Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: Experimental and Numerical Evaluation
2.2. Parametric Study
3. Results and Discussion
3.1. Impact of Vegetation and Substrate
3.2. Impact of Irrigation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castleton, H.; Stovin, V.; Beck, S.; Davison, J. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Forchungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V. (FLL). Guidelines for the Planning, Construction and Maintenance of Green Roofing—Green Roofing Guideline; German Landscape Research, Development and Construction Society (FLL): Bonn, Germany, 2008. [Google Scholar]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build. Environ. 2012, 48, 57–65. [Google Scholar] [CrossRef]
- Sproul, J.; Wan, M.P.; Mandel, B.H.; Rosenfeld, A.H. Economic comparison of white, green, and black flat roofs in the United States. Energy Build. 2014, 71, 20–27. [Google Scholar] [CrossRef]
- Silva, C.M.; Gomes, M.G.; Silva, M. Green roofs energy performance in Mediterranean climate. Energy Build. 2016, 116, 318–325. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ. 2007, 42, 2971–2979. [Google Scholar] [CrossRef] [Green Version]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Steusloff, S. Input and Output of Airborne Aggressive Substances on Green Roofs in Karlsruhe. In Urban Ecology; Breuste, J., Feldmann, H., Uhlmann, O., Eds.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Connelly, M.; Hodgson, M. Experimental investigation of the sound transmission of vegetated roofs. Appl. Acoust. 2013, 74, 1136–1143. [Google Scholar] [CrossRef]
- Jaffal, I.; Ouldboukhitine, S.-E.; Belarbi, R. A comprehensive study of the impact of green roofs on building energy performance. Renew. Energy 2012, 43, 157–164. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Rossi, F.D.; Turni, G.; Vanoli, G.P. Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning? Appl. Energy 2013, 104, 845–859. [Google Scholar] [CrossRef]
- Sailor, D.J.; Elley, T.B.; Gibson, M. Exploring the building energy impacts of green roof design decisions - a modeling study of buildings in four distinct climates. J. Build. Phys. 2012, 35, 372–391. [Google Scholar] [CrossRef]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Olivieri, F.; Di Perna, C.; D’Orazio, M.; Olivieri, L.; Neila, J. Experimental measurements and numerical model for the summer performance assessment of extensive green roofs in a mediterranean coastal climate. Energy Build. 2013, 63, 1–14. [Google Scholar] [CrossRef]
- Theodosiou, T.G. Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy Build. 2003, 35, 909–917. [Google Scholar] [CrossRef]
- Heusinger, J.; Sailor, D.J.; Weber, S. Modeling the reduction of urban excess heat by green roofs with respect to different irrigation scenarios. Build. Environ. 2018, 131, 174–183. [Google Scholar] [CrossRef]
- EnergyPlus. Energy Simulation Software. 2013. Available online: http://apps1.eere.energy.gov/buildings/energyplus (accessed on 23 September 2013).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef]
- Moret Rodrigues, A.; Santos, M.; Gomes, M.; Glória Duarte, R. Impact of natural ventilation on the thermal and energy performance of buildings in a Mediterranean climate. Buildings 2019, 9, 123. [Google Scholar] [CrossRef]
- Sailor, D. A green roof model for building energy simulation programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.-E.; Belarbi, R.; Sailor, D.J. Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings. Appl. Energy 2014, 114, 273–282. [Google Scholar] [CrossRef]
- UIUC; LBNL. EnergyPlus Documentation. U.S. Department of Energy, 2010. Available online: https://energyplus.net/documentation (accessed on 10 June 2019).
- Flora-On: Flora de Portugal Interactiva. Sociedade Portuguesa de Botânica. (License Creative Commons Attribution-NonCommercial 4.0 International—CC BY-NC 4.0). 2014. Available online: https://flora-on.pt/images/Acordo_Utilizacao_Dados_Geograficos_Flora-On.pdf (accessed on 10 June 2019).
- REH. Regulation of the Energy Performance of Residential Buildings; Decree-law 118/2013 of 20 of August 2013; Ministry of Economy, Innovation and Development (in Portuguese): Diário da República, Portugal, 2013; pp. 4988–5005. Available online: https://dre.pt/application/conteudo/499237 (accessed on 12 March 2018).
- Cudell, G. Manual for Installation of Irrigation Systems. 2000. Available online: http://cudell.pt/sites/cudell.pt/files/files/OS/Manual_Instalador/Manual_de_Instalacao_de_Rega.pdf (accessed on 10 April 2019).
- Fang, C.-F. Evaluating the thermal reduction effect of plant layers on rooftops. Energy Build. 2008, 40, 1048–1052. [Google Scholar] [CrossRef]
- Liu, K.; Minor, J. Performance Evaluation of an Extensive Green Roof. In Proceedings of the Third Annual Greening Rooftops for Sustainable Communities Conference, Awards and Trade Show, Washington, DC, USA, 4–6 May 2005. [Google Scholar]
- Niu, H.; Clark, C.; Zhou, J.; Adriaens, P. Scaling of Economic Benefits from Green Roof Implementation in Washington, DC. Environ. Sci. Technol. 2010, 44, 4302–4308. [Google Scholar] [CrossRef] [PubMed]
- Ouldboukhitine, S.-E.; Belarbi, R.; Jaffal, I.; Trabelsi, A. Assessment of green roof thermal behavior: A coupled heat and mass transfer model. Build. Environ. 2011, 46, 2624–2631. [Google Scholar] [CrossRef]
- Wong, N.; Cheong, D.; Yan, H.; Soh, J.; Ong, C.; Sia, A. The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy Build. 2003, 35, 353–364. [Google Scholar] [CrossRef]
- Nardini, A.; Andri, S.; Crasso, M. Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: Shrubs versus herbaceous plants. Urban Ecosyst. 2012, 15, 697–708. [Google Scholar] [CrossRef]
Leaf Area Index (LAI) | |||
---|---|---|---|
Lower Values | Higher Values | ||
Vegetation Height (h) | Lower values | Reichardia picroides | Sedum sediforme |
Higher values | Rosmarinus officinalis | Brachypodium phoenicoides |
Soil Depth (d = 0.1 m) | Soil Depth (d = 0.7 m) | |||||||
---|---|---|---|---|---|---|---|---|
LAI | Irrigation i (mm/day) | Vegetation Height h (m) | Energy Needs | Energy Use | Energy Needs | Energy Use | ||
(kWh/year) | (kWh/year) | |||||||
Heating | Cooling | Annual | Heating | Cooling | Annual | |||
1 | 0 | 0.05 | 299.6 | 1061.8 | 442.1 | 131.3 | 658.3 | 258.1 |
1 | 435.3 | 717.5 | 367.2 | 240.2 | 450.5 | 220.8 | ||
3 | 0.05 | 443.3 | 320.9 | 237.3 | 180.7 | 274.9 | 144.8 | |
1 | 723.9 | 418.2 | 352.3 | 318.2 | 337.4 | 206.1 | ||
6 | 0.05 | 440.3 | 301.2 | 229.9 | 199.2 | 229.8 | 135.2 | |
1 | 813.4 | 246.2 | 321.3 | 351.1 | 213.8 | 174.5 | ||
5 | 0 | 0.05 | 486.7 | 130.7 | 186.7 | 228.9 | 168.2 | 123.4 |
1 | 723.0 | 85.5 | 241.1 | 295.7 | 303.6 | 188.2 | ||
3 | 0.05 | 506.0 | 75.8 | 174.1 | 257.1 | 83.0 | 103.3 | |
1 | 867.9 | 50.4 | 272.1 | 284.2 | 74.0 | 137.7 | ||
6 | 0.05 | 507.2 | 75.6 | 174.4 | 257.7 | 83.1 | 103.5 | |
1 | 872.1 | 23.4 | 264.3 | 399.2 | 46.0 | 132.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, M.G.; M. Silva, C.; Valadas, A.S.; Silva, M. Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate. Water 2019, 11, 2016. https://doi.org/10.3390/w11102016
Gomes MG, M. Silva C, Valadas AS, Silva M. Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate. Water. 2019; 11(10):2016. https://doi.org/10.3390/w11102016
Chicago/Turabian StyleGomes, M. Glória, C. M. Silva, Ana Sofia Valadas, and Marcelo Silva. 2019. "Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate" Water 11, no. 10: 2016. https://doi.org/10.3390/w11102016