Cloud-Model-Based Method for Risk Assessment of Mountain Torrent Disasters
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Risk Index System for Mountain Torrent Disaster Assessment
2.3. Dataset
2.3.1. Data Resources
2.3.2. Data Preprocessing
3. Methodology and Basic Theory
3.1. Hybrid Entropy–AHP Weight-Calculation Method
3.1.1. AHP Method
3.1.2. Entropy Weighting Method
3.1.3. Hybrid-Weight Calculation Method
3.2. Cloud Model
3.2.1. Basic Theory
- Ex refers to the expectation of the cloud droplets, which is the central value in the universe of the qualitative concept.
- En is the uncertainty measurement of the qualitative concept, which is codetermined by the randomness and fuzziness of the concept.
- He is the uncertainty measurement of En, i.e., the entropy of En. It reflects the discrete degree of the cloud droplets. A larger He value represents a higher cloud dispersion, and the corresponding cloud will be thicker.
3.2.2. Parameter Determination
3.2.3. Cloud Generator
- Input: Parameters Ex, En, and He; and the number of cloud droplets to be generated, N.
- Output: Quantitative values of N cloud droplets and their corresponding certainty degrees.
- Step 1
- Generate a random number that satisfies the normal distribution, ;
- Step 2
- Generate a random number that satisfies the normal distribution, ;
- Step 3
- Calculate the certainty degree of x, ;
- Step 4
- Repeat steps 1 to 3 until N cloud droplets are generated.
4. Results and Discussion
4.1. Weight Calculation
4.1.1. AHP-Based Weight Calculation
4.1.2. Entropy-Based Weight Calculation
4.1.3. Hybrid Weight Calculation
4.2. Evaluation Criteria Determination
4.3. Cloud Model-Based Certainty Degree Recognition
4.4. Comprehensive Evaluation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Korup, O.; Clague, J.J. Natural hazards, extreme events, and mountain topography. Quat. Sci. Rev. 2009, 28, 977–990. [Google Scholar] [CrossRef]
- Guzzetti, A. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Bombino, G.; Boixfayos, C.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Check dam influence on vegetation species diversity in mountain torrents of the mediterranean environment. Ecohydrology 2014, 7, 678–691. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: A case study of Duzkoy district. Nat. Hazards 2015, 76, 471–496. [Google Scholar] [CrossRef]
- Totschnig, R.; Fuchs, S. Mountain torrents: Quantifying vulnerability and assessing uncertainties. Eng. Geol. 2013, 155, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Zhou, J.; Zhou, C.; Song, L.; Guo, J. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2013, 27, 525–546. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 2010, 110, 11–20. [Google Scholar] [CrossRef]
- Li, D.; Meng, H.; Shi, X. Membership clouds and membership cloud generators. Comput. Res. Dev. 1995, 32, 15–20, (In Chinese with English Abstract). [Google Scholar]
- Li, D.Y.; Liu, C.Y.; Gan, W.Y. A new cognitive model: Cloud model. Int. J. Intell. Syst. 2009, 24, 357–375. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Sun, B.; Liu, Y.; Pecht, M. A cloud model-based method for the analysis of accelerated life test data. Microelectron. Reliab. 2014, 55, 123–128. [Google Scholar] [CrossRef]
- Lu, H.; Ren, Li.; Chen, Y.; Tian, P.; Liu, J. A cloud model based multi-attribute decision making approach for selection and evaluation of groundwater management schemes. J. Hydrol. 2017, 555, 881–893. [Google Scholar] [CrossRef]
- Wang, D.; Liu, D.; Ding, H.; Singh, V.P.; Wang, Y.; Zeng, X.; Wu, J.; Wang, L. A cloud model-based approach for water quality assessment. Environ. Res. 2016, 148, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Shi, J.S.; Liu, J.C.; Zhang, Y.L. Establishment and application of cloud-markov model based on aquifer hydraulic conductivity. J. Hydraul. Eng. 2012, 43, 767–776. [Google Scholar]
- Liu, Z.; Shao, J.; Xu, W.; Xu, F. Comprehensive stability evaluation of rock slope using the cloud model-based approach. Rock Mech. Rock Eng. 2014, 47, 2239–2252. [Google Scholar] [CrossRef]
- Seekao, C.; Pharino, C. Assessment of the flood vulnerability of shrimp farms using a multicriteria evaluation and GIS: A case study in the Bangpakong Sub-Basin, Thailand. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Ma, J.; Fan, Z.P.; Huang, L.H. A subjective and objective integrated approach to determine attribute weights. Eur. J. Oper. Res. 1999, 112, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Vaidyaab, O.S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Ramík, J.; Korviny, P. Inconsistency of pair-wise comparison matrix with fuzzy elements based on geometric mean. Fuzzy Set. Syst. 2010, 161, 1604–1613. [Google Scholar] [CrossRef]
- Singh, V.P. The use of entropy in hydrology and water resources. Hydrol. Process. 1997, 11, 587–626. [Google Scholar] [CrossRef]
- Li, Y.; Lei, Z.; Suo, J. Comprehensive assessment of marine ecological environment based on entropy weight model. Pol. J. Environ. Stud. 2015, 25, 151–155. [Google Scholar]
- Xu, X. A note on the subjective and objective integrated approach to determine attribute weights. Eur. J. Oper. Res. 2004, 156, 530–532. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Interfaces 1994, 24, 19–43. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2007, 145, 85–91. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Qian, H.; Chen, J. On the sensitivity of entropy weight to sample statistics in assessing water quality: Statistical analysis based on large stochastic samples. Environ. Earth Sci. 2015, 74, 2185–2195. [Google Scholar] [CrossRef]
- Li, D.; Cheung, D.; Shi, X.; Ng, V. Uncertainty reasoning based on cloud models in controllers. Comput. Math. Appl. 1998, 35, 99–123. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Liu, L. Study on the universality of the normal cloud model. Eng. Sci. 2004, 6, 28–34, (In Chinese with English Abstract). [Google Scholar]
- Zou, Q.; Wang, N.; Chen, J.; He, X. Risk assessment of watershed flood control engineering system based on cloud model. Yangtze River 2016, 47, 1–4, (In Chinese with English Abstract). [Google Scholar]
- Liu, D.F.; Wang, D.; Wu, J.C.; Wang, Y.K.; Wang, L.C.; Zou, X.Q.; Chen, Y.F.; Chen, X. A risk assessment method based on RBF artificial neural network-cloud model for urban water hazard. J. Intell. Fuzzy Syst. 2014, 27, 2409–2416. [Google Scholar]
- Zhang, L.; Wu, X.; Chen, Q.; Skibniewski, M.J.; Zhong, J. Developing a cloud model based risk assessment methodology for tunnel-induced damage to existing pipelines. Stoch. Environ. Res. Risk Assess. 2015, 29, 513–526. [Google Scholar] [CrossRef]
- W, K.; L, N. Chinese Meteorological Disaster (Guizhou), 1st ed.; Chinese Meteorological Press: Beijing, China, 2006; pp. 98–122. [Google Scholar]
Target Layer | Intermediate Layer | Index Layer | Index |
---|---|---|---|
Risk assessment of mountain torrent disaster | Hazard | Annual average rainfall | u1 |
Annual maximum 6-h heavy rainfall | u2 | ||
Annual maximum 60-min heavy rainfall | u3 | ||
River network density | u4 | ||
Vegetation index | u5 | ||
Topographic relief | u6 | ||
Vulnerability | Population density | u7 | |
GDP density | u8 |
Dataset | Format | Resolution | Data Source | Region |
---|---|---|---|---|
Administrative boundary | Vector (Arc/Info) | 1:4,000,000 | RESDC | Guizhou |
Extreme heavy rainfall maps | Raster (.jpg) | 200 dpi | Water Resources Research Institute of Guizhou Province | Guizhou |
GDEM | Raster (.tiff) | 30 × 30 m | ASTER GDEM official website | Guizhou |
Annual average rainfall | Raster (.tiff) | 500 × 500 m | RESDC | China |
River network | Vector (Arc/Info) | 1:4,000,000 | China | |
Vegetation index | Raster (Arc/Info) | 1000 × 1000 m | China | |
Population density | Raster (Arc/Info) | 1000 × 1000 m | China | |
GDP density | Raster (Arc/Info) | 1000 × 1000 m | China |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Indicator | Hazard | Vulnerability | Weight |
---|---|---|---|
Hazard | 1 | 4 | 0.8 |
Vulnerability | 1/4 | 1 | 0.2 |
= 2 | CI = 0 | CR = 0 < 0.1 | Acceptable |
Index | u1 | u2 | u3 | u4 | u5 | u6 | Weight |
---|---|---|---|---|---|---|---|
u1 | 1 | 1/3 | 1/4 | 3 | 4 | 3 | 0.1509 |
u2 | 3 | 1 | 1/2 | 4 | 5 | 4 | 0.2700 |
u3 | 4 | 2 | 1 | 4 | 5 | 5 | 0.3728 |
u4 | 1/3 | 1/4 | 1/4 | 1 | 4 | 3 | 0.1013 |
u5 | 1/4 | 1/5 | 1/5 | 1/4 | 1 | 1/4 | 0.0375 |
u6 | 1/3 | 1/4 | 1/5 | 1/3 | 4 | 1 | 0.0676 |
= 6.5639 | CI = 0.1128 | CR = 0.0910 < 0.1 | Acceptable |
Index | u7 | u8 | Weight |
---|---|---|---|
u7 | 1 | 5 | 0.8333 |
u8 | 1/5 | 1 | 0.1667 |
= 2 | CI = 0 | CR = 0 < 0.1 | Acceptable |
Target Layer | Intermediate Layer | Index | Relative Weight | Total Weight |
---|---|---|---|---|
Risk assessment of mountain torrent disaster | Hazard 0.8 | Annual average rainfall (u1) | 0.1509 | 0.1207 |
Annual maximum 6-h heavy rainfall (u2) | 0.2700 | 0.2160 | ||
Annual maximum 60-min heavy rainfall (u3) | 0.3728 | 0.2982 | ||
River network density (u4) | 0.1013 | 0.0810 | ||
Vegetation index (u5) | 0.0375 | 0.0300 | ||
Topographic relief (u6) | 0.0676 | 0.0541 | ||
Vulnerability 0.2 | Population density (u7) | 0.8333 | 0.1667 | |
GDP density (u8) | 0.1667 | 0.0333 |
Assessment Cases | u1 | u2 | u3 | u4 | u5 | u6 | u7 | u8 |
---|---|---|---|---|---|---|---|---|
Zunyi City | 0.204 | 0.353 | 0.630 | 0.413 | 0.927 | 0.934 | 0.223 | 0.089 |
Tongren City | 0.391 | 0.498 | 0.403 | 0.569 | 0.511 | 0.851 | 0.148 | 0.048 |
Bijie City | 0 | 0 | 0.534 | 0.032 | 0.805 | 0.604 | 0.330 | 0.050 |
AP of southeast Guizhou | 0.504 | 0.334 | 0 | 0.359 | 1 | 0.832 | 0 | 0 |
AP of south Guizhou | 0.561 | 0.714 | 0.796 | 0.317 | 0.700 | 0.594 | 0.052 | 0.031 |
Guiyang City | 0.226 | 0.843 | 0.128 | 1 | 0.310 | 0 | 1 | 1 |
Liupanshui City | 1 | 0.515 | 0.285 | 0 | 0.232 | 1 | 0.430 | 0.224 |
Anshun City | 0.804 | 0.843 | 1 | 0.194 | 0 | 0.580 | 0.362 | 0.157 |
AP of southwest Guizhou | 0.927 | 1 | 0.098 | 0.088 | 0.403 | 0.977 | 0.204 | 0.055 |
Primary Index | Secondary Index | Entropy | Entropy-Based Weight |
---|---|---|---|
Hazard | Annual average rainfall (u1) | 0.9380 | 0.0709 |
Annual maximum 6-h heavy rainfall (u2) | 0.9675 | 0.0372 | |
Annual maximum 60-min heavy rainfall (u3) | 0.9023 | 0.1117 | |
River network density (u4) | 0.8572 | 0.1632 | |
Vegetation index (u5) | 0.9506 | 0.0565 | |
Topographic relief (u6) | 0.9892 | 0.0123 | |
Vulnerability | Population density (u7) | 0.8697 | 0.1490 |
GDP density (u8) | 0.6508 | 0.3992 |
Index | AHP-Based Weight | Entropy-Based Weight | Hybrid Weight |
---|---|---|---|
Annual average rainfall (u1) | 0.1207 | 0.0709 | 0.0826 |
Annual maximum 6-h heavy rainfall (u2) | 0.2160 | 0.0372 | 0.0776 |
Annual maximum 60-min heavy rainfall (u3) | 0.2982 | 0.1117 | 0.3215 |
River network density (u4) | 0.0810 | 0.1632 | 0.1276 |
Vegetation index (u5) | 0.0300 | 0.0565 | 0.0164 |
Topographic relief (u6) | 0.0541 | 0.0123 | 0.0064 |
Population density (u7) | 0.1667 | 0.1490 | 0.2397 |
GDP density (u8) | 0.0333 | 0.3992 | 0.1283 |
Index | Level I | Level II | Level III | Level IV | Level V |
---|---|---|---|---|---|
u1 | (9938, 10,272.9) | (10,272.9, 10,942.7) | (10,942.7, 12,282.3) | (12,282.3, 12,952.1) | (12,952.1, 13,287) |
u2 | (107, 112.1) | (112.1, 122.3) | (122.3, 142.7) | (142.7, 152.9) | (152.9, 158) |
u3 | (69, 70.2) | (70.2, 72.6) | (72.6, 77.4) | (77.4, 79.8) | (79.8, 81) |
u4 | (24.8, 26.8) | (26.8, 30.7) | (30.7, 38.7) | (38.7, 42.6) | (42.6, 44.6) |
u5 | (0.795, 0.791) | (0.791, 0.783) | (0.783, 0.766) | (0.766, 0.758) | (0.758, 0.754) |
u6 | (106.9, 112.2) | (112.2, 122.8) | (122.8, 144.1) | (144.1, 154.7) | (154.7, 160) |
u7 | (100, 143.5) | (143.5, 230.5) | (230.5, 404.5) | (404.5, 491.5) | (491.5, 535) |
u8 | (104.2, 190.3) | (190.3, 362.4) | (362.4, 706.8) | (706.8, 878.9) | (878.9, 965) |
Index | Level I | Level II | Level III |
u1 | (10,105.45, 142.2081, 5) | (10,607.8, 284.4161, 5) | (11,612.5, 568.8323, 5) |
u2 | (109.55, 2.1656, 0.2) | (117.2, 4.3312, 0.2) | (132.5, 8.6624, 0.2) |
u3 | (69.6, 0.5096, 0.05) | (71.4, 1.0191, 0.05) | (75, 2.0382, 0.05) |
u4 | (25.79, 0.8408, 0.1) | (28.76, 1.6815, 0.1) | (34.7, 3.3631, 0.1) |
u5 | (0.79295, 0.0017, 0.0001) | (0.7868, 0.0035, 0.0001) | (0.7745, 0.0070, 0.0001) |
u6 | (109.555, 2.2548, 0.1) | (117.52, 4.5096, 0.1) | (133.45, 9.0191, 0.1) |
u7 | (121.75, 18.4713, 1) | (187, 36.9427, 1) | (317.5, 73.8854, 1) |
u8 | (147.24, 36.5520, 2) | (276.36, 73.1040, 2) | (534.6, 146.2081, 2) |
Index | Level IV | Level V | |
u1 | (12,617.2, 284.4161, 5) | (131,19.55, 142.2081, 5) | |
u2 | (147.8, 4.3312, 0.2) | (155.45, 2.1656, 0.2) | |
u3 | (78.6, 1.0191, 0.05) | (80.4, 0.5096, 0.05) | |
u4 | (40.64, 1.6815, 0.1) | (43.61, 0.8408, 0.1) | |
u5 | (0.7622, 0.0035, 0.0001) | (0.75605, 0.0017, 0.0001) | |
u6 | (149.38, 4.5096, 0.1) | (157.345, 2.2548, 0.1) | |
u7 | (448, 36.9427, 1) | (513.25, 18.4713, 1) | |
u8 | (792.84, 73.1040, 2) | (921.96, 36.5520, 2) |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0013 | 0.8196 | 0.1791 | 0.0000 | 0.0000 |
u2 | 0.0000 | 0.2089 | 0.7911 | 0.0000 | 0.0000 |
u3 | 0.0000 | 0.0000 | 0.8330 | 0.1670 | 0.0000 |
u4 | 0.0000 | 0.0459 | 0.9540 | 0.0001 | 0.0000 |
u5 | 0.6373 | 0.3209 | 0.0418 | 0.0000 | 0.0000 |
u6 | 0.0000 | 0.0000 | 0.0342 | 0.2607 | 0.7051 |
u7 | 0.0002 | 0.7816 | 0.2182 | 0.0000 | 0.0000 |
u8 | 0.5782 | 0.3745 | 0.0472 | 0.0000 | 0.0000 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0000 | 0.0886 | 0.9114 | 0.0000 | 0.0000 |
u2 | 0.0000 | 0.0035 | 0.9928 | 0.0037 | 0.0000 |
u3 | 0.0000 | 0.0328 | 0.9671 | 0.0001 | 0.0000 |
u4 | 0.0000 | 0.0001 | 0.9706 | 0.0293 | 0.0000 |
u5 | 0.0000 | 0.0043 | 0.9947 | 0.0011 | 0.0000 |
u6 | 0.0000 | 0.0000 | 0.1227 | 0.8300 | 0.0473 |
u7 | 0.0656 | 0.8184 | 0.1160 | 0.0000 | 0.0000 |
u8 | 0.8121 | 0.1642 | 0.0237 | 0.0000 | 0.0000 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.8686 | 0.1086 | 0.0228 | 0.0000 | 0.0000 |
u2 | 0.8506 | 0.1248 | 0.0246 | 0.0000 | 0.0000 |
u3 | 0.0000 | 0.0004 | 0.9889 | 0.0107 | 0.0000 |
u4 | 0.8421 | 0.1362 | 0.0217 | 0.0000 | 0.0000 |
u5 | 0.0013 | 0.8231 | 0.1757 | 0.0000 | 0.0000 |
u6 | 0.0000 | 0.0000 | 0.9301 | 0.0699 | 0.0000 |
u7 | 0.0000 | 0.3323 | 0.6677 | 0.0000 | 0.0000 |
u8 | 0.8060 | 0.1697 | 0.0243 | 0.0000 | 0.0000 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0000 | 0.0017 | 0.9960 | 0.0023 | 0.0000 |
u2 | 0.0000 | 0.2980 | 0.7020 | 0.0000 | 0.0000 |
u3 | 0.8058 | 0.1699 | 0.0242 | 0.0000 | 0.0000 |
u4 | 0.0000 | 0.1881 | 0.8119 | 0.0000 | 0.0000 |
u5 | 0.8652 | 0.1129 | 0.0219 | 0.0000 | 0.0000 |
u6 | 0.0000 | 0.0000 | 0.1409 | 0.8447 | 0.0144 |
u7 | 0.8678 | 0.1097 | 0.0226 | 0.0000 | 0.0000 |
u8 | 0.8683 | 0.1087 | 0.0230 | 0.0000 | 0.0000 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0000 | 0.0001 | 0.9796 | 0.0203 | 0.0000 |
u2 | 0.0000 | 0.0000 | 0.4243 | 0.5756 | 0.0001 |
u3 | 0.0000 | 0.0000 | 0.2022 | 0.7970 | 0.0008 |
u4 | 0.0000 | 0.3962 | 0.6038 | 0.0000 | 0.0000 |
u5 | 0.0000 | 0.4994 | 0.5006 | 0.0000 | 0.0000 |
u6 | 0.0000 | 0.0000 | 0.9487 | 0.0513 | 0.0000 |
u7 | 0.7924 | 0.1821 | 0.0255 | 0.0000 | 0.0000 |
u8 | 0.8494 | 0.1298 | 0.0209 | 0.0000 | 0.0000 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0002 | 0.7765 | 0.2233 | 0.0000 | 0.0000 |
u2 | 0.0000 | 0.0000 | 0.1226 | 0.8210 | 0.0564 |
u3 | 0.0237 | 0.8431 | 0.1332 | 0.0000 | 0.0000 |
u4 | 0.0000 | 0.0000 | 0.0235 | 0.1138 | 0.8627 |
u5 | 0.0000 | 0.0000 | 0.6167 | 0.3833 | 0.0000 |
u6 | 0.8653 | 0.1120 | 0.0227 | 0.0000 | 0.0000 |
u7 | 0.0000 | 0.0000 | 0.0227 | 0.1096 | 0.8677 |
u8 | 0.0000 | 0.0000 | 0.0229 | 0.1100 | 0.8671 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0000 | 0.0000 | 0.0228 | 0.1090 | 0.8682 |
u2 | 0.0000 | 0.0020 | 0.9919 | 0.0061 | 0.0000 |
u3 | 0.0000 | 0.4548 | 0.5452 | 0.0000 | 0.0000 |
u4 | 0.8644 | 0.1127 | 0.0229 | 0.0000 | 0.0000 |
u5 | 0.0000 | 0.0000 | 0.2776 | 0.7224 | 0.0000 |
u6 | 0.0000 | 0.0000 | 0.0223 | 0.1130 | 0.8647 |
u7 | 0.0000 | 0.0270 | 0.9729 | 0.0001 | 0.0000 |
u8 | 0.0002 | 0.7815 | 0.2182 | 0.0000 | 0.0000 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0000 | 0.0000 | 0.1671 | 0.8304 | 0.0024 |
u2 | 0.0000 | 0.0000 | 0.1228 | 0.8210 | 0.0561 |
u3 | 0.0000 | 0.0000 | 0.0207 | 0.1237 | 0.8556 |
u4 | 0.0037 | 0.8278 | 0.1685 | 0.0000 | 0.0000 |
u5 | 0.0000 | 0.0000 | 0.0219 | 0.1249 | 0.8532 |
u6 | 0.0000 | 0.0001 | 0.9664 | 0.0335 | 0.0000 |
u7 | 0.0000 | 0.1820 | 0.8180 | 0.0000 | 0.0000 |
u8 | 0.0421 | 0.8346 | 0.1233 | 0.0000 | 0.0000 |
Index | Risk Level | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
u1 | 0.0000 | 0.0000 | 0.0341 | 0.2622 | 0.7037 |
u2 | 0.0000 | 0.0000 | 0.0251 | 0.1202 | 0.8547 |
u3 | 0.1005 | 0.7911 | 0.1084 | 0.0000 | 0.0000 |
u4 | 0.5525 | 0.3970 | 0.0505 | 0.0000 | 0.0000 |
u5 | 0.0000 | 0.0000 | 0.9503 | 0.0497 | 0.0000 |
u6 | 0.0000 | 0.0000 | 0.0211 | 0.1297 | 0.8492 |
u7 | 0.0013 | 0.8171 | 0.1816 | 0.0000 | 0.0000 |
u8 | 0.7877 | 0.1864 | 0.0259 | 0.0000 | 0.0000 |
Cases | Risk Level | Final Risk Level | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
Zunyi City | 0.085 | 0.330 | 0.525 | 0.055 | 0.005 | III |
Tongren City | 0.120 | 0.235 | 0.635 | 0.009 | 0.000 | III |
Bijie City | 0.349 | 0.151 | 0.496 | 0.004 | 0.000 | III |
AP of southeast Guizhou | 0.593 | 0.144 | 0.258 | 0.006 | 0.000 | I |
AP of south Guizhou | 0.299 | 0.119 | 0.279 | 0.303 | 0.000 | IV |
Guiyang City | 0.013 | 0.336 | 0.092 | 0.125 | 0.434 | V |
Liupanshui City | 0.110 | 0.267 | 0.523 | 0.022 | 0.077 | III |
Anshun City | 0.006 | 0.256 | 0.270 | 0.174 | 0.294 | V |
AP of southwest Guizhou | 0.204 | 0.525 | 0.109 | 0.033 | 0.130 | II |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Han, X.; Cao, B.; Li, B.; Yan, F. Cloud-Model-Based Method for Risk Assessment of Mountain Torrent Disasters. Water 2018, 10, 830. https://doi.org/10.3390/w10070830
Yang S, Han X, Cao B, Li B, Yan F. Cloud-Model-Based Method for Risk Assessment of Mountain Torrent Disasters. Water. 2018; 10(7):830. https://doi.org/10.3390/w10070830
Chicago/Turabian StyleYang, Shengmei, Xianquan Han, Bo Cao, Bo Li, and Fei Yan. 2018. "Cloud-Model-Based Method for Risk Assessment of Mountain Torrent Disasters" Water 10, no. 7: 830. https://doi.org/10.3390/w10070830
APA StyleYang, S., Han, X., Cao, B., Li, B., & Yan, F. (2018). Cloud-Model-Based Method for Risk Assessment of Mountain Torrent Disasters. Water, 10(7), 830. https://doi.org/10.3390/w10070830