Morphological Evolution of the Lower Tisza River (Hungary) in the 20th Century in Response to Human Interventions
Abstract
:1. Introduction
2. Study Area
2.1. Physical Setting
2.2. Regulation Works
3. Materials and Methods
4. Results
4.1. Changes in Vertical Channel Parameters
4.2. Effect of Sinuosity on Vertical Channel Parameters
4.3. Effect of Artificial Cutoffs on Vertical Channel Parameters
4.4. Effects of the Construction of Revetments and Groynes on Vertical Channel Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Twindale, C.R. River patterns and their meaning. Earth-Sci. Rev. 2004, 67, 159–218. [Google Scholar] [CrossRef]
- Joeckel, R.M.; Tucker, S.T.; Mcmullen, J.D. Morpho-sedimentary features from a major flood on a small, low-sinuosity, single-thread river: The unknown quantity of overbank deposition, historical change context, and comparisons with a multi-channel river. Sediment Geol. 2016, 343, 18–37. [Google Scholar] [CrossRef]
- Ye, B.; Yang, D.; Kane, D.L. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resour. Res. 2003, 39, 1–14. [Google Scholar] [CrossRef]
- Wohl, E.E. Disconnected Rivers: Linking Rivers to Landscapes; Yale University Press: New Haven, CT, USA, 2004; pp. 8–39. ISBN 9780300194708. [Google Scholar]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X.; Wang, Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Glob. Planet. Chang. 2007, 57, 331–354. [Google Scholar] [CrossRef]
- Ma, F.; Ye, A.; Gong, W.; Mao, Y.; Miao, C.; Di, Z. An estimate of human and natural contributions to flood changes of the Huai River. Glob. Planet. Chang. 2014, 119, 39–50. [Google Scholar] [CrossRef]
- Ashraf, F.B.; Haghighi, A.T.; Mattila, H.; Klove, B. Assessing impacts of climate change and river regulation on flow regimes in cold climate: A study of a pristine and a regulated river in the sub-arctic setting of Norther Europe. J. Hydrol. 2016, 542, 410–422. [Google Scholar] [CrossRef]
- Gautier, E.; Depret, T.; Costard, F.; Virmoux, C.; Fedorov, A.; Grancher, D.; Konstantinov, P.; Brunstein, D. Going with the flow: Hydrologic response of middle Lena River (Siberia) to the climate variability and change. J. Hydrol. 2016, 557, 475–488. [Google Scholar] [CrossRef]
- Hooke, J.M. Cutoffs galore: Occurrence and causes of multiple cutoffs on a meandering river. Geomorphology 2004, 61, 225–235. [Google Scholar] [CrossRef]
- Dai, Z.J.; Liu, J.T. A thirteen-year record of bathymetric changes in the North Passage, Changjiang (Yangtze) estuary. Geomorphology 2013, 187, 101–107. [Google Scholar] [CrossRef]
- Latapie, A.; Camenen, B.; Rodrigues, S.; Paquier, A.; Bouchard, J.P.; Moatar, F. Assessing channel response of a long river influenced by human disturbance. Catena 2014, 121, 1–12. [Google Scholar] [CrossRef]
- Yu, G.A.; Disse, M.; Huang, H.Q.; Yu, Y.; Li, Z. River network evolution and fluvial process responses to human activity in a hyper-arid environment—Case of the Tarim River in North West China. Catena 2016, 147, 96–109. [Google Scholar] [CrossRef]
- Calle, M.; Alho, P.; Benito, G. Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining. Geomorphology 2017, 285, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.M.Q.; Warrick, R.A.; Ericksen, N.J. The implications of climate change on Floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Clim. Chang. 2003, 57, 287–318. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayon, D.R.; Dettinger, M.D. Changes in snowmelt runoff timing in western North America under a ‘Business as usual’ climate change scenario. Clim. Chang. 2004, 62, 217–232. [Google Scholar] [CrossRef]
- Naik, P.K.; Jay, D.A. Distinguishing human and climate influences on the Columbia River: Changes in mean flow and sediment transport. J. Hydrol. 2011, 404, 259–277. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Istanbulluogu, E.; Bai, T.; Huang, Q.; Yang, D. Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat. Int. 2015, 380–381, 169–179. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [Google Scholar] [CrossRef]
- Stagl, J.C.; Hattermann, F.F. Impacts of climate change on riverine ecosystems: Alterations of ecologically relevant flow dynamics in the Danube River and its major tributaries. Water 2016, 8, 566. [Google Scholar] [CrossRef]
- Simon, A. A model of channel response in disturbed alluvial channels. Earth Surf. Process. Landf. 1989, 14, 11–26. [Google Scholar] [CrossRef]
- Kesel, R.H. Human modifications to the sediment regime of the Lower Mississippi River flood plain. Geomorphology 2003, 56, 325–334. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Kiss, T.; Fiala, K.; Sipos, G. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 2008, 98, 96–110. [Google Scholar] [CrossRef]
- Weatherly, H.; Jakob, M. Geomorphic response of Lillooet River, British Columbia, to meander cutoffs and base level lowering. Geomorphology 2014, 217, 48–60. [Google Scholar] [CrossRef]
- Abate, M.; Nyssen, J.; Steenhuis, T.S.; Moges, M.M.; Tilahun, S.A.; Enku, T.; Adgo, E. Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia. J. Hydrol. 2015, 525, 152–164. [Google Scholar] [CrossRef]
- Scorpio, V.; Rosskopf, C.M. Channel adjustments in a Mediterranean river over the last 150 years in the context of anthropic and natural controls. Geomorphology 2016, 275, 90–104. [Google Scholar] [CrossRef]
- Smith, N.D.; Morosova, G.S.; Perez-Arlucea, M.; Gibling, M.R. Dam-induced and natural channel changes in the Saskatchewan River below the E.S. Campbell Dam, Canada. Geomorphology 2016, 269, 186–202. [Google Scholar] [CrossRef]
- Amissah, G.J.; Kiss, T.; Fiala, K. Centurial changes in the depth conditions of a regulated river: Case study of the Lower Tisza River, Hungary. J Environ. Geogr. 2017, 10, 41–51. [Google Scholar] [CrossRef]
- Church, M. Bed Material Transport and the Morphology of Alluvial River Channels. Annu. Rev. Earth Planet. Sci. 2006, 34, 325–354. [Google Scholar] [CrossRef]
- Legleiter, C.J. A geostatistical framework for quantifying the reach-scale spatial structure of river morphology: 2. Application to restored and natural channels. Geomorphology 2014, 205, 85–101. [Google Scholar] [CrossRef]
- Powell, D.M. Flow resistance in gravel-bed rivers: Progress in research. Earth-Sci. Rev. 2014, 136, 301–338. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Fryirs, K.A.; Brierly, G.J.; Bangen, S.G.; Bouwes, N.; O’brien, G. Geomorphic mapping and taxonomy of fluvial landforms. Geomorphology 2015, 248, 273–295. [Google Scholar] [CrossRef]
- Morais, E.S.; Rocha, P.C.; Hooke, J. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil. Geomorphology 2016, 273, 348–360. [Google Scholar] [CrossRef]
- Dewan, A.; Corner, R.; Saleem, A.; Rahman, M.M.; Haider, M.R.; Rahman, M.M.; Sarker, M.H. Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data. Geomorphology 2017, 276, 257–279. [Google Scholar] [CrossRef]
- Wyżga, B. River response to channel regulation: Case study of the Raba River, Carpathians, Poland. Earth Surf. Process. Landf. 1993, 18, 541–556. [Google Scholar] [CrossRef]
- Liébault, F.; Gomez, B.; Page, M.; Marden, M.; Peacock, D.; Richard, D.; Trotter, C.M. Land-use change, sediment production and channel response in upland regions. River Res. Appl. 2005, 21, 739–756. [Google Scholar] [CrossRef]
- Schumm, S.A.; Harvey, M.D.; Watson, C.C. Incised Channels: Initiation, Evolution, Dynamics, and Control; Water Resources Publication: Littleton, CO, USA, 1984. [Google Scholar]
- Williams, G.P.; Wolman, M.G. Downstream effects of dams on alluvial rivers. In U.S. Geological Survey Professional Paper 1286; USGS: Reston, VA, USA, 1984. [Google Scholar]
- Kondolf, G.M. Managing bedload sediment in regulated rivers: Examples from California, USA. In Natural and Anthropogenic Influences in Fluvial Geomorphology; Costa, J.E., Miller, A.J., Potter, K.W., Wilcock, P., Eds.; Geophysical Monograph Series; Wiley: Hoboken, NJ, USA, 1995; Volume 89, pp. 165–176. [Google Scholar]
- Smith, L.M.; Winkley, B.R. The response of the Lower Mississippi River to river engineering. Eng. Geol. 1996, 45, 433–455. [Google Scholar] [CrossRef]
- Petit, F.; Poinsart, D.; Bravard, J.P. 1996 Channel incision, gravel mining and bedload transport in the Rhone river upstream of Lyon, France (canal de Miribel). Catena 1996, 26, 209–226. [Google Scholar] [CrossRef]
- Simon, A.; Rinaldi, M. Channel instability in the loess area of the Midwestern United States. J. Am. Water Resour. Assoc. 2000, 36, 133–150. [Google Scholar] [CrossRef]
- Kroes, D.E.; Kraemer, T.F. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana. Geomorphology 2013, 201, 148–156. [Google Scholar] [CrossRef]
- Rinaldi, M.; Wyżga, B.; Surian, N. Sediment mining in alluvial rivers: Physical effects and management perspectives. River Res. Appl. 2005, 21, 805–828. [Google Scholar] [CrossRef]
- Huang, M.W.; Liao, J.J.; Pan, Y.W.; Chen, M.H. Rapid channelization and incision into soft bedrock induced by human activity – Implication from the Bachang River in Taiwan. Eng. Geol. 2014, 177, 10–24. [Google Scholar] [CrossRef]
- Kiss, T.; Oroszi, V.G.; Sipos, G.; Fiala, K.; Benyhe, B. Accelerated overbank accumulation after nineteenth century river regulation works: A case study on the Maros River, Hungary. Geomorphology 2011, 135, 191–202. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G.A.; Brierly, G.J.; Wang, Z. Vegetative impacts upon bedload transport capacity and channel stability for differing planforms in the Yellow River source. Hydrol. Earth Syst. Sci. 2016, 20, 3013–3025. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L.; Song, S.; Yang, L.; Li, G.; Wang, Y. Impacts of urbanization on river systems in the Taihu Region, China. Water 2015, 7, 1340–1358. [Google Scholar] [CrossRef]
- Wu, L.; Xu, T.; Yuan, J.; Xu, Y.; Wang, Q.; Xu, X.; Wen, H. Impacts of land use change on river systems for a river network plain. Water 2018, 10, 609. [Google Scholar] [CrossRef]
- Rinaldi, M.; Simon, A. Bed-level adjustments in the Arno River, Central Italy. Geomorphology 1998, 22, 57–71. [Google Scholar] [CrossRef]
- Surian, A. Channel changes due to river regulation: The case of the Piave River, Italy. Earth Surf. Process. Landf. 1999, 24, 1135–1151. [Google Scholar] [CrossRef]
- Liébault, F.; Piégay, H. Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 2001, 36, 167–186. [Google Scholar] [CrossRef]
- Rinaldi, M. Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surf. Process. Landf. 2003, 28, 587–608. [Google Scholar] [CrossRef]
- Harmar, O.P.; Clifford, N.J.; Thorne, C.R.; Biedenharn, D.S. Morphological changes of the Lower Mississippi River: Geomorphological response to engineering intervention. River Res. Appl. 2005, 21, 1107–1131. [Google Scholar] [CrossRef]
- Pinter, A.; Heine, R.A. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. J. Hydrol. 2005, 302, 70–91. [Google Scholar] [CrossRef]
- Chang, H.H. River Morphology and River Channel Changes. Trans. Tianjin Univ. 2008, 14, 254–262. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Dong, P. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 2010, 83, 135–147. [Google Scholar] [CrossRef]
- Tealdi, S.; Camporeale, C.; Ridolfi, L. Modelling the impact of river damming on riparian vegetation. J. Hydrol. 2011, 396, 302–312. [Google Scholar] [CrossRef]
- Skarpich, V.; Horacek, M.; Galia, T.; Kapustova, V.; Sala, V. The effects of river patterns on riparian vegetation: A comparison of anabranching and single-thread incised channels. Morav. Geogr. Rep. 2016, 24, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Hooke, J.M. River channel adjustment to artificial meander cutoffs on River Bollin and River Dane, Northwest England. Geomorphology 1995, 14, 235–253. [Google Scholar] [CrossRef]
- Sipos, G.; Kiss, T.; Fiala, K. Morphological alterations due to channelization along the lower Tisza and Maros Rivers (Hungary). Geogr Fis. Din. Quat. 2007, 30, 239–247. [Google Scholar]
- Lóczy, D.; Kis, É.; Schweitzer, F. Local flood hazards assessed from channel morphometry along the Tisza River in Hungary. Geomorphology 2009, 113, 200–209. [Google Scholar] [CrossRef]
- Lászlóffy, W. A Tisza—Vízi Munkálatok és Vízgazdálkodás Tiszai Vizrend-Szerben (The Tisza River: Water Development and Management in its River Basin); Akadémiai Kiadó: Budapest, Hungary, 1982. [Google Scholar]
- Kiss, T. Fluviális Folyamatok Antropogén Hatásra Megváltozó Dinamikája: Egyensúly és Érzékenység Vizsgáta Folyóvizi Környezetben; Akadémiai doktori értekezés: Szeged, Hungary, 2014. (In Hungarian) [Google Scholar]
- Mezősi, G. The Physical Geography of Hungary; Springer: Basel, Switzerland, 2009; pp. 121–164. ISBN 978-3-319-45183-1. [Google Scholar]
- Kasse, C.; Bohnake, S.J.P.; Vandenberghe, J.; Gabris, G. Fluvial style changes during the las glacial-interglacial transition in the middle Tisza Valley (Hungary). Proc. Geol. Assoc. 2010, 121, 180–194. [Google Scholar] [CrossRef]
- Szlávik, L. Az Alföld árvízi veszélyeztetettsége (Flood hazard in the Great Hungarian Plain). In A Vízs Zerepe és Jelentősége (Role and Significance of Water in the Great Hungarian Plain); Pálfai, J., Ed.; Nagyalföld Alapítvány: Békéscsaba, Hungary, 2000; pp. 64–84. (In Hungarian) [Google Scholar]
- Pinke, Z. Modernization and Decline: An eco-historical perspective on regulation of the Tisza Valley, Hungary. J. Hist. Geogr. 2014, 45, 92–105. [Google Scholar] [CrossRef]
- Dunka, S.; Fejér, L.; Vágás, I. A Verítékeshonfoglalás—ATisza Szabályozás Története (The New Conquest—History of the Regulation of Tisza River); Vízügyi Múzeumés Levéltár: Budapest, Hungary, 1996. [Google Scholar]
- Schweitzer, F. Strategy or disaster: Flood prevention related issues and actions in the Tisza River Catchment. Hung. Geogr. Bull. 2009, 58, 3–17. [Google Scholar]
- Nagy, J.; Kiss, T.; Fiala, K. Hullámtér-feltöltődés vizsgálata az Alsó-Tisza mentén I. Hullámtér-szélesség és beömlő mellékfolyók hatása az akkumulációra. Hidrol. Közlöny 2017, 97, 59–66. [Google Scholar]
- Bezdán, M. Characteristics of the flow regime of the regulated Tisza River reach downstream of Tiszafüred. J. Environ. Geogr. 2010, 3, 25–30. [Google Scholar]
- Laczay, I.A. A folyószabályozás tervezésének morfológiai alapjai (Morphological foundations of planning river channelization). Vízügyi Kȏzlemények 1982, 64, 235–256. (In Hungarian) [Google Scholar]
- Laczay, I. Channel pattern changes of Hungarian rivers: The example of River Hernád. In River Channel Changes; Gregory, K.J., Ed.; Wiley: Chichester, UK, 1977; pp. 185–192. [Google Scholar]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Rinaldi, M. Disturbance, stream incision, and channel evolution. The roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology 2006, 79, 361–383. [Google Scholar] [CrossRef]
- Vágás, I. A Tisza Árvizei (Floods of the Tisza River); VÍZDOK: Budapest, Hungary, 1982. (In Hungarian) [Google Scholar]
Reach | Length (f.km) | Floodplain Width (m) | Cutoffs (No.) | Revetments | |||
---|---|---|---|---|---|---|---|
Min | Mean | Max | Length (km) | Density (km/km) | |||
Upper | 255–238 | 365 | 850 | 1060 | 3 | 10.92 | 0.64 |
Middle | 238–194 | 560 | 1000 | 3200 | 7 | 17.53 | 0.39 |
Lower | 194–166 | 380 | 600 | 975 | 2 | 16.03 | 0.54 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amissah, G.J.; Kiss, T.; Fiala, K. Morphological Evolution of the Lower Tisza River (Hungary) in the 20th Century in Response to Human Interventions. Water 2018, 10, 884. https://doi.org/10.3390/w10070884
Amissah GJ, Kiss T, Fiala K. Morphological Evolution of the Lower Tisza River (Hungary) in the 20th Century in Response to Human Interventions. Water. 2018; 10(7):884. https://doi.org/10.3390/w10070884
Chicago/Turabian StyleAmissah, Gabriel J., Tímea Kiss, and Károly Fiala. 2018. "Morphological Evolution of the Lower Tisza River (Hungary) in the 20th Century in Response to Human Interventions" Water 10, no. 7: 884. https://doi.org/10.3390/w10070884