.; Peters-Lidard, C.D.; Goodrich, D.C. Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States. Water Resour. Res. 2008, 44, 781–782. [Google Scholar] [CrossRef]
- Liu, X.D.; Yin, Z.Y. Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic oscillation. J. Clim. 2001, 14, 2896–2909. [Google Scholar] [CrossRef]
- Nalder, I.A.; Wein, R.W. Spatial interpolation of climatic Normals: Test of a new method in the Canadian boreal forest. Agric. For. Meteorol. 1998, 92, 211–225. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Pakalidou, N.; Karacosta, P. Study of very long-period extreme precipitation records in Thessaloniki, Greece. Atmos. Res. 2018, 208, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Deng, S.; Li, M.; Sun, H.; Chen, Y.; Qu, L.; Zhang, X. Exploring temporal and spatial variability of precipitation of Weizhou Island, South China Sea. J. Hydrol. Reg. Stud. 2017, 9, 183–198. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sanguesa, C.; Pizarro, R.; Ibanez, A.; Pino, J.; Rivera, D.; Garcia-Chevesich, P.; Ingram, B. Spatial and Temporal Analysis of Rainfall Concentration Using the Gini Index and PCI. Water 2018, 10, 112. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-H.; Mei, Y.; She, D.-X.; Li, J.-Q. Chaotic Bayesian optimal prediction method and its application in hydrological time series. Comput. Math. Appl. 2011, 61, 1975–1978. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.Y. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 1997, 110, 43–50. [Google Scholar] [CrossRef]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Rajah, K.; O’Leary, T.; Turner, A.; Petrakis, G.; Westra, S. Changes to the temporal distribution of daily precipitation. Geophys. Res. Lett. 2015, 41, 8887–8894. [Google Scholar] [CrossRef]
- Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y. Global-scale analysis on future changes in flow regimes using Gini and Lorenz asymmetry coefficients. Water Resour. Res. 2014, 50, 4054–4078. [Google Scholar] [CrossRef]
- Damgaard, C.; Weiner, J. Describing inequality in plant size or fecundity. Ecology 2000, 81, 1139–1142. [Google Scholar] [CrossRef]
- Kedra, M. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains). J. Hydrol. 2014, 509, 474–503. [Google Scholar] [CrossRef]
- Grassbeger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346. [Google Scholar] [CrossRef]
- Havstad, J.W.; Ehlers, C.L. Attractor dimension of nonstationary dynamical systems from small data sets. Phys. Rev. A 1989, 39, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, A.W.; Lai, F. Analysis and prediction of chaos in rainfall and stream flow time series. J. Hydrol. 1994, 153, 23–52. [Google Scholar] [CrossRef]
- Schreiber, T.; Kantz, H. Observing and Predicting Chaotic Signals: Is 2% Noise Too Much? Springer: Berlin/Heidelberg, Germany, 1996; ISBN 978-3-642-80254-6. [Google Scholar]
- Procaccia, I. Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 1983, 9, 189–208. [Google Scholar]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Sirangelo, B. Trends in the daily precipitation categories of Calabria (southern Italy). Procedia Eng. 2016, 162, 32–38. [Google Scholar] [CrossRef]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol. 2010, 21, 269–284. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Chen, M.-T.; Wang, H.; Li, M.; Yu, Y. Multi-decadal spatial and temporal changes of extreme precipitation patterns in northern China (Jing-Jin-Ji district, 19602013–). Quat. Int. 2018, 476, 1–13. [Google Scholar] [CrossRef]
- Luo, M.; Xiong, S.; Liang, Y.; Bureau, Y.M.; Bureau, C.M. Comparative study of calculated threshold values in regional extreme precipitation. J. Meteorol. Sci. 2013, 33, 549–554. [Google Scholar]
- Wang, X.; Hou, X.; Wang, Y. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmos. Res. 2017, 197, 94–104. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Singh, V.P.; Xu, C.-Y. Copula-based spatio-temporal patterns of precipitation extremes in China. Int. J. Climatol. 2013, 33, 1140–1152. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Cao, L.; Xu, X. Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quat. Int. 2014, 333, 26–39. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Xiao, M.; Xu, C.-Y. Flood frequency under the influence of trends in the Pearl River basin, China: Changing patterns, causes and implications. Hydrol. Process. 2015, 29, 1406–1417. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Lin, W.; Chen, X. Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Climatol. 2016, 36, 2866–2885. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Kisi, O. Time series analysis on marine wind-wave characteristics using chaos theory. Ocean Eng. 2015, 100, 46–53. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, X.; Li, S.; Zhao, A.; Li, X.; Fan, J. Changes in extreme precipitation over Northeast China, 1960–2011. Quat. Int. 2013, 298, 177–186. [Google Scholar] [CrossRef]
- Song, X.; Song, S.; Sun, W.; Mu, X.; Wang, S.; Li, J.; Li, Y. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res. 2015, 157, 137–152. [Google Scholar] [CrossRef]
- Li, Y.-G.; He, D.; Hu, J.-M.; Cao, J. Variability of extreme precipitation over Yunnan Province, China 1960–2012. Int. J. Climatol. 2015, 35, 245–258. [Google Scholar] [CrossRef]
- Keggenhoff, I.; Elizbarashvili, M.; Amiri-Farahani, A.; King, L. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather Clim. Extrem. 2014, 4, 75–85. [Google Scholar] [CrossRef]
- Omondi, P.A.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M.; et al. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Climatol. 2014, 34, 1262–1277. [Google Scholar] [CrossRef]
Station Code | Name | Longitude (°) | Latitude (°) | Elevation (m) | Annual Precipitation Average (1960–2008) (mm) | Durations with Missing Data |
---|---|---|---|---|---|---|
56786 | Zhanyi | 103.83 | 25.58 | 1898.7 | 995.9 | Nm |
56793 | Panxian | 104.47 | 25.72 | 1800 | 1390.6 | Nm |
56875 | Yuxi | 102.55 | 24.33 | 1716.9 | 916.9 | Nm |
56880 | Yiliang | 103.17 | 24.92 | 1532.1 | 929.4 | 1968.01.01–1968.04.30 1991.06.01–2006.12.31 |
56886 | Huxi | 103.77 | 24.53 | 1704.3 | 923.8 | Nm |
56985 | Mengzi | 103.38 | 23.38 | 1300.7 | 855.2 | Nm |
56991 | Yanshan | 104.33 | 23.62 | 1561.1 | 1359.4 | 1960.01.01–2001.12.31 |
57806 | Anshun | 105.90 | 26.25 | 1431.1 | 1307.2 | Nm |
57816 | Guiyang | 106.73 | 26.58 | 1223.8 | 1287.3 | Nm |
57902 | Xingyi | 105.18 | 25.43 | 1378.5 | 1651.3 | Nm |
57906 | Wangmo | 106.08 | 25.18 | 566.8 | 1012.8 | 1960.06.28 |
57916 | Luodian | 106.77 | 25.43 | 440.3 | 1343.1 | Nm |
57922 | Dushan | 107.55 | 25.83 | 1013.3 | 1115.7 | Nm |
57932 | Rongjiang | 108.53 | 25.97 | 285.7 | 1347.6 | Nm |
57947 | Rongan | 109.40 | 25.22 | 121.3 | 1246.4 | 1968.02.01–1968.02.29 |
57957 | Guilin | 110.30 | 25.32 | 164.4 | 1151.7 | Nm |
57965 | Daoxian | 111.60 | 25.53 | 192.2 | 1327.3 | Nm |
59007 | Guangnan | 105.07 | 24.07 | 1249.6 | 1199.3 | 1967.08.01–1968.12.31 |
59021 | Fengshan | 107.03 | 24.55 | 484.6 | 1908.9 | 1968.02.01–1968.03.31 |
59023 | Hechi | 108.03 | 24.70 | 211 | 1883.3 | Nm |
59037 | Duan | 108.10 | 23.93 | 170.8 | 1514.2 | Nm |
59046 | Liuzhou | 109.40 | 24.35 | 96.8 | 1040.5 | Nm |
59058 | Mengshan | 110.52 | 24.20 | 145.7 | 1529.6 | Nm |
59065 | Hexian | 111.53 | 24.42 | 108.8 | 1496.2 | Nm |
59209 | Napo | 105.83 | 23.42 | 794.1 | 1724.4 | Nm |
59211 | Baise | 106.60 | 23.90 | 173.5 | 1453.0 | Nm |
59218 | Jingxi | 106.42 | 23.13 | 739.9 | 1740.9 | 1968.01.28–1968.02.01 |
59224 | Tiandong | 107.12 | 23.60 | 111.2 | 1548.5 | 1988.01.01–2006.12.31 |
59228 | Pingguo | 107.58 | 23.32 | 108.8 | 1389.4 | 1960.01.01–1987.12.31 |
59242 | Laibin | 109.23 | 23.75 | 84.9 | 1097.9 | Nm |
59254 | Guiping | 110.08 | 23.40 | 42.5 | 1635.2 | Nm |
59265 | Wuzhou | 111.30 | 23.48 | 114.8 | 1256.9 | Nm |
59278 | Gaoyao | 112.45 | 23.03 | 41 | 1340.6 | Nm |
59417 | Longzhou | 106.85 | 22.33 | 128.8 | 1352.1 | Nm |
59431 | Nanning | 108.22 | 22.63 | 121.6 | 1710.6 | Nm |
59462 | Luoding | 111.57 | 22.77 | 53.3 | 1473.9 | Nm |
Index Name | Description | Definition | Unit |
---|---|---|---|
RX1day | Max 1-day precipitation amount | Annual maximum 1-day precipitation | mm |
RX5day | Max 5-day precipitation amount | Annual maximum consecutive 5-day precipitation | mm |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days in the year | mm/day |
R10 | Number of precipitation >= 10 mm days | Annual count of days when daily precipitation (RR) >= 10 mm | days |
R20 | Number of precipitation >= 20 mm days | Annual count of days when RR >= 20 mm | days |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | days |
CWD | Consecutive wet days | Maximum number of consecutive days with RR >= 1 mm | days |
R95P | Very wet days | Number of days when RR > 95th percentile of precipitation on wet days | days |
R99P | Extremely wet days | Number of days when RR > 99th percentile of precipitation on wet days | days |
R95PTOT | Precipitation in very wet days | Annual total precipitation (PRCP) when RR > 95th percentile in wet days | mm |
R99PTOT | Precipitation in extremely wet days | Annual total PRCP when RR > 99th percentile in wet days | mm |
PRCPTOT | Annual total wet-day precipitation | Annual total PRCP in wet days | mm |
Station Name | R2 | RMSE | Z | SSE | LCI | LAC | Station Name | R2 | RMSE | Z | SSE | LCI | LAC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zhanyi | 0.9998 | 0.0056 | −0.066 | −0.07% | 0.515 | 0.813 | Fengshan | 0.9994 | 0.0079 | 0.639 | 1.03% | 0.522 | 0.827 |
Panxian | 0.9996 | 0.0069 | 0.025 | 0.02% | 0.518 | 0.801 | Hechi | 0.9995 | 0.0070 | −0.175 | −0.30% | 0.488 | 0.897 |
Yuxi | 0.9996 | 0.0075 | 0.434 | 0.42% | 0.515 | 0.830 | Duan | 0.9993 | 0.0084 | −0.379 | −0.75% | 0.513 | 0.898 |
Yiliang | 0.9996 | 0.0074 | 0.903 | 0.87% | 0.513 | 0.808 | Liuzhou | 0.9992 | 0.0093 | −0.061 | −0.13% | 0.475 | 0.892 |
Huxi | 0.9997 | 0.0060 | −0.656 | −0.63% | 0.510 | 0.833 | Mengshan | 0.9993 | 0.0085 | −0.290 | −0.64% | 0.461 | 0.892 |
Mengzi | 0.9997 | 0.0067 | 0.426 | 0.41% | 0.497 | 0.849 | Hexian | 0.9995 | 0.0073 | −0.312 | −0.60% | 0.438 | 0.873 |
Yanshan | 0.9996 | 0.0079 | −0.268 | −0.30% | 0.474 | 0.812 | Napo | 0.9998 | 0.0056 | −0.324 | −0.45% | 0.520 | 0.822 |
Anshun | 0.9999 | 0.0029 | −0.619 | −0.79% | 0.510 | 0.866 | Baise | 0.9998 | 0.0043 | 0.129 | 0.15% | 0.528 | 0.864 |
Guiyang | 0.9997 | 0.0054 | −0.406 | −0.49% | 0.480 | 0.860 | Jingxi | 0.9998 | 0.0045 | 0.574 | 1.06% | 0.509 | 0.822 |
Xingyi | 0.9997 | 0.0054 | −0.362 | −0.50% | 0.505 | 0.859 | Tiandong | 0.9999 | 0.0031 | 1.617 | 2.30% | 0.497 | 0.838 |
Wangmo | 0.9999 | 0.0038 | 0.199 | 0.29% | 0.518 | 0.848 | Pingguo | 0.9999 | 0.0039 | −0.477 | −0.76% | 0.477 | 0.852 |
Luodian | 0.9998 | 0.0051 | 0.057 | 0.06% | 0.519 | 0.859 | Laibin | 0.9991 | 0.0096 | −0.381 | −0.62% | 0.487 | 0.889 |
Dushan | 0.9998 | 0.0047 | −0.224 | −0.36% | 0.452 | 0.862 | Guiping | 0.9995 | 0.0072 | −0.271 | −0.58% | 0.450 | 0.884 |
Rongjiang | 0.9991 | 0.0102 | 0.677 | 0.98% | 0.458 | 0.916 | Wuzhou | 0.9997 | 0.0062 | −0.490 | −0.88% | 0.467 | 0.878 |
Rongan | 0.9984 | 0.0129 | −0.543 | −1.24% | 0.487 | 0.936 | Gaoyao | 0.9994 | 0.0098 | −0.164 | −0.31% | 0.474 | 0.790 |
Guilin | 0.9993 | 0.0084 | −0.163 | −0.37% | 0.467 | 0.921 | Longzhou | 0.9997 | 0.0063 | −0.263 | −0.39% | 0.488 | 0.834 |
Daoxian | 0.9997 | 0.0067 | −0.265 | −0.53% | 0.407 | 0.855 | Nanning | 0.9997 | 0.0055 | −0.688 | −1.09% | 0.490 | 0.857 |
Guangnan | 0.9998 | 0.0053 | −0.548 | −0.63% | 0.503 | 0.811 | Luoding | 0.9996 | 0.0077 | −0.174 | −0.31% | 0.456 | 0.836 |
Index | This Study | China | ||||
---|---|---|---|---|---|---|
National | Northwest (Loess Plateau) | Southern (Pearl River Basin) | Northern (jing-jin-ji District) | |||
Time period | 1960–2008 | 1961–2003 | 1961–2011 | 1960–2012 | 1960–2013 | |
RX1_day | 0.093 | ━ | −0.011 | 0.110 | −0.195 | |
RX5_day | 0.035 | 0.190 | 0.002 | 0.080 | −0.478 | |
SD_II | 0.013 | 0.006 | 0.007 | 0.020 | −0.010 | |
R10 | −0.016 | ━ | 0.000 | −0.040 | −0.032 | |
R20 | 0.009 | ━ | 0.000 | 0.005 | −0.030 | |
CDD | 0.029 | −0.122 | 0.377 | 0.110 | −0.116 | |
CWD | 0.001 | ━ | 0.000 | −0.020 | −0.026 | |
R95P | −0.006 | 0.406 | −0.064 | 0.530 | −0.979 | |
R99P | 0.000 | ━ | 0.000 | 0.390 | −0.418 | |
R95PTOT | −0.010 | ━ | −0.032 | ━ | ━ | |
R99PTOT | 0.063 | ━ | −0.032 | ━ | ━ | |
PRCPTOT | −0.308 | 0.321 | ━ | −0.720 | −1.069 | |
Data source | Sun [78] | Sun [12] | Zhao [74] | Mei [70] |
Index | China | Others | |||||
---|---|---|---|---|---|---|---|
Northwest China (Xinjiang) | Northeast China | Northeast China (Songhuajiang) | Southwest (Yunnan) | Global | Global | Georgia | |
Time period | 1960–2009 | 1960–2011 | 1960–2013 | 1960–2012 | 1971–2005 | 1951–2003 | 1971–2010 |
RX1_day | 0.079 | −0.045 | 0.000 | 0.040 | 0.026 | ━ | 0.060 |
RX5_day | 0.085 | −0.193 | 0.000 | −0.012 | 0.073 | 0.055 | 0.200 |
SD_II | ━ | −0.004 | −0.020 | 0.008 | 0.005 | 0.005 | 0.010 |
R10 | ━ | −0.026 | 0.000 | −0.038 | 0.003 | ━ | −0.010 |
R20 | ━ | −0.016 | 0.000 | 0(R25) | 0.006 | ━ | 0.030 |
CDD | ━ | 0.125 | 0.220 | 0.107 | −0.119 | −0.055 | 0.010 |
CWD | ━ | −0.007 | 0.000 | −0.037 | −0.007 | ━ | 0.000 |
R95P | 0.900 | −0.680 | 1.370 | 0.378 | 0.468 | 0.407 | ━ |
R99P | ━ | −0.217 | 1.280 | 0.230 | 0.338 | ━ | ━ |
R95PTOT | 0.630 | ━ | ━ | ━ | ━ | ━ | 0.750 |
R99PTOT | 0.330 | ━ | ━ | ━ | ━ | ━ | 0.630 |
PRCPTOT | ━ | −0.832 | 1.650 | −0.931 | 0.591 | 1.059 | 0.790 |
Data source | Wang [79] | Wang [80] | Song [81] | Li [82] | Keggenhoff [83] | Omondi [84] | Sun [78] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Liao, W.; Wang, H.; Lei, X.; Zhang, W.; Yu, Z. Spatiotemporal Variations of Extreme Precipitation and Study on Chaotic Characteristics in the Xijiang River Basin, China. Water 2019, 11, 2106. https://doi.org/10.3390/w11102106
Ding X, Liao W, Wang H, Lei X, Zhang W, Yu Z. Spatiotemporal Variations of Extreme Precipitation and Study on Chaotic Characteristics in the Xijiang River Basin, China. Water. 2019; 11(10):2106. https://doi.org/10.3390/w11102106
Chicago/Turabian StyleDing, Xingchen, Weihong Liao, Hao Wang, Xiaohui Lei, Wei Zhang, and Zhilei Yu. 2019. "Spatiotemporal Variations of Extreme Precipitation and Study on Chaotic Characteristics in the Xijiang River Basin, China" Water 11, no. 10: 2106. https://doi.org/10.3390/w11102106