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Abstract: Satellite-based and reanalysis precipitation products provide a practical way to overcome
the shortage of gauge precipitation data because of their high spatial and temporal resolution.
This study compared two reanalysis precipitation datasets (the China Meteorological Assimilation
Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS), the National
Centers for Environment Prediction Climate Forecast System Reanalysis (NCEP-CFSR)) and
two satellite-based datasets (the Tropical Rainfall Measuring Mission 3B42 Version 7 (3B42V7)
and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks–Climate Data Record (PERSIANN-CDR)) with observed precipitation in the Xiang River
basin in China at two spatial (grids and the whole basin) and two temporal (daily and monthly) scales.
These datasets were then used as inputs to a SWAT model to evaluate their usefulness in hydrological
prediction. Bayesian model averaging was used to discriminate dataset performance. The results
show that: (1) for daily timesteps, correlations between reanalysis datasets and gauge observations
are >0.55, better than satellite-based datasets; The bias values of satellite-based datasets are <10%
at most evaluated grid locations and for the whole baseline. PERSIANN-CDR cannot detect the
spatial distribution of rainfall events; the probability of detection (POD) of PERSIANN-CDR at most
evaluated grids is <0.50; (2) CMADS and 3B42V7 are better than PERSIANN-CDR and NCEP-CFSR
in most situations in terms of correlation with gauge observations; satellite-based datasets are better
than reanalysis datasets in terms of bias; and (3) CMADS and 3B42V7 simulate streamflow well for
both daily (The Nash-Sutcliffe coefficient (NS) > 0.70) and monthly (NS > 0.80) timesteps; NCEP-CFSR
is worst because it substantially overestimates streamflow; PERSIANN-CDR is not good because of
its low NS (0.40) during the validation period.

Keywords: reanalysis products; satellite-based products; hydrological model; bayesian model
averaging; Xiang River basin

1. Introduction

Precipitation is one of the primary drivers of the hydrological cycle and, thus of great importance
in hydrological simulation [1], which is a major water resources management tool for forecasting
floods and droughts. The accuracy of hydrological simulation depends on the spatial and temporal
resolution of precipitation data [2]. Precipitation is more difficult than other atmospheric variables,
such as temperature and relative humidity, to measure accurately because of its great spatial and
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temporal variability. Precipitation data are usually observed and collected using rainfall gauges and
meteorological radar networks, but these measurement devices are usually geographically sparse and
inadequate to fully capture the spatial and temporal variability of precipitation [3,4]. This situation is
serious in China because of the country’s complex topography and relatively unevenly distributed
economic resources [5]. Satellite-based and reanalysis precipitation datasets have been effective in
complementing traditionally obtained precipitation data as remote sensing and computing technologies
have developed [6–8].

Satellite-based precipitation measurement technology uses visible data, infrared imaging,
and passive microwave detection to gather precipitation data [9,10]. However, satellite-based
datasets inevitably contain errors due to the measurement technology [11], the sampling method [12],
and the retrieval algorithms [13]. Reanalysis datasets are created from a combination of observed
data and model forecasts [14]. The accuracy of reanalysis datasets is determined by the observed
forcing data, the data assimilation method, and the prediction model(s) used [15]. Many studies
have shown that the accuracy of reanalysis datasets is highly related to both the observing system
and the assimilated data [16,17]. Hodges et al. [18] showed that newer reanalysis datasets,
including the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis
(ERA-Interim, https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/
era-interim), the National Aeronautics and Space Administration Modern Era Retrospective-Analysis
for Research and Applications (NASA’s MERRA, https://climatedataguide.ucar.edu/climate-data/
nasa-merra), and the NCEP-CFSR (http://globalweather.tamu.edu) perform better than older
datasets (such as the 25-year Japanese Reanalysis (JRA-25, http://jra.kishou.go.jp/JRA-25/index_
en.html)) in identifying recurrent extratropical cyclones because of the improvements in models,
observations, and data assimilation in numerical weather prediction model (NWP) systems.
Ebisuzaki and Zhang [19] compared NCEP-CFSR to a set of operational analyses for 2007 and
found that NCEP-CFSR captured daily variability in precipitation better than the older reanalyses.
The performance of NCEP-CFSR was attributed to major improvements in modeling, observation,
and the method of data assimilation. Dee et al. [20] found that observed data have a significant
effect on the initialization of an NWP model and thus on the quality of reanalysis data. They also
found that successive generations of atmospheric reanalysis data have improved in quality as a
result of better models, better input data, and better assimilation methods. Smith et al. [21] showed
that even when the model and data assimilation method do not change, observational data density,
type, and quality change over time. These observational changes can introduce spurious errors
into reanalysis data. Model bias can also act on the data to introduce errors, as can the method
of observations. There are many widely used satellite-based and reanalysis datasets, such as
PERSIANN-CDR, 3B42V7, and NCEP-CFSR, available on the internet. Detailed information about
these datasets, such as resolution, coverage, and data sources, is shown in Table 1. However, because
of the errors inherent in satellite-based datasets and the high dependency of reanalysis datasets on the
observation system, these datasets may not be suitable for hydrological applications in East Asia [22].
The CMADS were developed by Dr. Xianyong Meng from the China Agricultural University (CAU)
and has received worldwide attention [5,23–30]. It using STMAS assimilation techniques as well as big
data projection and processing methods to compensate for the fact that few specialized meteorological
products were developed for East Asia [22].

In this study, four precipitation products that include two precipitation reanalysis
datasets (NCEP-CFSR and CMADS) and two satellite-based precipitation datasets (3B42V7 and
PERSIANN-CDR) were analyzed and evaluated in a hydrological application for the Xiang River basin,
a humid watershed in central China. These datasets all have high spatial and temporal resolution.
3B42V7 is the latest release of the post-real time product (ftp://disc2.nascom.nasa.gov/ftp/data/s4pa/
/TRMM_L3/). Precipitation estimates from 3B42V7 have been evaluated in many studies [31–34].
PERSIANN-CDR is a new retrospective multi satellite-based precipitation dataset for long hydrological
and climate studies [35], which is available online (ftp://data.ncdc.noaa.gov/cdr/persiann/files/).
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The dataset is produced by the PERSIANN algorithm [36] using gridded satellite (GridSat-B1) infrared
data. Studies of precipitation estimates from PERSIANN-CDR are relatively few, and most of
them compare PERSIANN-CDR predictions with ground-based precipitation observations [37–39].
only a small number are related to hydrological applications of PERSIANN-CDR [40]. The daily
NCEP-CFSR data, which are in a format that the SWAT model can use, are available online
(http://globalweather.tamu.edu). NCEP-CFSR datasets are widely used in many studies [41–43].
CMADS, which we use in this study, is a new reanalysis product which can be downloaded from the
internet (www.cmads.org). There are very few studies that use CMADS because of its novelty, and they
investigate northern arid areas such as the Juntanghu watershed [26,27,44], the Manas River basin [28],
and the Qinghai-Tibet Plateau [30]. However, the error characteristics of precipitation products vary
with climatic regions, seasons, surface conditions, storm regimes, and altitudes [45] which necessitates
the analysis and evaluation of hydrological applications of precipitation dataset products in different
regions. To the best of our knowledge, this is the first study of a hydrological application of CMADS in
Central China.

This paper is organized as follows. Section 2 describes the materials and methods used in the
study. Section 3 presents a detailed evaluation of the results given by the precipitation products, and a
further discussion is given in Section 4. Lastly, Section 5 provides a short conclusion based on the
results of our study.

2. Materials and Methods

2.1. Study Area

The Xiang River basin was selected as our study area. Xiang River is one of the largest tributaries
of Yangtze River, flowing northward towards Dongting Lake, the second largest freshwater lake in
China. The Xiang River Basin is located in Hunan Province, between between 24.5–28.25◦ N and
110.5–114.25◦ E. The outlet of the Xiang River Basin is Xiangtan station and the area of the basin is
82,375 km2. The basin is dominated by subtropic monsoon climate, with a meaning annual precipitation
of 1400 to 1700 mm and an average annual temperature of 17 ◦C. Most of the rainfall occurs between
April and June. The basin suffers from frequent floods and droughts due to the uneven seasonal
distribution of rainfall. The primary terrain of the Xiang River Basin is plain while the elevation of this
area ranges from 1 m to more than 2000 m (based on China National Height Datum). The overview
of Xiang River basin is shown in Figure 1. For more information about the study area, readers are
referred to Zhu et al. [40].

2.2. Meteorological Data

In this section, the data used in the study, including gauge observations, that are required for
the SWAT model, as well as the four precipitation dataset products, are briefly described. The spatial
distribution of the CMADS, the locations of the precipitation and discharge gauges used in the
study are shown in Figure 1. The spatial distribution of other datasets in the studied basin refers to
Zhu et al. [40].

2.2.1. Satellite-Based and Reanalysis Precipitation Estimates

PERSIANN is a satellite-based precipitation retrieval algorithm based on infrared brightness
temperature imagery generated by geostationary satellites [36]. The PERSIANN-CDR dataset is
generated by the PERSIANN algorithm using gridded satellite (GridSat-BI) infrared data. NCEP
Stage IV radar data is used to train the Artificial Neural Networks model and create nonlinear
regression parameters. The model prediction (precipitation estimates) is then calibrated using
the monthly Global Precipitation Climatology Project (GPCP) version 2.2 product that contains
precipitation gauge data generated by the GPCP mission in order to increase the reliability of the
PERSIANN-CDR data [35].

http://globalweather.tamu.edu
www.cmads.org
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The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between the U.S. National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA)
to study rainfall for weather and climate research. To increase the accuracy of the precipitation
estimates, 3B42V7 integrates microwave and infrared measurements and incorporates the new Global
Precipitation Climatology Center monthly precipitation data [40,46]. The TRMM satellite stopped
collecting data on 15 April 2015 (https://trmm.gsfc.nasa.gov/). The Global Precipitation Measurement
Mission Integrated MultisatellitE Retrievals for Global Precipitation Measurement (GPM IMERG),
which has more accurate spatiotemporal resolution (half-hourly and 0.1) is a successor to TRMM [47].

Figure 1. Spatial distribution of CMADS, precipitation gauge stations, and runoff stations in the Xiang
River basin with elevations and subbasin divisions (Zhzh represents Zhuzhou site, Shf represents
Shuangfeng site, Ny represents Nanyue site, Hy represents Hengyang site, Chn represents Changning
site, Yzh represents Yongzhou site, Chzh represents Chenzhou site, and Dx represents Daoxian site,
the site after is denoted by the above abbreviation).

CFSR is a global coupled atmosphere–land–ocean–sea-ice assimilation system developed at
NCEP [48]. Its spatial resolution is approximately 38 km. CFSR includes the coupling of atmosphere
and ocean during the generation of the 6-h guess field, an interactive sea-ice model, and assimilation
of satellite radiance data by grid point statistical interpolation over the entire period (https://rda.ucar.
edu/#!pub/cfsr.html). All available conventional and satellite observations were included in CFSR.

CMADS is constructed using multiple technologies and scientific methods, including loop nesting
of data, projection of resampling models, and bilinear interpolation (www.cmads.org). Data sources for
CMADS include nearly 40,000 regional automatic stations under the oversight of China’s 2421 national
automatic and business assessment centers [29]. CMADS precipitation data use Climate Prediction
Center morphing technique (CMORPH) global precipitation products and data from the National
Meteorological Information Center of China. The spatial resolution of CMADS V1.1 (www.cmads.org),
used in this study, is 0.25◦.

https://trmm.gsfc.nasa.gov/
https://rda.ucar.edu/#!pub/cfsr.html
https://rda.ucar.edu/#!pub/cfsr.html
www.cmads.org
www.cmads.org
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2.2.2. Ground Gauge Observations

The daily meteorological observations used to drive the SWAT model include precipitation,
maximum and minimum temperatures, solar radiation, wind speed, and relative humidity from 1987
to 2013 at 8 meteorological stations. The data were obtained from China Meteorological Administration.
The daily discharge record from 1970 to 2013 was available from Xiangtan station. The locations of
these meteorological stations and runoff gauges are shown in Figure 1. An overview of all datasets is
given in Table 1.

Table 1. Overview of precipitation datasets.

Datasets Spatial
Resolution

Temporal
Resolution Available Period Coverage Source of Data

Gauge Point Daily 1987–2013 Xiang River Basin China Meteorological Administration
CMADS 0.25◦ Daily 2008–2016 East Asia www.cmads.org
3B42V7 0.25◦ Daily 1998–present 50◦ S–50◦ N Goddard Space Flight Centre

NCEP-CFSR 38 km Daily 1979–present Global National Centers for Environment precipitation
PERSIANN-CDR 0.25◦ Daily 1983–present 60◦ S–60◦ N University of California, Irvine, CA, USA

2.3. Straightforward Comparison

A straightforward comparison was made on two scales: a grid and the whole basin. At the
grid scale, only the precipitation estimates for those grids where gauges are located were evaluated.
Grid squares were created with the same native resolution for all datasets to identify the grid–gauge
pair. Pairwise statistical analyses were conducted between satellite-based/reanalysis precipitation
estimates for the grid square and the observations from the gauge located in the grid square [49]. For the
whole basin, areal precipitation from precipitation estimates and gauge observations were calculated
and compared. The comparisons for both spatial scales were made for daily and monthly timesteps.

Diagnostic Statistics

Seven statistical indexes are used to quantify the accuracy of precipitation predictions:
the correlation coefficient (CC), the root mean squared error (RMSE), the mean error (ME), relative bias
(BIAS), the probability of detection (POD), the false alarm ratio (FAR), and the critical success index
(CSI). The values of the indices are calculated by the following Equations [40,50]:

CC =
∑n

i=1(Gi − Ḡ)(Si − S̄)√
∑n

i=1(Gi − Ḡ)2
√

∑n
i=1(Si − S̄)2

(1)

RMSE =

√
1
n

n

∑
i=1

(Si − Gi)2 (2)

ME =
1
n

n

∑
i=1

(Si − Gi) (3)

BIAS =
∑n

i=1(Si − Gi)

∑n
i=1 Gi

× 100% (4)

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

CSI =
H

H + M + F
(7)

www.cmads.org
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where Gi is the observed precipitation from gauges, Si is the precipitation estimates from
PERSIANN-CDR, 3B42V7, NCEP-CSFR, and CMADS; H is the observed precipitation correctly
detected; M is the observed precipitation not detected; F is the precipitation detected but not observed.

CC reflects the degree of linear correlation, ranging from –1 to 1. The result get the best when
the value is equal to 1. ME reflects the average difference between precipitation products and gauge
observation. The range of ME is [0,+∞), with the perfect value of 0. RMSE reflects the average error
between precipitation products and gauge observations, imparting bigger weights to larger errors. The
range of RMSE is [0,+∞), and the perfect value of this index is 0. BIAS measures the relative degree
of the systematic error of the precipitation estimation, ranging from 0 to positive infinite. The perfect
value of BIAS is 0. POD gives the fraction of rain occurrences that are detected. It ranges from 0 to 1,
with the perfect value of 1. FAR measures the fraction of rain detections that are wrongly detected. The
value field of this index is [0, 1], and the perfect value is 0. CSI gives the fraction of observed and/or
detected rain but is correctly detected. The value field of this index is [0, 1], and the perfect value is 1.
The precipitation threshold between wet day and dry day is 1 mm in this study.

2.4. Ensemble Bayesian Model Averaging

We used Bayesian model averaging (BMA) to determine which precipitation product is most
accurate in simulating streamflow in comparison with streamflow gauge observations by comparing
the weights of simulated streamflows predicted by the precipitation products.

The BMA method is as follows. Assume that f = f1, · · · , fK is a set of predictions obtained from
K different models, and ∆ represents the quantity of interest. In BMA, each ensemble member forecast,
fk, k = 1, · · · , K, is associated with a conditional probability density function (pdf), gk (∆| fk), which
can be interpreted as the conditional pdf of ∆ on fk, given that fk is the best forecast in the ensemble.
The BMA predictive model for dynamic ensemble forecasting can be expressed as a finite mixture
model [51]:

p (∆| f1, · · · , fk) =
K

∑
k=1

wkgk (∆| fk) (8)

where, wk denotes the posterior probability of forecast k being the best one. The wks are nonnegative
and add up to 1. They can be viewed as weights reflecting an individual model’s relative contribution to
predictive skill over the training period [51]. gk (∆| fk) of the different ensembles can be approximated
by a normal distribution centered at a linear function of the original forecast, ak + bk fk and standard
deviation σ.

∆| fk ∼ N
(

ak + bk fk, σ2
)

(9)

The values for ak and bk are bias-correction terms derived by linear regression of ∆ on fk for each
of the K ensemble members.

The values for wk, k = 1, · · · , K and σ2 in Equations (8) and (9) are estimated by maximum
likelihood (ML) from a calibration data set. Assuming the forecast errors in space and time are
independent, the log-likelihood function for the BMA predictive model is:

l (w1, · · · , fK, ∆) =
n

∑
s,t

log

(
K

∑
k=1

wkgk (∆st| fkst)

)
(10)

where, n denotes the total number of measurements in the training data set, s and t denote the number
of each dimension of the training data set, ∆st denotes quantities of interest in the training data set,
and fkst denotes predictions from K different models in the training data set. However, there are no
analytical solutions conveniently maximizing Equation (10). In this study, the DiffeRential Evolution
Adaptive Metropolis (DREAM) adaptive Markov chain Monte Carlo (MCMC) algorithm is used to
estimate the parameters in Equation (10).
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Specific to this study, the ensemble models are the simulated streamflows forced by gauge
observations and precipitation estimates from PERSIANN-CDR, 3B42V7, NCEP-CFSR, and CMADS,
while the ∆ is the observed runoff. According to others’ studies, the bias-correction of the value of
ensemble models can be ignored (ak = 0, bk = 1 in Equation (9)) when used in hydrological studies [52].
After maximizing, the probability wk can denote the relatively applicability of those datasets.

2.5. Model Creation

SWAT was used to create the hydrological model. Details of SWAT, and the model creation are
given in Zhu et al. [40].

2.6. Model Calibration and Validation

Two model calibration strategies have mainly been used in previous studies: (1) the SWAT model is
calibrated separately for different precipitation datasets; and (2) the best model parameters are obtained
from calibrating the SWAT model using observed (gauge) precipitation data and observed streamflow
data, and the model is then used for hydrological simulation with other precipitation datasets, such as
(in this study) PERSIANN-CDR, NCEP-CFSR, 3B42V7, and CMADS. The first calibration strategy is
used in this study because the SWAT model is a semi-distributed model and some sensitive parameters
are empirically determined. Model parameters are surrounded by substantial uncertainties because
they are inherently non-unique in inverse modeling, and thus it may be that many different sets of
parameters will produce the same output signal. In other words, there are no best parameters for a
hydrological model because of the inherent uncertainty, but the first calibration strategy guarantees a
relatively good simulation result. However, this strategy can confuse because it may result in model
predictions that are not comparable. Luckily, some researchers find that there is no obvious difference
to the simulated streamflow obtained with the second strategy [40].

The model parameters were calibrated and validated using daily streamflow observed by gauges
and simulated streamflow determined by PERSIANN-CDR, NCEP-CFSR, 3B42V7, and CMADS [53,54].
NS, given in Equation (11), and BIAS are used to evaluate the performance of the simulations.

NS = 1− ∑n
i=1 (Qoi −Qsi)

2

∑n
i=1 (Qoi − Q̄o)

2 (11)

where, Qoi is observed streamflow; Qsi is simulated streamflow; and Q̄o is the mean of observed streamflow.
In view of the overlapping periods of precipitation estimates and streamflow records for the

Xiang River basin, the modeling period chosen was from January 2008 to December 2013. The total
period was divided into three parts: a warming-up period (1 year from January 2008 to December
2008), a calibration period (calibration; 3 years from January 2009 to December 2011), and a validation
period (validation; 2 years from January 2012 to December 2013).

3. Results

3.1. Comparison of Precipitation Estimates

As described in Section 2, precipitation estimates from CMADS, 3B42V7, NCEP-CFSR, and
PERSIANN-CDR were compared with daily and monthly gauge observations for the Xiang River
basin. The comparisons between precipitation estimates and gauge observations were performed in
two spatial scales: grid and the whole basin. At grid scale, the gauge precipitation was compared
with the precipitation estimates of the grid where the gauge is located. At the whole basin scale, areal
precipitation calculated from precipitation estimates and gauge observations was compared. It should
be noted that the comparison method for grid scale used in this paper may introduce errors and
uncertainties because the estimate is the average value within a grid while the gauge observation is
the value of a point located in the grid.
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3.1.1. Spatial Distribution of Annual Precipitation Estimates

The spatial distributions of annual precipitation derived from CMADS, 3B42V7, NCEP-CFSR,
PERSIANN-CDR and gauges are shown in Figure 2. The spatial distribution of observed precipitation
is interpolated from gauge observations shown in Figure 1 using Kriging method. The results show
that the annual precipitation estimates for these four datasets have similar spatial distribution patterns,
consistent with observed annual precipitation. The annual precipitation in this area decreases from
south to north, and from east to west. As errors and uncertainties may be introduced by interpolation,
we did not compare the precipitation magnitudes between estimates and interpolations for each grid
in this section. The comparison of precipitation magnitudes was proceeded between stations and the
grids where these stations are located in the following sections.

(a) Precipitation of CMADS (mm) (b) Precipitation of 3B42V7 (mm)

(c) Precipitation of NCEP-CFSR (mm) (d) Precipitation of PERSIANN-CDR (mm)

(e) Precipitation of gauges (mm)

Figure 2. Spatial distribution of annual precipitation estimates.

3.1.2. Comparison at Monthly Scale

The temporal distribution patterns of all the precipitation datasets and gauge observations for the
included grid squares and the whole basin across different months are similar (Figure 3). In the rainy
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season (from April to September), NCEP-CFSR overestimates the monthly average precipitation, while
CMADS underestimates it. Precipitation estimates from PERSIANN-CDR and 3B42V7 are consistent
with gauge observations.

Values of CC, RMSE, ME, and BIAS between monthly precipitation estimates and observed (gauge)
precipitation for grid station locations and the whole basin are summarized in Table 2. The performance
of the datasets in terms of correlation with monthly observed precipitation differs from the daily
estimates. There is no obvious correlation between the reanalysis datasets and the satellite-based
datasets. CMADS and 3B42V7 perform better than PERSIANN-CDR and NCEP-CFSR in most locations.
A comparison of Table 2 with Table 3 shows that precipitation estimates have a greater linear correlation
with gauge observations on the monthly scale than the daily scale. This conclusion is consistent
with the research of Omranian and Sharif [47]. The monthly BIAS values between precipitation
estimates and gauge observation are similar to the daily values. Satellite-based estimates perform
better than reanalysis estimates. CMADS tends to underestimate precipitation while NCEP-CFSR
tends to overestimate precipitation.

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.
0

100

200

300

400

500

Pr
ec

ip
ita

tio
n 

(m
m

)

Dx

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.

50

100

150

200

250

300

350

400
Pr

ec
ip

ita
tio

n 
(m

m
)

Chzh

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.

50

100

150

200

250

300

350

Pr
ec

ip
ita

tio
n 

(m
m

)

Yzh

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.

50

100

150

200

250

300

350

Pr
ec

ip
ita

tio
n 

(m
m

)

Chn

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.

50

100

150

200

250

300

350

Pr
ec

ip
ita

tio
n 

(m
m

)

Hy

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.
0

50

100

150

200

250

300

350

400

Pr
ec

ip
ita

tio
n 

(m
m

)

Ny

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.

50

100

150

200

250

300

350

Pr
ec

ip
ita

tio
n 

(m
m

)

Shf

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.

50

100

150

200

250

300

Pr
ec

ip
ita

tio
n 

(m
m

)

Zhzh

Jan. Feb.Mar.Apr.May. Jun. Jul. Aug.Sep.Oct.Nov.Dec.

50

100

150

200

250

300

350

Pr
ec

ip
ita

tio
n 

(m
m

)

Areal average

CMADS
PERSSIAN-CDR
3B42V7
NCEP-CFSR
OBS

Figure 3. Multi year average monthly precipitation (OBS represents gauge observations).
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Table 2. Monthly statistical indexes.

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.96 49.57 −33.29 −34.24
PERSIANN-CDR 0.79 72.27 −27.75 −27.01

3B42V7 0.93 40.14 −7.27 −5.90
NCEP-CFSR 0.61 159.76 85.86 39.68

(a) Station Dx

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.97 23.84 −13.21 −13.69
PERSIANN-CDR 0.67 66.34 −2.74 −2.56

3B42V7 0.92 33.24 3.46 3.05
NCEP-CFSR 0.73 101.79 64.97 37.21

(b) Station Chzh

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.97 27.04 −14.85 −15.54
PERSIANN-CDR 0.76 62.41 −7.48 −7.26

3B42V7 0.94 29.41 0.44 0.40
NCEP-CFSR 0.66 98.07 41.59 27.35

(c) Station Yzh

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.55 81.06 −17.80 −20.09
PERSIANN-CDR 0.72 62.25 −7.20 −7.26

3B42V7 0.87 38.98 −5.59 −5.55
NCEP-CFSR 0.67 142.98 98.02 47.95

(d) Station Chn

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.89 41.28 −28.12 −41.37
PERSIANN-CDR 0.65 63.98 1.16 1.19

3B42V7 0.86 36.86 −2.01 −2.14
NCEP-CFSR 0.62 146.09 87.04 47.53

(e) Station Hy

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.84 82.35 −63.46 −73.29
PERSIANN-CDR 0.73 84.28 −51.63 −52.46

3B42V7 0.92 52.79 −37.18 −32.94
NCEP-CFSR 0.77 105.36 49.44 24.78

(f) Station Ny

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.93 31.18 −5.11 −5.00
PERSIANN-CDR 0.79 55.38 −9.27 −9.47

3B42V7 0.88 40.13 −0.33 −0.31
NCEP-CFSR 0.74 102.18 57.05 34.74

(g) Station Shf

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.83 55.42 −24.80 −25.83
PERSIANN-CDR 0.76 60.80 −18.90 −18.55

3B42V7 0.90 37.88 −5.08 −4.39
NCEP-CFSR 0.84 72.31 36.28 23.10

(h) Station Zhzh

Datasets CC RMSE (mm) ME (mm) BIAS

CMADS 0.98 31.86 −25.41 −28.67
PERSIANN-CDR 0.93 30.07 −9.14 −8.71

3B42V7 0.98 16.78 −0.37 −0.33
NCEP-CFSR 0.81 93.90 61.17 34.91

(i) Areal average

The spatial distributions of monthly precipitation estimates’ RMSE are shown in Figure 4.
The results show that the spatial distribution patterns of RMSE for the evaluated satellite-based
and reanalysis datasets are similar. The gauges located in mountainous regions (Dx and Ny) have
much larger RMSE than those located in plain regions, which illustrates that the precipitation estimates
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derived from both satellite-based datasets and reanalysis datasets perform better in plain regions than
in complex orographic areas.

(a) RMSE of CMADS (mm) (b) RMSE of 3B42V7 (mm)

(c) RMSE of NCEP-CFSR (mm) (d) RMSE of PERSIANN-CDR (mm)

Figure 4. Spatial distribution of the RMSE of monthly precipitation estimates.

3.1.3. Comparison at Daily Scale

Values of the seven diagnostic indexes (CC, RMSE, ME, BIAS, CSI, FAR, and POD) between
daily precipitation estimates provided by the reanalysis and satellite datasets and observed (gauged)
precipitation for the station locations and for the whole basin are given in Table 3. The results
show that reanalysis datasets (CMADS and NCEP-CFSR) are better than satellite-based datasets
(PERSIANN-CDR and 3B42V7 ) in terms of correlation with gauge observations for all evaluated grid
squares and for the whole basin. The correlations between precipitation estimates from reanalysis
datasets, CMADS and NCEP-CFSR, and observed precipitation are >0.55 for all evaluated grid squares
and for the whole basin. The performance of CMADS is similar to NCEP-CFSR in terms of correlation
with observed precipitation. The satellite-based dataset precipitations, PERSIANN-CDR and 3B42V7,
have relatively low linear correlation with observed precipitation for all grid squares considered.
The same results do not hold for the whole basin. The correlation between the 3B42V7 precipitation
and observed precipitation over the whole basin is 0.60. It can be deduced from the results that
the correlation between dataset precipitation estimates and gauge observations become stronger as
the spatial resolution decreases. This conclusion is consistent with the research of Omranian and
Sharif [47]. However, the satellite-based datasets (PERSIANN-CDR and 3B42V7) give better estimates
than the reanalysis datasets (CMADS and NCEP-CFSR) at most grid locations except for BIAS at
station Dx and Ny. All dataset precipitation estimates show much larger BIAS values for this station
than for other stations. This result is because station Dx and Ny are located in a mountainous region
while other stations are on plains Figure 1. For the whole basin, 3B42V7 shows much lower BIAS
than PERSIANN-CDR. CMADS clearly tends to underestimate precipitation. NCEP-CFSR tends
to greatly overestimate precipitation at the selected grid squares and for the whole basin because
fewer observations were available to initialize the model. NCEP-CFSR is one of a new generation
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of numerical weather prediction models, and it is very sensitive to the observed data that is used to
initialize it [19]. The values of POD, FAR, and CSI show that PERSIANN-CDR cannot accurately detect
rainfall events at the grid square level. CMADS and 3B42V7 have a greater probability of detecting
rainfall events at the grid scale and for the whole basin but NCEP-CFSR is more accurate in detecting
rainfall events.

Table 3. Daily statistical indexes.

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.59 10.13 −1.09 −34.24 0.72 0.26 0.58
PERSIANN-CDR 0.36 12.78 −0.91 −27.01 0.47 0.48 0.33

3B42V7 0.51 11.77 −0.24 −5.90 0.62 0.49 0.39
NCEP-CFSR 0.55 12.76 2.82 39.68 0.47 0.07 0.45

(a) Station Dx

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.60 7.83 −0.43 −13.69 0.74 0.25 0.59
PERSIANN-CDR 0.32 11.15 −0.09 −2.56 0.51 0.45 0.36

3B42V7 0.50 10.25 0.11 3.05 0.65 0.51 0.39
NCEP-CFSR 0.58 9.98 2.13 37.21 0.52 0.09 0.50

(b) Station Chzh

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.62 7.94 −0.49 −15.54 0.69 0.27 0.55
PERSIANN-CDR 0.39 10.97 −0.25 −7.26 0.49 0.45 0.35

3B42V7 0.50 10.33 0.01 0.40 0.62 0.52 0.37
NCEP-CFSR 0.55 9.56 1.37 27.35 0.52 0.10 0.49

(c) Station Yzh

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.55 8.13 −1.20 −53.50 0.69 0.34 0.51
PERSIANN-CDR 0.34 10.97 −0.24 −7.26 0.49 0.46 0.35

3B42V7 0.44 10.43 −0.18 −5.55 0.66 0.55 0.37
NCEP-CFSR 0.56 11.24 3.22 47.95 0.51 0.09 0.48

(d) Station Chn

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.55 7.32 −0.92 −41.37 0.69 0.33 0.51
PERSIANN-CDR 0.31 10.54 0.04 1.19 0.46 0.48 0.32

3B42V7 0.42 9.98 −0.07 −2.14 0.65 0.54 0.37
NCEP-CFSR 0.55 10.32 2.86 47.53 0.49 0.11 0.46

(e) Station Hy

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.58 10.50 −2.08 −73.29 0.71 0.36 0.51
PERSIANN-CDR 0.28 13.63 −1.70 −52.46 0.54 0.47 0.36

3B42V7 0.39 13.29 −1.22 −32.94 0.70 0.55 0.38
NCEP-CFSR 0.60 11.33 1.62 24.78 0.58 0.12 0.54

(f) Station Ny

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.59 9.12 −0.17 −5.00 0.67 0.30 0.53
PERSIANN-CDR 0.31 11.82 −0.30 −9.47 0.48 0.44 0.35

3B42V7 0.43 11.29 −0.01 −0.31 0.65 0.50 0.39
NCEP-CFSR 0.62 9.86 1.87 34.74 0.51 0.11 0.48

(g) Station Shf

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.65 9.33 −0.81 −25.83 0.69 0.26 0.56
PERSIANN-CDR 0.33 12.73 −0.62 −18.55 0.46 0.42 0.34

3B42V7 0.48 12.32 −0.17 −4.39 0.63 0.51 0.38
NCEP-CFSR 0.66 9.95 1.19 23.10 0.56 0.09 0.53

(h) Station Zhzh

Datasets CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

CMADS 0.70 5.77 −0.83 −28.67 0.77 0.21 0.64
PERSIANN-CDR 0.49 7.85 −0.30 −8.71 0.62 0.36 0.46

3B42V7 0.60 7.35 −0.01 −0.33 0.71 0.31 0.54
NCEP-CFSR 0.78 6.08 2.01 34.91 0.62 0.04 0.60

(textbfi) Areal average
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The spatial distributions of the RMSE of daily precipitation estimates are similar as that of
monthly precipitation estimates (Figure 5). Mountainous areas (Dx and Ny) have larger RMSE than
plain areas. In addition, CMADS has the minimum RMSE than other datasets, ranging from 7.32 mm
to 10.50 mm.

(a) RMSE of CMADS (mm) (b) RMSE of 3B42V7 (mm)

(c) RMSE of NCEP-CFSR (mm) (d) RMSE of PERSIANN-CDR (mm)

Figure 5. Spatial distribution of the RMSE of daily precipitation estimates.

3.2. Comparison of Streamflow Simulations

Simulation accuracy in mature hydrological models is mainly determined by meteorological
inputs, especially precipitation. Both the total volume and the spatial and temporal distribution of
precipitation significantly influence the output of a hydrological model. This section assesses the
performance of the different precipitation datasets as drivers (or forcers) of a hydrological model and
evaluates the capability of the precipitation datasets to capture the spatial and temporal characteristics
of precipitation over the basin as shown by the performance of the hydrological model. The SWAT
model is used because it well describes the hydrology of this area [40]. The evaluation is made for both
daily and monthly timesteps.

3.2.1. Comparison at Monthly Scale

A comparison of simulated monthly streamflow using the precipitation datasets of observed data,
CMADS, 3B42V7, NCEP-CFSR, and PERSIANN-CDR with observed streamflow is shown in Figure 6.
The evaluation statistics (NS efficiency coefficient and BIAS) of the monthly simulations are shown in
Table 4. As in the daily simulations, NCEP-CFSR greatly overestimates streamflow and is the worst
of all the precipitation datasets, having the lowest NS values (−0.12 during calibration and −0.12
during validation) and extremely large BIAS values (36.49% during calibration and 31.31% during
validation). Of the other precipitation products, 3B42V7 performs better than others in terms of both
NS (0.94 during calibration and 0.88 during validation) and BIAS (−7.20 during calibration and 3.69
during validation). The NS and BIAS for CMADS are 0.92 and −12.06% (calibration) and 0.80 and
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2.17% (validation), which indicates that the performance of CMADS is acceptable. PERSIANN-CDR
performs well during calibration (NS = 0.89) but not during validation (NS = 0.63). However, the BIAS
of PERSIANN-CDR is relatively good, intermediate between CMADS and 3B42V7.

(a) Monthly simulated streamflow with gauged precipitation

(b) Monthly simulated streamflow with CMADS estimates

(c) Monthly simulated streamflow with 3B42V7 estimates

Figure 6. Cont.



Water 2018, 10, 1225 15 of 24

(d) Monthly simulated streamflow with NCEP-CFSR estimates

(e) Monthly simulated streamflow with PERSIANN-CDR estimates

Figure 6. Monthly simulated flow in Xiangtan station with precipitation from gauge (a),
PERSIANN-CDR (b), NCEP-CFSR (c), CMADS (d), and 3B42V7 (e) (In the scatter plot, pearsonr
represents Pearson’s correlation coefficient, p represents the significance of paired t-test, and the shade
represents the 0.95 confidence interval).

Table 4. NS coefficient and BIAS of monthly simulated streamflow (The number outside and inside the
parenthesis is for the calibration period and validation period respectively).

Datasets NS in Calibration NS in Validation BIAS in Calibration (%) BIAS in Validation (%)

Gauge 0.95 0.94 −2.06 −1.36
CMADS 0.92 0.80 −12.06 2.17
3B42V7 0.94 0.88 −7.20 3.69

NCEP-CFSR −0.12 −0.12 36.49 31.31
PERSIANN-CDR 0.89 0.63 −8.91 1.66

3.2.2. Comparison at Daily Scale

The simulated flows predicted by the SWAT model, using observed (gauge) data and data from
CMADS, 3B42V7, NCEP-CFSR, and PERSIANN-CDR, are shown in Figure 7. The NS efficiency
coefficient and the BIAS values of the simulations are shown in Table 5. The calibration and validation
periods for the simulations were 1 January 2009–31 December 2011 (calibration) and 1 January
2012–December 2013 (validation). NS and BIAS for the simulation using observed precipitation
were 0.86 and −1.58% (calibration) and 0.72 and 3.07% (validation). The flow hydrograph for
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the simulation using observed precipitation is highly consistent with that for observed streamflow.
The results indicate that the SWAT model well predicts daily hydrological response in the Xiang
River basin. The NS efficiency coefficients show that the precipitation products, except NCEP-CFSR,
predict the streamflow well during calibration. The NS efficiency coefficients for CMADS, 3B42V7,
PERSIANN-CDR, and NCEP-CFSR are 0.83, 0.83, 0.71 and −0.46 respectively. The NS efficiency
coefficients for PERSIANN-CDR during validation was 0.40, illustrating that the performance of
PERSIANN-CDR is not stable during the entire simulation. The NS efficiency coefficients for
simulations using observed data (0.72), data from 3B42V7 (0.73), and from CMADS (0.71) during
validation are acceptable. The BIAS values show that for simulated streamflow, compared with
observed streamflow, observed (gauge) precipitation data gives the best results (−1.58% during
calibration and 3.07% during validation), followed by 3B42V7 (−10.84% during calibration and−0.17%
during validation) and CMADS (−12.06% during calibration and 2.20% during validation). However,
simulation using NCEP-CFSR data greatly overestimates streamflow, with BIAS values of 36.58%
(calibration) and 31.40% (validation). The hydrographs (Figure 7) of the simulations show that most
datasets, except NCEP-CFSR, which overestimates streamflow during almost the entire simulation
period, produce good baseflow predictions during both calibration and validation. However, when
streamflow is high, most datasets (observation, PERSIANN-CDR, CMADS, and 3B42V7) underestimate
the streamflow to different extents. To eliminate the inherent contribution of the SWAT model to
the underestimation of high streamflow, the simulation using observed precipitation is taken as a
baseline to judge the performance of the other precipitation datasets in predicting high streamflow
(Figure 8). The result shows that NCEP-CFSR overestimates high streamflow substantially, while
PERSIANN-CDR overestimates high streamflow slightly. However, there is no obvious overestimation
or underestimation for CMADS and 3B42V7 compared with simulation based on gauge precipitation.
This implies that CMADS and 3B42V7 perform as well as gauge in capturing temporal features of
high streamflow.

NS and BIAS assess the efficiency and water balance predictions of the model and data.
Observed data performs best because it has the highest NS efficiency coefficient and lowest BIAS.
The differences between NS efficiency coefficients and BIAS values for 3B42V7 and CMADS are
insignificant, so it is difficult to discriminate between them in hydrological terms. Bayesian model
averaging (BMA) was thus used to distinguish between 3B42V7 and CMADS precipitation. BMA is
commonly used to handle conceptual model uncertainty in the analysis of environmental systems and
to derive predictive distributions of model output [52]. Comparison of the BMA model weights can
show which precipitation dataset performs better in hydrological simulation. A detailed description of
BMA analysis was given in Section 2.4. The BMA model weights for simulated flow forced by CMADS
and 3B42V7 are shown in Table 6. The results show that CMADS performs better than 3B42V7 when
synthetically considering the consistency of simulated and observed streamflow.

Table 5. NS coefficient and BIAS of daily simulated streamflow.

Datasets NS in Calibration NS in Validation BIAS in Calibration (%) BIAS in Validation (%)

Gauge 0.86 0.72 −1.58 3.07
CMADS 0.83 0.70 −12.06 2.20
3B42V7 0.83 0.73 −10.84 −0.17

NCEP-CFSR −0.46 −0.46 36.58 31.40
PERSIANN-CDR 0.71 0.40 −16.66 −6.44

Table 6. BMA weights of simulated streamflow forced by different precipitation products.

3B42V7 CMADS

Weights 0.47 0.53
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(a) Daily simulated streamflow with gauged precipitation

(b) Daily simulated streamflow with CMADS estimates

(c) Daily simulated streamflow with 3B42V7 estimates

Figure 7. Cont.
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(d) Daily simulated streamflow with NCEP-CFSR estimates

(e) Daily simulated streamflow with PERSIANN-CDR estimates

Figure 7. Daily simulated flow in Xiangtan station with precipitation from gauge (a), PERSIANN-CDR
(b), NCEP-CFSR (c), CMADS (d), and 3B42V7 (e) (In the scatter plot, pearsonr represents Pearson’s
correlation coefficient, p represents the significance of paired t-test, and the shade represents the 0.95
confidence interval).
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Figure 8. Comparison of simulated streamflow based on PERSIANN-CDR, NCEP-CFSR, CMADS, and
3B42V7 precipitation with that based on gauge precipitation.
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3.3. Analysis of Anomalies in Hydrological Simulation

NCEP-CFSR and PERSIANN-CDR are relatively poor in simulating hydrology. The reasons for
the poor performances of these two datasets are different. NCEP-CFSR overestimates precipitation
during almost the entire simulation period (Table 3). This overestimation is probably the main reason
for the extremely low NS values of NCEP-CFSR since calibration with low flows tends to give higher
NS values. The cumulative distribution curves of areal precipitation derived from PERSIANN-CDR
and that of gauge precipitation for calibration period and validation period are shown in Figure 9.
It should be noted that only the precipitation larger than 20 mm is shown in the chart to illustrate
the results more clearly. The results show that the relative position of cumulative distribution curves
for PERSIANN-CDR and gauge observations is different between calibration period and validation
period. This means that the high precipitation characteristics varies between calibration period and
validation period. The SWAT model parameters calibrated with precipitation during calibration period
are thus not suitable for validation period.

Table 5 shows that relative water volume during validation is greater than during calibration.
This is probably caused by the workings of the SWAT model itself. The performance of the SWAT
runoff module depends on the calibration. In this study, there was an extreme peak flow during the
calibration period. Thus the SWAT parameters were calibrated to fit to high flows. Consequently, the
simulated streamflow during validation, using the parameters determined during calibration, tends to
be high.

(a) RMSE of CMADS (mm) (b) RMSE of 3B42V7 (mm)

Figure 9. Cumulative distribution curves of gauge precipitation and PERSIANN-CDR estimates.

4. Discussion

Hydrological simulation is thoroughly influenced by the inputs to the hydrological models.
Clearly, there is some linkage between the precipitation estimates and the hydrological simulation.
However, a precipitation dataset that shows good linear correlation with gauge observations does
not necessarily produce a good hydrological simulation. For example, NCEP-CFSR was best linearly
correlated with gauge observations but produced the worst hydrological simulation because of its
substantial overestimation and relatively low probability of detecting rainfall events. A comparison
of the CC and BIAS values for CMADS and NCEP-CFSR shows that these two precipitation
datasets perform similarly. However, CMADS produces a much better hydrological simulation
than NCEP-CFSR. This shows that the POD of precipitation estimates has a significant effect on
hydrological simulation. Streamflow responds to rainfall events. If a precipitation dataset does not
detect most of the rainfall events, it cannot adequately capture streamflow. The influence of FAR
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on the hydrological simulation cannot be determined from the results; however, it can be analyzed
conceptually. If other indexes of precipitation datasets, such as CC, BIAS, and POD, are kept constant,
a lower value of FAR will indicate a better hydrological simulation. In addition, the estimates of a
precipitation dataset are not always consistent with its hydrological predictions. For example, the
BIAS for precipitation estimates and for hydrological simulations are not consistent. The value of
BIAS for the CMADS precipitation estimate was −28.67% at the whole basin scale but −12.06% for
the simulated streamflow in both daily and monthly timesteps. Many factors may contribute to a
difference between precipitation estimates and their corresponding hydrological outputs, such as:
(1) areal precipitation is calculated by the Theissen polygon method, which does not consider the
impact of topography whereas the SWAT model considers the elevation of precipitation grids; (2) the
transformation of precipitation to streamflow is a very complicated nonlinear process, so error will not
be transferred from precipitation to streamflow linearly; and (3) there are simplifications in the SWAT
model, such as the assumptions in the universal soil loss equation for estimating sediment loss, the
assumptions in calculating flow velocity in a river, and the ignoring of some hydrological processes
that are considered to have relatively small impact on total hydrology.

The spatial resolution of the areas of comparison (from grids of different sizes to the whole basin)
can substantially affect the results of the evaluation. Omranian and Sharif [47] used the GPM IMERG
dataset and found that the spatial resolution of the areas compared had a significant effect on the results.
The dataset gives better results when the temporal and spatial resolutions are downscaled. However,
the spatial resolution of a precipitation dataset has a significant impact on the hydrological simulation.
Many studies have shown that in hydrological modeling with high spatial and temporal resolutions,
datasets can better characterize streamflow [55]. Thus precipitation datasets with higher spatial and
temporal resolution are needed to provide good hydrological simulations. However, as mentioned
above, increased spatial and temporal resolution of these datasets worsens the model performance
when compared to observation datasets, which can adversely affect the simulation. High-resolution
datasets also increase model processing time. From a practical engineering perspective, a more
efficient way to combine the input data preparation and the hydrological modeling, that considers
both modeling accuracy and modeling efficiency, needs to be further studied [56]. In this study,
CMADS performs better in modeling accuracy and is more usable because of its SWAT compatible
data structure. Hence, considering the modeling accuracy and modeling efficiency, CMADS are more
applicable in practical streamflow simulation.

5. Conclusions

The performance of two reanalysis precipitation datasets (CMADS and NCEP-CFSR) and two
satellite-based precipitation datasets (PERSIANN-CDR and 3B42V7) was evaluated at two spatial
scales (a grid square and the whole basin) and two timesteps (daily and monthly), and the ability
of these datasets to simulate streamflow is assessed for both temporal scales. The results show that:
(1) for daily timesteps, the reanalysis datasets perform better than satellite-based datasets in terms
of correlation with gauge observations, while satellite-based datasets perform better than reanalysis
datasets in most situations in terms of bias. The correlations between reanalysis datasets and gauge
observations at both spatial scales are >0.55. The absolute bias values of the two satellite-based datasets
are <10% at most grid squares and also for the whole basin. CMADS underestimates precipitation
while NCEP-CFSR overestimates it. PERSIANN-CDR cannot accurately detect the spatial distribution
of precipitation events compared with other datasets. The POD of PERSIANN-CDR at most grid
squares is <0.50; (2) CMADS and 3B42V7 perform better than PERSIANN-CDR and NCEP-CFSR in
most situations in terms of correlation with gauge observations and satellite-based datasets perform
better than reanalysis datasets in terms of bias; (3) CMADS and 3B42V7 simulate both daily (NS > 0.70)
and monthly (NS > 0.80) streamflow well; CMADS performs a little better than 3B42V7 at a daily
timestep according to the weights of BMA model, and vice versa for a monthly timestep; NCEP-CFSR
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performs worst because of its substantial overestimation; PERSIANN-CDR performs badly because of
its poor capability to capture the characteristics of streamflow during validation.

Some other studies have shown that precipitation products tend to underestimate flood peaks
by directly comparing modeled streamflow driven by precipitation products to observed streamflow.
In this study, we eliminated the effects of the model structure on underestimation by comparing
modeled streamflow driven by precipitation data from products with streamflow driven by observed
precipitation, and we found that there is no obvious underestimation of flood peaks when using
precipitation products such as CMADS and 3B42V7 in the Xiang River basin. On the whole, CMADS
has great potential in hydrological application in the studied area because that (1) the accuracy of
simulated streamflow forced by CMADS is good in the studied area; (2) the dataset is well organized
and can be used as inputs of SWAT model directly; (3) as a reanalysis dataset, CMADS can be used in
areas with sparse gauges and improved in spatiotemporal resolution in further versions with relatively
small cost. (4) Compared with satellite-based datasets, reanalysis datasets such as CMADS usually
have much longer time series.
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