Hybrid Numerical Scheme of Preissmann Slot Model for Transient Mixed Flows
Abstract
1. Introduction
2. Numerical Model
2.1. Governing Equation
2.2. Upwind Flux Solver
2.3. Centered Flux Solver
2.4. Boundary Computation
3. Numerical Results
3.1. Test 1: Typical Filling Bore Problem
3.2. Test 2. Pipe-Filling Bore Experiment
3.3. Test 3: Transition Flows in Pipe Experiment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourdarias, C.; Gerbi, S. A Finite Volume Scheme for a Model Coupling Unsteady Flows in Open Channels and in Pipelines. J. Comput. Appl. Math. 2007, 209, 109–131. [Google Scholar] [CrossRef]
- Bourdarias, C.; Gerbi, S. A Conservative Model for Unsteady Flows in Deformable Closed Pipes and Its Implicit Second Order Finite Volume Discretisation. Comput. Fluids 2008, 37, 1225–1237. [Google Scholar] [CrossRef]
- Bertsch, R.; Glenis, V.; Kilsby, C. Urban Flood Simulation Using Synthetic Storm Drain Networks. Water 2017, 9, 925. [Google Scholar] [CrossRef]
- Djordjević, S.; Prodanović, D.; Walters, G.A. Simulation of Transcritical Flow in Pipe/Channel Networks. J. Hydraul. Eng. 2004, 130, 1167–1178. [Google Scholar] [CrossRef]
- Kerger, F.; Archambeau, P.; Erpicum, S.; Dewals, B.J.; Pirotton, M. An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows. J. Comput. Appl. Math. 2011, 235, 2030–2040. [Google Scholar] [CrossRef]
- Kerger, F.; Archambeau, P.; Erpicum, S.; Dewals, B.J.; Pirotton, M. A fast universal solver for 1D continuous and discontinuous steady flows in rivers and pipes. Int. J. Numer. Meth. Fluids 2011, 66, 38–48. [Google Scholar] [CrossRef]
- Leandro, J.; Chen, A.S.; Djordjević, S.; Savić, D.A. Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation. J. Hydraul. Eng. 2009, 135, 495–504. [Google Scholar] [CrossRef]
- Lee, S.; Nakagawa, H.; Kawaike, K.; Zhang, H. Urban inundation simulation considering road network and building configurations. J. Flood Risk Manag. 2015. [Google Scholar] [CrossRef]
- Noh, S.J.; Lee, S.; An, H.; Kawaike, K.; Nakagawa, H. Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow. Adv. Water Resour. 2016, 97, 25–37. [Google Scholar] [CrossRef]
- Malekpour, A.; Karney, B.W. Spurious Numerical Oscillations in the Preissmann Slot Method: Origin and Suppression. J. Hydraul. Eng. 2015, 142. [Google Scholar] [CrossRef]
- Capart, H.; Sillen, X.; Zech, Y. Numerical and experimental water transients in sewer pipes. J. Hydraul. Res. 1997, 35, 659–672. [Google Scholar] [CrossRef]
- Trajkovic, B.; Ivetic, M.; Calomino, F.; D’Ippolito, A. Investigation of transition from free surface to pressurized flow in a circular pipe. Water Sci. Technol. 1999, 39, 105–112. [Google Scholar] [CrossRef]
- Beljadid, A.; Mohammadian, A.; Kurganov, A. Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Comput. Fluids 2016, 136, 193–206. [Google Scholar] [CrossRef]
- Vasconcelos, J.G.; Wright, S.J.; Roe, P.L. Numerical oscillations in pipe-filling bore predictions by shock-capturing models. J. Hydraul. Eng. 2009, 135, 296–305. [Google Scholar] [CrossRef]
- Leon, A.S. Improved Modeling of Unsteady Free Surface, Pressurized and Mixed Flows in Storm-Sewer Systems. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 2007. [Google Scholar]
- Cai, L.; Feng, J.H.; Xie, W.X. A CWENO-type central-upwind scheme for ideal MHD equations. Appl. Math. Comput. 2005, 168, 600–612. [Google Scholar] [CrossRef]
- Toro, E.F.; Hidalgo, A.; Dumbser, M. FORCE Schemes on Unstructured Meshes I: Conservative Hyperbolic Systems. J. Comput. Phys. 2009, 228, 3368–3389. [Google Scholar] [CrossRef]
- Vázquez-Cendón, E.; Hidalgo, A.; Navarro, P.G.; Cea, L. Numerical Methods for Hyperbolic Equations; CRC Press: London, UK, 2012. [Google Scholar]
- Causon, D.M.; Ingram, D.M.; Mingham, C.G.; Yang, G.; Pearson, R.V. Calculation of shallow water flows using a Cartesian cut cell approach. Adv. Water Resour. 2000, 23, 545–562. [Google Scholar] [CrossRef]
- Ducros, F.; Laporte, F.; Soulères, T.; Guinot, V.; Moinat, P.; Caruelle, B. High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes: Application to Compressible Flows. J. Comput. Phys. 2000, 161, 114–139. [Google Scholar] [CrossRef]
- Koren, B. Upwind discretization of the steady Navier–Stokes equations. Int. J. Numer. Methods Fluids 1990, 11, 99–117. [Google Scholar] [CrossRef]
- Vasconcelos Jose, G.; Wright Steven, J.; Roe Philip, L. Improved Simulation of Flow Regime Transition in Sewers: Two-Component Pressure Approach. J. Hydraul. Eng. 2006, 132, 553–562. [Google Scholar] [CrossRef]
- León, A.S.; Liu, X.; Ghidaoui, M.S.; Schmidt, A.R.; García, M.H. Junction and drop-shaft boundary conditions for modeling free-surface, pressurized, and mixed free-surface pressurized transient flows. J. Hydraul. Eng. 2010, 136, 705–715. [Google Scholar] [CrossRef]
- Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- Vasconcelos, J.G.; Wright, S.J. Experimental Investigation of Surges in a Stormwater Storage Tunnel. J. Hydraul. Eng. 2005, 131, 853–861. [Google Scholar] [CrossRef]
- Toro, E.F.; Billett, S.J. Centred TVD schemes for hyperbolic conservation laws. IMA J. Numer. Anal. 2000, 20, 47–79. [Google Scholar] [CrossRef]
- Leon, A.S.; Ghidaoui, M.S.; Schmidt, A.R.; Garcia, M.H. A robust two-equation model for transient-mixed flows. J. Hydraul. Res. 2010, 48, 44–56. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.; Lee, S.; Noh, S.J.; Kim, Y.; Noh, J. Hybrid Numerical Scheme of Preissmann Slot Model for Transient Mixed Flows. Water 2018, 10, 899. https://doi.org/10.3390/w10070899
An H, Lee S, Noh SJ, Kim Y, Noh J. Hybrid Numerical Scheme of Preissmann Slot Model for Transient Mixed Flows. Water. 2018; 10(7):899. https://doi.org/10.3390/w10070899
Chicago/Turabian StyleAn, Hyunuk, Seungsoo Lee, Seong Jin Noh, Yeonsu Kim, and Jaekyoung Noh. 2018. "Hybrid Numerical Scheme of Preissmann Slot Model for Transient Mixed Flows" Water 10, no. 7: 899. https://doi.org/10.3390/w10070899
APA StyleAn, H., Lee, S., Noh, S. J., Kim, Y., & Noh, J. (2018). Hybrid Numerical Scheme of Preissmann Slot Model for Transient Mixed Flows. Water, 10(7), 899. https://doi.org/10.3390/w10070899