Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Analytical Methods
3. Risk Assessment
4. Results and Discussion
4.1. Trace Metal Concentrations
4.2. Exposure Assessment
4.3. Risk Assessment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Poyraz, B.; Taspinar, F. Analysis, Assesment and Principal Component Analysis of Heavy Metals in Drinking Waters of Industrialized Region of Turkey. Int. J. Environ. Res. 2014, 8, 1261–1270. [Google Scholar]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 2014, 36, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Sun, G.; Bi, X.; Li, Z.; Yu, G. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses. Atmos. Environ. 2013, 77, 9–15. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, M.; Peng, C.; Alatalo, J.M. Impacts of urbanization on the distribution of heavy metals in soils along the Huangpu River, the drinking water source for Shanghai. Environ. Sci. Pollut. Res. 2016, 23, 5222–5231. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.J.; Ji, H.B.; Tang, L.; Zhang, A.X.; Guo, X.Y.; Li, C.; Gao, Y.; Briki, M. Heavy metals in the gold mine soil of the upstream area of a metropolitan drinking water source. Environ. Sci. Pollut. Res. 2016, 23, 2831–2847. [Google Scholar] [CrossRef] [PubMed]
- Azizullah, A.; Khattak, M.N.K.; Richter, P.; Häder, D.P. Water pollution in Pakistan and its impact on public health—A review. Environ. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Prioteasa, L.; Prodana, M.; Buzoianu, M.; Demetrescu, I. Determination by ICP-MS of Heavy Metals and Other Toxic Elements in Drinking Water from Several Rural Areas of Romania. Rev. Chim. 2014, 65, 925–928. [Google Scholar]
- Geng, M.H.; Qi, H.J.; Liu, X.L.; Gao, B.; Yang, Z.; Lu, W.; Sun, R.B. Occurrence and health risk assessment of selected metals in drinking water from two typical remote areas in China. Environ. Sci. Pollut. Res. 2016, 23, 8462–8469. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Li, Z.; Bi, X.; Chen, Y.; Lu, S.; Yuan, X. Distribution, sources and health risk assessment of mercury in kindergarten dust. Atmos. Environ. 2013, 73, 169–176. [Google Scholar] [CrossRef]
- Sun, G.; Chen, Y.; Bi, X.; Yang, W.; Chen, X.; Zhang, B.; Cui, Y. Geochemical assessment of agricultural soil: A case study in Songnen-Plain (Northeastern China). Catena 2013, 111, 56–63. [Google Scholar] [CrossRef]
- Sun, G.; Li, Z.; Liu, T.; Chen, J.; Wu, T.; Feng, X. Metal exposure and associated health risk to human beings by street dust in a heavily industrialized city of Hunan province, central China. Int. J. Environ. Res. Public Health 2017, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Li, Z.; Liu, T.; Chen, J.; Wu, T.; Feng, X. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China. Environ. Geochem. Health 2017, 39, 1469–1486. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhang, C.; Sun, G.; Li, Z.; Shang, L.; Fu, Y.; He, Y.; Yang, Y. Assessment of Metalloid and Metal Contamination in Soils from Hainan, China. Int. J. Environ. Res. Public Health 2018, 15, 454. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.I.; Sampaio, C.F.; Nadal, M.; Schuhmacher, M.; Domingo, J.L.; Segura-Muñoz, S.I. Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environ. Res. 2014, 133, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Withanachchi, S.S.; Ghambashidze, G.; Kunchulia, I.; Urushadze, T.; Ploeger, A. Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia. Int. J. Environ. Res. Public Health 2018, 15, 621. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Gworek, B.; Dmuchowski, W.; Koda, E.; Marecka, M.; Baczewska, A.H.; Brągoszewska, P.; Sieczka, A.; Osiński, P. Impact of the municipal solid waste Łubna Landfill on environmental pollution by heavy metals. Water 2016, 8, 470. [Google Scholar] [CrossRef]
- Vaverková, M.; Adamcová, D. Evaluation of landfill pollution with special emphasis on heavy metals. J. Ecol. Eng. 2014, 15, 1–6. [Google Scholar]
- Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A Global Synthesis; John Wiley: New York, NY, USA, 2009. [Google Scholar]
- Gerke, T.L.; Scheckel, K.G.; Schock, M.R. Identification and distribuion of vanadinite (Pb5(V5+O4)3Cl) in lead pipe corrosion by-products. Environ. Sci. Technol. 2009, 43, 4412–4418. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Herrera, J.E.; Huggins, D.; Braam, J.; Koshowski, S. Effect of pH on the concentrations of lead and trace contaminants in drinking water: A combined batch, pipe loop and sentinel home study. Water Res. 2011, 45, 2763–2774. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Lopez-Roldan, R.; Cortina, J.L. Presence of metals in drinking water distribution networks due to pipe material leaching: A review. Toxicol. Environ. Chem. 2013, 95, 870–889. [Google Scholar] [CrossRef]
- Shotyk, W.; Krachler, M. Lead in bottled waters: Contamination from glass and comparison with pristine groundwater. Environ. Sci. Technol. 2007, 41, 3508–3513. [Google Scholar] [CrossRef] [PubMed]
- Shotyk, W.; Krachler, M. Contamination of bottled waters with antimony leaching from PET increases with storage. Environ. Sci. Technol. 2007, 40, 1560–1563. [Google Scholar] [CrossRef]
- Morris, R.D. Drinking water and cancer. Environ. Health Perspect. 1995, 103, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Kavcar, P.; Sofuoglu, A.; Sofuoglu, S.C. A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hyg. Environ. Health 2009, 212, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Colak, E.H.; Yomralioglu, T.; Nisanci, R.; Yildirim, V.; Duran, C. Geostatistical Analysis of the Relationship Between Heavy Metals in Drinking Water and Cancer Incidence in Residential Areas in the Black Sea Region of Turkey. J. Environ. Health 2015, 77, 86–93. [Google Scholar] [PubMed]
- Zhang, J.F.; Mauzerall, D.L.; Zhu, T.; Liang, S.; Ezzati, M.; Remais, J. Environmental health in China: Progress towards clean air and safe water. Lancet 2010, 375, 1110–1119. [Google Scholar] [CrossRef]
- Yin, G.X.; Li, Z.S. Groundwater Pollution and Control—An Empirical Study in Jiaozuo City; China Environmental Science Press: Beijing, China, 2005. [Google Scholar]
- Zhao, X.; Höll, W.H.; Yun, G. Elimination of cadmium trace contaminations from drinking water. Water Res. 2002, 36, 851–858. [Google Scholar] [CrossRef]
- Huang, S.B.; Xu, P.; Lagos, G.E.; Wang, Z.J. Winter exposure assessment of copper, zinc and arsenic in drinking water of inhabitants in Beijing, China. Int. J. Environ. Pollut. 2011, 45, 197–214. [Google Scholar] [CrossRef]
- Xu, P.; Huang, S.B.; Wang, Z.J.; Lagos, G. Daily intakes of copper, zinc and arsenic in drinking water by population of Shanghai, China. Sci. Total Environ. 2006, 362, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ni, T.H.; Xia, J.; Dai, M.Z.; He, C.Y.; Lu, G.F. Non-carcinogenic risks induced by metals in drinking water of Jiangsu province, China. Environ. Monit. Assess. 2011, 177, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.Y.; Wang, Z.X.; Wang, Y.Y.; Yang, Z.H.; Wang, H.Y.; Wu, X. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment—A case study in the Xiangjiang watershed, central-south China. Sci. Total Environ. 2010, 408, 3118–3124. [Google Scholar]
- Virkutyte, J.; Sillanpää, M. Chemical evaluation of potable water in eastern Qinghai province, China: Human health aspects. Environ. Int. 2006, 32, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, H.X.; Wu, X.F.; Fan, F.C.; Sun, B.Y.; Wang, Z.S.; Zhang, Q.; Tao, Y. Current situation analysis on China rural drinking water quality. J. Environ. Health 2009, 26, 3–5. (In Chinese) [Google Scholar]
- Buschmann, J.; Berg, M.; Stengel, C.; Winkel, L.; Sampson, M.L.; Trang, P.T.K.; Viet, P.H. Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environ. Int. 2008, 34, 756–764. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part A); USEPA: Washington, DC, USA, 1989.
- Kicińska, A.; Mamak, M. Health risks associated with municipal waste combustion on the example of Laskowa commune (southern Poland). Hum. Ecol. Risk Assess. 2017, 23, 2087–2096. [Google Scholar] [CrossRef]
- De Miguel, E.; Iribarren, I.; Chacon, E.; Ordonez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Integrated Risk Information System (IRIS). Available online: https://www.epa.gov/iris (accessed on 14 May 1028).
- Ministry of Health of the People’s Republic of China (MHPRC). 2006 Standards for Drinking Water Quality (GB 5749-2006); MHPRC: Beijing, China, 2006.
- World Health Organization (WHO). Guideline for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Xia, Y.J.; Liu, J. An overview on chronic arsenic via drinking water in PR China. Toxicology 2004, 198, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Cidu, R.; Frau, F.; Tore, P. Drinking water quality: Comparing inorganic components in bottled water and Italian tap water. J. Food Compos. Anal. 2011, 24, 184–193. [Google Scholar] [CrossRef]
- Liao, C.M.; Shen, H.H.; Chen, C.L.; Hsu, L.I.; Lin, T.L.; Chen, S.C.; Chen, C.J. Risk assessment of arsenic-induced internal cancer at long-term low dose exposure. J. Hazard. Mater. 2009, 165, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Field, M.P.; Sherrell, R.M. Direct determination of ultra-trace levels of metals in fresh water using desolvating micronebulization and HR-ICP-MS: Application to Lake Superior waters. J. Anal. At. Spectrom. 2003, 18, 254–259. [Google Scholar] [CrossRef]
- Conio, O.; Ottaviani, M.; Formentera, V.; Lasagna, C.; Palumbo, F. Evaluation of the lead content in water for human consumption. Microchem. J. 1996, 54, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.J.; Handley, H.K.; Taylor, M.P. Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions. Environ. Sci. Pollut. Res. 2015, 22, 12276–12288. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.X.; Bi, X.Y.; Li, Z.G.; Yang, W.L.; Wang, L.X.; Yang, H.; Li, F.L.; Ma, Z.D. Occurrence, speciation and bioaccessibility of lead in Chinese rural household dust and the associated health risk to children. Atmos. Environ. 2012, 46, 65–70. [Google Scholar] [CrossRef]
- Zatta, P.; Lucchini, R.; van Rensburg, S.; Taylor, A. The role of metals in neurodegenerative processes: Aluminum, manganese, and zinc. Brain Res. Bull. 2003, 62, 15–28. [Google Scholar] [CrossRef]
- Smedley, P.L. A survey of the inorganic chemistry of bottled mineral waters from the British Isles. Appl. Geochem. 2010, 25, 1827–1888. [Google Scholar] [CrossRef] [Green Version]
- USEPA. List of Contaminants & Their MCLs. National Secondary Drinking Water Regulations; EPA 816-F-09-0004; USEPA: Washington, DC, USA, 2009.
- Gao, J.J.; Zhang, L.P.; Huang, S.B.; Ma, M.; Wang, Z.J. Preliminary health risk assessment of heavy metals in drinking waters in Beijing. Environ. Sci. 2004, 25, 47–50. (In Chinese) [Google Scholar]
- Guo, Q.J.; Duan, Z.B.; Wu, Z.X. Content and distribution of trace elements in groundwater in the suburb of Beijing City. China Acad. J. Electron. Publ. House 1991, 3, 28–31. (In Chinese) [Google Scholar]
- Lv, L.Q.; Dong, J.J.; Geng, M.Z. Rural drinking water in Penglai from 2006 to 2013 Analysis of trace element detection results. Strait J. Prev. Med. 2015, 21, 63–64. (In Chinese) [Google Scholar]
- Tong, X.X.; Zhou, A.G.; Liu, C.F.; Zhou, J.W.; Zhang, Y.P. Distribution characteristics of trace elements in groundwater in Linzhou, Anyang, Henan Province. Environ. Chem. 2012, 31, 923–924. (In Chinese) [Google Scholar]
- Yang, Y.A.N.G.; Xu, C.; Cheng, G.; Zhu, L.; Liu, W.; Zhao, Q. Preliminary health risk assessment of heavy metals in drinking waters in Baoding City. Environ. Chem. 2014, 33, 292–297. (In Chinese) [Google Scholar]
- Tian, P.Y.; Zhao, J.H.; Wei, J.R.; Chen, B.S. Exposure level of 16 metal elements in drinking water in Beijing. J. Hyg. Res. 2012, 41, 805–808. (In Chinese) [Google Scholar]
- Qu, Y.B.; Liu, L.F.; Zhang, J.P. Healthy risk assessment of trace metals in drinking water in 10 cities Guangdong province. J. Environ. Health 2012, 29, 434–436. (In Chinese) [Google Scholar]
- Haiwei, W.; Cong, L.; Tianye, W.; Yubo, W.; Fengjun, Z. Health Risk Assessment of Heavy Metal in Rural Drinking Groundwater in Shenyang, China. Chin. Agric. Sci. Bull. 2012, 28, 242–247. (In Chinese) [Google Scholar]
- Meng, X.Q.; Kong, W.W.; Xuan, Z.F. Preliminary Evaluation on Drinking Water Source Heavy Metals Pollutant Health Risks in Qingdao City. Arid Environ. Monit. 2012, 26, 14–16. (In Chinese) [Google Scholar]
- Shao, Y.L; Hui, M.Z.; Samuel, O.S.; Gui, H.L.; Jian, Q.Z.; Hong, G.N. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China. Environ Monit Assess 2015, 187, 4220. [Google Scholar]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drin king water of Kohistan rejoin, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Wang, W.Z.; Zeng, X.L.; Xia, Y.; Zou, H.H.; Dai, X.F. Study on contents of 21 trace elements in deep Well ground water. J. Environ. Occup. Med. 2002, 20, 132–133. (In Chinese) [Google Scholar]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K. Multivariate statistical evaluation of dissolved trace elements and awater quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jian, Y.G.; Wang, M.; Wang, P.; Shi, G.G.; Ding, M.J. Spatial characterization, risk assessment, and statistical source identification of the dissolved trace elements in the Ganjiang River—Feeding tributary of the Poyang Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 2890–2903. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ji, H.; Li, C.; Gao, Y.; Ding, H.; Tang, L.; Feng, J. The source of trace element pollution of dry depositions nearby a drinking water source. Environ. Sci. Pollut. Res. 2017, 24, 3829–3842. [Google Scholar] [CrossRef] [PubMed]
- Baars, A.J.; Theelen, R.M.C.; Janssen, P.J.C.M.; Hesse, J.M.; van Apeldoorn, M.E.; Meijerink, M.C.M.; Verdam, L.; Zeilmaker, M.J. Re-Evaluation of Humantoxicological Maximum Permissible Risk Levels; RIVM: Bilthoven, The Netherlands, 2001. [Google Scholar]
- Roychowdhury, T.; Tokunaga, H.; Ando, M. Survey of arsenic and other heavy metals in food composites and drinking water estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Sci. Total Environ. 2003, 308, 15–35. [Google Scholar] [CrossRef]
- Nguyen, V.A.; Bang, S.; Viet, P.H.; Kim, K.W. Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province. Vietnam. Environ. Int. 2009, 35, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Saipan, P.; Ruangwises, S. Health risk assessment of inorganic arsenic intake of Ronphibun residents via duplicate diet study. J. Med. Assoc. Thail. 2009, 92, 849–855. [Google Scholar]
- Farooqi, A.; Masuda, H.; Kusakabe, M.; Naseem, M.; Firdous, N. Distribution of highly arsenic and fluoride contaminated groundwater from East Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem. J. 2007, 41, 213–234. [Google Scholar] [CrossRef]
- Ryan, P.B.; Huet, N.; Maclntosh, D.L. Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environ. Health Perspect. 2000, 108, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Ishikawa, K.; Kurosawa, Y.; Matsui, Y.; Matsushita, T.; Magara, Y. Exposure assessment of metal intakes from drinking water relative to those from total diet in Japan. Water Sci. Technol. 2010, 62, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
Metal | Raw Drinking Water (n = 59) | Boiled Water (n = 163) | Guidelines | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
>DL | Min | Median | 90th Percentile | Max | >DL | Min | Median | 90th Percentile | Max | China | World Health Organization (WHO) | |
Ag | 40 | <0.0004 | 0.004 | 0.014 | 0.018 | 109 | <0.0004 | 0.002 | 0.008 | 0.062 | ||
As | 59 | 0.025 | 0.208 | 4.25 | 99.6 | 161 | <0.01 | 0.329 | 1.79 | 5.92 | 10 | 10 |
Ba | 59 | 15.3 | 70.5 | 140 | 384 | 163 | 16.4 | 65.8 | 170 | 309 | 1000 | |
Be | 29 | <0.002 | <0.002 | 0.168 | 0.700 | 49 | <0.002 | <0.002 | 0.070 | 0.767 | ||
Cd | 56 | <0.001 | 0.023 | 0.132 | 2.17 | 145 | <0.001 | 0.018 | 0.098 | 1.42 | 5 | 3 |
Co | 58 | <0.002 | 0.133 | 0.729 | 3.08 | 162 | <0.002 | 0.133 | 0.597 | 2.25 | ||
Cr | 45 | <0.02 | 0.475 | 3.43 | 4.14 | 122 | <0.02 | 0.563 | 3.16 | 14.4 | 50 | 50 |
Cu | 30 | <0.02 | 0.033 | 4.42 | 18.1 | 91 | <0.02 | 0.347 | 5.18 | 29.7 | 1000 | 2000 |
Mo | 58 | <0.003 | 0.330 | 2.66 | 10.0 | 163 | 0.004 | 0.358 | 1.899 | 5.304 | 70 | 70 |
Ni | 55 | <0.01 | 2.25 | 6.79 | 15.2 | 153 | <0.01 | 2.04 | 6.51 | 19.6 | 20 | 70 |
Pb | 28 | <0.004 | <0.004 | 3.93 | 15.5 | 79 | <0.004 | <0.004 | 3.28 | 23.6 | 10 | 10 |
Sb | 52 | <0.001 | 0.053 | 0.296 | 0.653 | 162 | <0.001 | 0.060 | 0.358 | 1.90 | 5 | 20 |
Sn | 10 | <0.001 | <0.001 | 0.282 | 1.41 | 29 | <0.001 | <0.001 | 0.081 | 1.85 | ||
Sr | 59 | 5.57 | 210 | 883 | 1220 | 163 | 1.19 | 274 | 801 | 1130 | ||
Tl | 56 | <0.001 | 0.009 | 0.059 | 0.141 | 153 | <0.001 | 0.006 | 0.045 | 0.102 | 0.1 | |
U | 59 | 0.002 | 0.274 | 3.25 | 5.41 | 163 | <0.002 | 0.318 | 2.01 | 5.87 | 15 | |
V | 55 | <0.01 | 0.727 | 5.96 | 78.7 | 158 | <0.01 | 1.01 | 3.84 | 55.1 | ||
Zn | 57 | <0.05 | 10.7 | 197 | 2260 | 149 | <0.05 | 8.45 | 67.3 | 1270 | 1000 |
Locale | Ba | Cd | Co | Cr | Cu | Mo | Ni | Pb | Sb | Zn | Time a | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rural area | 2.882 | 0.002 | 0.0101 | 0.0437 | 0.0708 | 0.028 | 0.1007 | 0.0434 | 0.0045 | 1.966 | 2010 | This study |
Beijing | 128 | ----- | 0.0144 | 3 | 1.35 | 1.13 | ----- | ----- | 0.0755 | 6.2 | 1991 | Guo et al. [55] |
Penglai | ----- | 0.0003 | ----- | 0.008 | 0.02 | ----- | ----- | 0.01 | ----- | 0.7 | 2006 | Lv et al. [56] |
Henan | ----- | ----- | 0.4715 | 8.1035 | 2.2895 | ----- | 2.6005 | 0.526 | ----- | 1.8337 | 2010 | Tong et al. [57] |
Locale | As | Ba | Cd | Cu | Ni | Pd | Sb | V | Zn | Time a | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Rural area | 0.0457 | 2.882 | 0.002 | 0.0708 | 0.1007 | 0.0434 | 0.0045 | 0.0771 | 1.966 | 2010 | This study |
Baoding | 0.636 | ----- | 0.292 | 4.318 | ----- | 0.824 | ----- | ----- | 246.42 | 2012 | Yang et al. [58] |
Beijing | ----- | 0.159 | ----- | 0.007 | 0.00065 | 0.00095 | ----- | ----- | 0.253 | 2010 | Tian et al. [59] |
Guangdong | 2.45 | ----- | 0.5 | 25 | ----- | 2.5 | ----- | ----- | 5 | 2011 | Qu et al. [60] |
Shenyang | 0.885 | ----- | 0.1118 | 3.1272 | ----- | 8.8607 | ----- | ----- | ----- | 2011 | Wen et al. [61] |
Qingdao | 0.0014 | 0.162 | ----- | 0.00377 | 0.0193 | ----- | ----- | ----- | ----- | 2011 | Meng et al. [62] |
Foshan | 1.67 × 10−3 | ----- | 5.71 × 10−5 | 0.0106 | 2.34 × 10−3 | ----- | 2.52 × 10−3 | ----- | 0.025 | 2012 | Shao et al. [63] |
Locale | As | Cd | Co | Cr | Cu | Mo | Ni | Pb | Zn | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Rural area | 0.0457 | 0.002 | 0.0101 | 0.0437 | 0.0708 | 0.028 | 0.1007 | 0.0434 | 1.966 | This study |
Huaihe | ----- | 61.74 | 42.49 | 23.08 | 52.32 | ----- | 46.17 | 154.96 | 10,504.1 | Wang et al. [66] |
Ganjiang | 1.32 | 0.111 | 0.085 | 0.9 | 2.7 | ----- | 2.62 | 1.15 | 8.81 | Zhang et al. [67] |
Miyun | 12.97 | 2.76 | 8.65 | 57.73 | 2.7 | 2.53 | 33.77 | 150.87 | 656.78 | Guo et al. [68] |
Pakistan | ---- | 0.66 | 0.39 | 7.83 | 51.85 | ---- | 4.12 | 9.64 | 951.46 | Muhammad et al. [64] |
Siberia | 0.65 | ---- | 1.03 | 1.9 | 2.2 | 1 | ---- | ---- | 14.3 | Wang et al. [65] |
Aotao | ---- | 2.37 | 4.42 | 10.43 | 2.14 | 3.57 | 5.29 | 3.1 | 13.69 | Wang et al. [65] |
Metal | Mean a | S.D. | Min | Median | 90th Percentile | Max | BDI b |
---|---|---|---|---|---|---|---|
Ag | 0.0001 | 0.0002 | 6.77 × 10−6 | 9.78 × 10−5 | 0.0003 | 0.0021 | |
As | 0.0457 | 0.2415 | 1.69 × 10−4 | 9.84 × 10−3 | 0.0809 | 3.373 | 0.3 |
Ba | 2.882 | 2.109 | 5.18 × 10−1 | 2.23 × 100 | 5.635 | 13.00 | 9 |
Be | 0.0012 | 0.0030 | 3.38 × 10−5 | 3.38 × 10−5 | 0.0035 | 0.0260 | |
Cd | 0.0020 | 0.0065 | 1.69 × 10−5 | 6.38 × 10−4 | 0.0037 | 0.0734 | 0.22 c, 0.17 d |
Co | 0.0101 | 0.0168 | 3.38 × 10−5 | 4.50 × 10−3 | 0.0225 | 0.1042 | 0.3 |
Cr | 0.0437 | 0.0799 | 3.38 × 10−4 | 1.80 × 10−2 | 0.1107 | 0.4874 | 1 |
Cu | 0.0708 | 0.1476 | 3.38 × 10−4 | 6.72 × 10−3 | 0.1671 | 1.005 | 30 |
Mo | 0.0280 | 0.0419 | 5.08 × 10−5 | 1.12 × 10−2 | 0.0654 | 0.3391 | 4 |
Ni | 0.1007 | 0.1017 | 1.69 × 10−4 | 7.16 × 10−2 | 0.2247 | 0.6634 | 4 |
Pb | 0.0434 | 0.1049 | 6.77 × 10−5 | 6.77 × 10−5 | 0.1147 | 0.7988 | 0.6 e, 2 f |
Sb | 0.0045 | 0.0070 | 1.67 × 10−5 | 1.97 × 10−3 | 0.0115 | 0.0644 | |
Sn | 0.0027 | 0.0101 | 1.69 × 10−5 | 1.69 × 10−5 | 0.0028 | 0.0627 | |
Sr | 11.85 | 9.741 | 4.03 × 10−2 | 8.95 × 100 | 27.31 | 41.29 | |
Tl | 0.0005 | 0.0008 | 1.69 × 10−5 | 2.13 × 10−4 | 0.0017 | 0.0048 | |
U | 0.0272 | 0.0393 | 3.04 × 10−5 | 1.00 × 10−2 | 0.0769 | 0.1987 | |
V | 0.0771 | 0.2258 | 1.69 × 10−4 | 2.90 × 10−2 | 0.1479 | 2.664 | |
Zn | 1.966 | 7.019 | 1.02 × 10−3 | 3.02 × 10−1 | 3.513 | 76.49 | 300 |
Metal | Mean | S.D. | Min | Median | 90th Percentile | Max | Cancer Risk Probability | ||
---|---|---|---|---|---|---|---|---|---|
>1 in 103 | >1 in 104 | >1 in 106 | |||||||
As | 6.65 × 10−5 | 3.52 × 10−4 | 2.24 × 10−7 | 1.28 × 10−5 | 1.11 × 10−4 | 5.06 × 10−3 | 1.35 | 11.26 | 98.65 |
Metal | Mean | S.D. | Min | Median | 90th Percentile | Max |
---|---|---|---|---|---|---|
Ag | 2.85 × 10−5 | 4.24 × 10−5 | 1.35 × 10−6 | 1.96 × 10−5 | 6.59 × 10−5 | 0.0004 |
As | 1.52 × 10−1 | 8.03 × 10−1 | 5.64 × 10−4 | 3.28 × 10−2 | 2.69 × 10−1 | 11.24 |
Ba | 1.44 × 10−2 | 1.05 × 10−2 | 2.59 × 10−3 | 1.11 × 10−2 | 2.82 × 10−2 | 0.0650 |
Be | 5.85 × 10−6 | 1.49 × 10−5 | 1.69 × 10−7 | 1.69 × 10−7 | 1.74 × 10−5 | 0.0001 |
Cd | 4.05 × 10−3 | 1.30 × 10−2 | 3.38 × 10−5 | 1.28 × 10−3 | 7.43 × 10−3 | 0.1469 |
Cr | 2.91 × 10−5 | 5.32 × 10−5 | 2.26 × 10−7 | 1.20 × 10−5 | 7.38 × 10−5 | 0.0003 |
Mo | 5.60 × 10−3 | 8.38 × 10−3 | 1.02 × 10−5 | 2.25 × 10−3 | 1.31 × 10−2 | 0.0678 |
Ni | 5.03 × 10−3 | 5.09 × 10−3 | 8.46 × 10−6 | 3.58 × 10−3 | 1.12 × 10−2 | 0.0332 |
Sb | 1.14 × 10−2 | 1.75 × 10−2 | 4.17 × 10−5 | 4.93 × 10−3 | 2.89 × 10−2 | 0.1609 |
Sr | 1.97 × 10−2 | 1.62 × 10−2 | 6.71 × 10−5 | 1.49 × 10−2 | 4.55 × 10−2 | 0.0688 |
U | 9.05 × 10−3 | 1.31 × 10−2 | 1.01 × 10−5 | 3.35 × 10−3 | 2.56 × 10−2 | 0.0662 |
Zn | 6.55 × 10−3 | 2.34 × 10−2 | 3.38 × 10−6 | 1.01 × 10−3 | 1.17 × 10−2 | 0.2550 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Man, Y.; Sun, G.; Shang, L. Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China. Water 2018, 10, 641. https://doi.org/10.3390/w10050641
Wu J, Man Y, Sun G, Shang L. Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China. Water. 2018; 10(5):641. https://doi.org/10.3390/w10050641
Chicago/Turabian StyleWu, Junhua, Yi Man, Guangyi Sun, and Lihai Shang. 2018. "Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China" Water 10, no. 5: 641. https://doi.org/10.3390/w10050641
APA StyleWu, J., Man, Y., Sun, G., & Shang, L. (2018). Occurrence and Health-Risk Assessment of Trace Metals in Raw and Boiled Drinking Water from Rural Areas of China. Water, 10(5), 641. https://doi.org/10.3390/w10050641