Impacts of Land Use Change and Summer Monsoon on Nutrients and Sediment Exports from an Agricultural Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Land Use Map Survey
2.2. Study Site and Sampling Description
2.3. Laboratory Analyses
2.4. Calculation for Discharges, Event Mean Concentration (EMC), and Pollutant Loading
2.4.1. Surface Water Discharge
2.4.2. EMC (Event Mean Concentration)
2.4.3. Constituent Loading
2.4.4. Principal Component Analysis (PCA)
3. Results
3.1. Precipitation Variations
3.2. Land Use Changes
3.3. Variations of Water Quality Parameters
3.4. EMC and Pollutant Loading
3.4.1. EMC (Event Mean Concentration)
3.4.2. Areal Pollutant Loading Throughout Stream Watersheds in the Catchment
3.4.3. Statistical Analysis—PCA
4. Discussion
4.1. Characteristics of Agricultural NPS Pollution in the Catchment
4.2. Monsoonal Climate Effects on the Watershed
4.3. Land Use Change Effect
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rhee, H.-P.; Yoon, C.-G.; Lee, S.-J.; Choi, J.-H.; Son, Y.-K. Analysis of nonpoint source pollution runoff from urban land uses in South Korea. Environ. Eng. Res. 2012, 17, 47–56. [Google Scholar] [CrossRef]
- Duncan, R. Regulating agricultural land use to manage water quality: The challenges for science and policy in enforcing limits on non-point source pollution in New Zealand. Land Use Policy 2014, 41, 378–387. [Google Scholar] [CrossRef]
- Berka, C.; Schreier, H.; Hall, K. Linking water quality with agricultural intensification in a rural watershed. Water Air Soil Pollut. 2001, 127, 389–401. [Google Scholar] [CrossRef]
- Shen, Z.; Hong, Q.; Chu, Z.; Gong, Y. A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD model in Fujiang Watershed, China. Agric. Water Manag. 2011, 98, 977–989. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Gantidis, N.; Pervolarakis, M.; Fytianos, K. Assessment of the quality characteristics of two lakes (Koronia and Volvi) of N. Greece. Environ. Monit. Assess. 2007, 125, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.A.; Kleinman, P.J.A.; Sharpley, A.N.; Turner, B.L. Relating soil phosphorus to dissolved phosphorus in runoff. J. Environ. Qual. 2005, 34, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.R.; Quin, B.F.; Nguyen, M. Phosphorus runoff from agricultural land and direct fertilizer effects. J. Environ. Qual. 2004, 33, 1954–1972. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Lim, K.J.; Yang, J.E.; Kim, K.-S. Modelling of Best Management Practices in Agricultural Areas. In Agroecology; InTech: London, UK, 2015. [Google Scholar]
- Lou, H.; Yang, S.; Zhao, C.; Zhou, Q.; Bai, J.; Hao, F.; Wu, L. Phosphorus risk in an intensive agricultural area in a mid-high latitude region of China. Catena 2015, 127, 46–55. [Google Scholar] [CrossRef]
- Elçi, Ş.; Selçuk, P. Effects of basin activities and land use on water quality trends in Tahtali Basin, Turkey. Environ. Earth Sci. 2013, 68, 1591–1598. [Google Scholar] [CrossRef]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Zhang, M.; Zheng, F.; Du, S. Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China. Sci. Total Environ. 2011, 412, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Duan, L.; Kim, B.; Mitchell, M.J.; Shibata, H. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ. Int. 2010, 36, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hao, F.; Cheng, H.; Yang, S.; Zhang, X.; Bu, Q. Estimating non-point source pollutant loads for the large-scale basin of the Yangtze River in China. Environ. Earth Sci. 2011, 63, 1079–1092. [Google Scholar] [CrossRef]
- Jain, C.K. A hydro-chemical study of a mountainous watershed: The Ganga, India. Water Res. 2002, 36, 1262–1274. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, J.-K.; Owen, J.S.; Choi, Y.; Shin, K.; Jung, S.; Kim, B. Variation in carbon and nitrogen stable isotopes in POM and zooplankton in a deep reservoir and relationship to hydrological characteristics. J. Freshw. Ecol. 2013, 28, 47–62. [Google Scholar] [CrossRef]
- Chiang, L.C.; Chaubey, I.; Hong, N.M.; Lin, Y.P.; Huang, T. Implementation of BMP strategies for adaptation to climate change and land use change in a pasture-dominated watershed. Int. J. Environ. Res. Public Health 2012, 9, 3654–3684. [Google Scholar] [CrossRef] [PubMed]
- Dechmi, F.; Skhiri, A. Evaluation of best management practices under intensive irrigation using SWAT model. Agric. Water Manag. 2013, 123, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Yulianti, J.S.; Lence, B.J.; Johnson, G.V.; Takyi, A.K. Non-point source water quality management under input information uncertainty. J. Environ. Manag. 1999, 55, 199–217. [Google Scholar] [CrossRef]
- Gitau, M.W.; Gburek, W.J.; Bishop, P.L. Use of the SWAT model to quantify water quality effects of agricultural BMPs at the farm-scale level. Trans. ASABE 2008, 51, 1925–1936. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, P.; Wang, X.; Chen, Y.; Shen, Z. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agric. Water Manag. 2013, 117, 9–18. [Google Scholar] [CrossRef]
- Johnes, P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- Sargaonkar, A. Estimation of land use specific runoff and pollutant concentration for Tapi river basin in India. Environ. Monit. Assess. 2006, 117, 491–503. [Google Scholar] [CrossRef] [PubMed]
- You, Y.Y.; Jin, W.B.; Xiong, Q.X.; Xue, L.; Ai, T.C.; Li, B.L. Simulation and Validation of Non-point Source Nitrogen and Phosphorus Loads under Different Land Uses in Sihu Basin, Hubei Province, China. Procedia Environ. Sci. 2012, 13, 1781–1797. [Google Scholar] [CrossRef]
- Fučík, P.; Novák, P.; Žížala, D. A combined statistical approach for evaluation of the effects of land use, agricultural and urban activities on stream water chemistry in small tile-drained catchments of south Bohemia, Czech Republic. Environ. Earth Sci. 2014, 72, 2195–2216. [Google Scholar] [CrossRef]
- Ren, C.; Wang, L.; Zheng, B.; Holbach, A. Total Nitrogen Sources of the Three Gorges Reservoir—A Spatio-Temporal Approach. PLoS ONE 2015, 10, e0141458. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, B.; Qiu, Y.; Chen, L. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China. J. Arid Environ. 2001, 48, 537–550. [Google Scholar] [CrossRef]
- Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C.L.; Tenhunen, J. Deriving a per-field land use and land cover map in an agricultural mosaic catchment. Earth Syst. Sci. Data 2014, 6, 339–352. [Google Scholar] [CrossRef]
- Kim, B.; Choi, K.; Kim, C.; Lee, U.-H.; Kim, Y.-H. Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Res. 2000, 34, 3495–3504. [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Lee, H.-Y.; Han, J.; Youm, S.-J. Terrain analysis of Haean Basin in terms of earth science. J. Korea Earth Sci. Soc. 1990, 11, 236–241. [Google Scholar]
- Bartsch, S.; Peiffer, S.; Shope, C.L.; Arnhold, S.; Jeong, J.-J.; Park, J.-H.; Eum, J.; Kim, B.; Fleckenstein, J.H. Monsoonal-type climate or land-use management: Understanding their role in the mobilization of nitrate and DOC in a mountainous catchment. J. Hydrol. 2013, 507, 149–162. [Google Scholar] [CrossRef]
- Kettering, J.; Park, J.-H.; Lindner, S.; Lee, B.; Tenhunen, J.; Kuzyakov, Y. N fluxes in an agricultural catchment under monsoon climate: A budget approach at different scales. Agric. Ecosyst. Environ. 2012, 161, 101–111. [Google Scholar] [CrossRef]
- Jung, S.; Jang, C.; Kim, J.-J.; Kim, B. Characteristics of water quality by storm runoffs from intensive highland agriculture area in upstream of Han River basin. J. Korean Soc. Water Qual. 2009, 25, 102–111. (In Korean) [Google Scholar]
- Reza, A.; Eum, J.; Jung, S.; Choi, Y.; Owen, J.S.; Kim, B. Export of non-point source suspended sediment, nitrogen and phosphorus from sloping highland agricultural fields in the East Asian monsoon region. Environ. Monit. Assess. 2016, 188, 692. [Google Scholar] [CrossRef] [PubMed]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998; ISBN 0875532357. [Google Scholar]
- Shope, C.L.; Bartsch, S.; Kim, K.; Kim, B.; Tenhunen, J.; Peiffer, S.; Park, J.-H.; Ok, Y.S.; Fleckenstein, J.; Koellner, T. A weighted, multi-method approach for accurate basin-wide streamflow estimation in an ungauged watershed. J. Hydrol. 2013, 494, 72–82. [Google Scholar] [CrossRef]
- Buchanan, T.J.; Somers, W.P. Stage Measurement at Gaging Stations; U.S. Government Printing Office: Washington, DC, USA, 1968.
- Hu, H.; Huang, G. Monitoring of Non-Point Source Pollutions from an Agriculture Watershed in South China. Water 2014, 3828–3840. [Google Scholar] [CrossRef]
- Su, J.; Du, X.; Li, X.; Wang, X.; Li, W.; Zhang, W.; Wang, Z.; Wu, Z.; Zheng, B. Development and application of watershed-scale indicator to quantify non-point source P losses in semi-humid and semi-arid watershed, China. Ecol. Indic. 2016, 63, 374–385. [Google Scholar] [CrossRef]
- Giri, S.; Qiu, Z. Understanding the relationship of land uses and water quality in Twenty First Century: A review. J. Environ. Manag. 2016, 173, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.-H.; Yoo, S.-J.; Kim, J.-H.; Lim, I.-H.; Kwon, J.-Y.; Chung, P.-G. Characteristics of non-point pollutant discharges from upper watershed of Seomjin Dam during rainy season. J. Korean Soc. Water Wastewater 2008, 22, 39–48. (In Korean) [Google Scholar]
- Park, S.-C.; Oh, C.-R.; Jin, Y.-H.; Kim, D.-S. Study on runoff characteristics of non-point source in rural area of Seomjin watershed. J. Environ. Sci. 2005, 14, 1057–1062. (In Korean) [Google Scholar]
- Kim, G.; Chung, S.; Lee, C. Water quality of runoff from agricultural-forestry watersheds in the Geum River Basin, Korea. Environ. Monit. Assess. 2007, 134, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-Y.; Jung, S.-Y.; Choi, J.-W. Nonpoint pollutants sources characteristics of initial surface runoff on the land use types. J. Environ. Sci. 2011, 20, 417–426. (In Korean) [Google Scholar] [CrossRef]
- Yang, H. Runoff characteristics of non-point source pollutants in storm event—Case study on the upstream and downstream of Kokseong River, Korea. Korean Geogr. Soc. 2006, 41, 418–434. (In Korean) [Google Scholar]
- Kim, B.; Jung, S. Turbid storm runoff in Lake Soyang and their environmental effect. J. Korean Soc. Environ. Eng. 2007, 29, 1185–1190. (In Korean) [Google Scholar]
- Jung, S.-M. Characteristics of Nonpoint Source Pollution in the Han River and Effects of Turbid Water on Aquatic Ecosystem. Ph.D. Thesis, Kangwon National University, Chuncheon, Korea, June 2012. [Google Scholar]
- Sharma, D.; Gupta, R.; Singh, R.K.; Kansal, A. Characteristics of the event mean concentration (EMCs) from rainfall runoff on mixed agricultural land use in the shoreline zone of the Yamuna River in Delhi, India. Appl. Water Sci. 2012, 2, 55–62. [Google Scholar] [CrossRef]
- Gentry, L.E.; David, M.B.; Royer, T.V.; Mitchell, C.A.; Starks, K.M. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J. Environ. Qual. 2007, 36, 408–415. [Google Scholar] [CrossRef] [PubMed]
- McKergow, L.A.; Weaver, D.M.; Prosser, I.P.; Grayson, R.B.; Reed, A.E.G. Before and after riparian management: Sediment and nutrient exports from a small agricultural catchment, Western Australia. J. Hydrol. 2003, 270, 253–272. [Google Scholar] [CrossRef]
- Zhuang, Y.; Hong, S.; Zhan, F.B.; Zhang, L. Influencing factor analysis of phosphorus loads from non-point source: A case study in central China. Environ. Monit. Assess. 2015, 187, 718. [Google Scholar] [CrossRef] [PubMed]
- Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 1984, 65, 1466–1475. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, X.; Liu, F.; Li, Y.; Song, L.; Li, H.; Ma, Q.; Wu, J. Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China. Environ. Sci. Pollut. Res. 2014, 21, 10481–10492. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Yu, J.; Jiang, H.; Sun, W.; Li, Z. Roles of soil erodibility, rainfall erosivity and land use in affecting soil erosion at the basin scale. Agric. Water Manag. 2016, 174, 82–92. [Google Scholar] [CrossRef]
- Kim, S.-W.; Park, J.-S.; Kim, D.; Oh, J.-M. Runoff characteristics of non-point pollutants caused by different land uses and a spatial overlay analysis with spatial distribution of industrial cluster: A case study of the Lake Sihwa watershed. Environ. Earth Sci. 2014, 71, 483–496. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American Soil Degradation: Processes, Practices and Mitigating Strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Wu, L.; Long, T.; Liu, X.; Guo, J. Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing River Watershed, China. J. Hydrol. 2012, 475, 26–41. [Google Scholar] [CrossRef]
- Fraser, A.I.; Harrod, T.R.; Haygarth, P.M. The effect of rainfall intensity on soil erosion and particulate phosphorus transfer from arable soils. Water Sci. Technol. 1999, 39, 41–45. [Google Scholar]
- Chun, J.A.; Cooke, R.A.; Kang, M.S.; Choi, M.; Timlin, D.; Park, S.W. Runoff losses of suspended sediment, nitrogen and phosphorus from a small watershed in Korea. J. Environ. Qual. 2010, 39, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Arnhold, S.; Lindner, S.; Lee, B.; Martin, E.; Kettering, J.; Nguyen, T.T.; Koellner, T.; Ok, Y.S.; Huwe, B. Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma 2014, 219–220, 89–105. [Google Scholar] [CrossRef]
- Jenkinson, D.S. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 2001, 228, 3–15. [Google Scholar] [CrossRef]
- Ouyang, W.; Song, K.; Wang, X.; Hao, F. Non-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamics. Ecol. Indic. 2014, 45, 579–589. [Google Scholar] [CrossRef]
No. of Event | Date | Total Amount (mm) | Average Intensity (mm h−1) | Intensity Order |
---|---|---|---|---|
1 | 9–10 July 2009 | 149.0 | 5.4 | 3 |
2 | 12–13 July 2009 | 118.0 | 2.7 | 7 |
3 | 14–15 July 2009 | 148.0 | 6.6 | 2 |
4 | 11–12 August 2009 | 210.0 | 9.5 | 1 |
5 | 18–19 May 2010 | 67.5 | 3.8 | 4 |
6 | 23–25 May 2010 | 43.0 | 1.5 | 8 |
7 | 2–3 July 2010 | 36.5 | 1.3 | 10 |
8 | 16–19 July 2010 | 91.5 | 1.3 | 9 |
9 | 7–8 August 2010 | 56.5 | 1.2 | 11 |
10 | 25–27 August 2010 | 117.0 | 2.7 | 6 |
11 | 2–3 September 2010 | 77.5 | 2.8 | 5 |
Site | Year | Semi | Paddy | Dry | Ginseng | Orchard |
---|---|---|---|---|---|---|
M | 09′ | 12.7 | 9.9 | 19.1 | 0.9 | 0.4 |
10′ | 15.8 | 9.4 | 14.4 | 2.7 | 1.7 | |
W | 09′ | 9.2 | 4.2 | 9.5 | 0.1 | 0.0 |
10′ | 12.1 | 4.2 | 5.5 | 2.5 | 1.0 | |
K | 09′ | 9.7 | 14.1 | 15.7 | 0.7 | 0.0 |
10′ | 13.4 | 12.2 | 11.2 | 1.5 | 1.8 | |
D | 09′ | 22.2 | 19.3 | 29.6 | 1.0 | 0.0 |
10′ | 26.6 | 17.9 | 24.6 | 4.8 | 0.1 | |
N | 09′ | 18.3 | 7.1 | 24.9 | 0.7 | 0.0 |
10′ | 21.9 | 6.8 | 18.9 | 9.2 | 0.8 | |
C | 09′ | 9.8 | 6.7 | 21.2 | 0.0 | 0.2 |
10′ | 11.5 | 6.7 | 18.6 | 3.5 | 0.4 | |
S | 09′ | 10.7 | 10.6 | 16.7 | 1.2 | 0.1 |
10′ | 12.7 | 10.0 | 13.4 | 1.9 | 2.7 | |
Total | 09′ | 11.5 | 8.7 | 17.0 | 0.8 | 0.3 |
10′ | 14.4 | 8.2 | 12.6 | 2.5 | 1.5 |
Event No. | BOD | COD | SS | TN | N-NO3 | TP |
---|---|---|---|---|---|---|
1 | 1.0 | 16.15 | 2954 | 2.24 | 1.67 | 1.27 |
2 | 2.3 | 16.77 | 1837 | 2.08 | 1.56 | 1.37 |
3 | 2.0 | 16.56 | 1587 | 1.76 | 1.53 | 0.81 |
4 | 8.7 | 24.76 | 3804 | 3.43 | 1.37 | 1.62 |
5 | 9.8 | 20.92 | 1281 | 5.08 | 2.52 | 1.45 |
6 | 4.0 | 10.97 | 304 | 3.90 | 2.78 | 0.49 |
7 | 4.6 | 13.19 | 427 | 3.77 | 2.68 | 0.46 |
8 | 5.1 | 16.40 | 661 | 3.54 | 2.48 | 0.71 |
9 | 2.1 | 6.36 | 738 | 3.04 | 1.76 | 0.95 |
10 | 3.2 | 8.96 | 332 | 3.16 | 2.05 | 0.46 |
11 | 2.8 | 6.80 | 313 | 3.25 | 1.80 | 0.48 |
Site | Year | BOD | COD | SS | TN | TP |
---|---|---|---|---|---|---|
M | 09′ | 1496 | 8246 | 1,148,377 | 1056 | 558 |
10′ | 1250 | 3529 | 169,526 | 1072 | 209 | |
W | 09′ | 1404 | 7384 | 901,661 | 643 | 446 |
10′ | 613 | 2472 | 103,351 | 566 | 106 | |
K | 09′ | 1425 | 6430 | 2,377,372 | 931 | 629 |
10′ | 893 | 3195 | 153,741 | 968 | 163 | |
D | 09′ | 1320 | 4430 | 762,641 | 654 | 379 |
10′ | 701 | 2269 | 138,284 | 585 | 157 | |
N | 09′ | 1768 | 6404 | 2,172,759 | 1397 | 850 |
10′ | 981 | 3055 | 258,560 | 979 | 185 | |
C | 09′ | 2386 | 15281 | 1,873,577 | 1170 | 1100 |
10′ | 1218 | 3819 | 233,318 | 1263 | 238 | |
S | 09′ | 1450 | 4267 | 481,667 | 580 | 320 |
10′ | 500 | 1435 | 73,204 | 563 | 96 | |
Total | 09′ | 1496 | 8246 | 1,148,377 | 1056 | 558 |
10′ | 1250 | 3529 | 169,526 | 1072 | 209 | |
Annual loads | 09′ | 28,219 | 131,568 | 24,380,657 | 16,134 | 10,741 |
10′ | 19,616 | 63,021 | 3,601,173 | 19,109 | 3676 |
Factors | PC 1 | PC 2 |
Eigenvalue | 2.04 | 1.48 |
Proportion | 0.46 | 0.24 |
Cumulative portion | 0.46 | 0.71 |
Loadings | ||
Parameters | PC 1 | PC 2 |
SS | 0.41 | 0.03 |
TP | 0.42 | −0.19 |
TN | −0.03 | −0.63 |
NO3− | −0.24 | −0.44 |
BOD | 0.26 | −0.45 |
COD | 0.36 | −0.26 |
Site | Average | BOD | COD | SS | TN | TP |
---|---|---|---|---|---|---|
M | Avg. | 1.4 | 3.1 | 22.8 | 4.9 | 65.3 |
s.d. | 0.5 | 1.9 | 42.8 | 0.9 | 67.2 | |
W | Avg. | 0.9 | 2.9 | 16.5 | 2.8 | 29.9 |
s.d. | 0.5 | 3.3 | 71.5 | 0.8 | 88.3 | |
K | Avg. | 1.1 | 2.5 | 23.9 | 4.4 | 47.2 |
s.d. | 0.6 | 1.8 | 51.2 | 0.7 | 59.2 | |
D | Avg. | 1.0 | 3.0 | 13.6 | 4.0 | 29.1 |
s.d. | 0.6 | 2.5 | 21.6 | 0.8 | 35.9 | |
N | Avg. | 1.0 | 3.0 | 84.2 | 5.1 | 78.1 |
s.d. | 0.6 | 3.3 | 302.2 | 0.7 | 125.2 | |
C | Avg. | 2.0 | 4.3 | 19.2 | 3.3 | 61.5 |
s.d. | 1.4 | 3.1 | 67.1 | 0.9 | 82.4 | |
S | Avg. | 1.2 | 2.6 | 36.8 | 4.4 | 55.0 |
s.d. | 0.8 | 1.7 | 112.5 | 1.0 | 113.8 |
Notch | For Streams | For Lakes | ||
---|---|---|---|---|
BOD | SS | TP | TN | |
1 | ≤1 | ≤25 | ≤0.01 | ≤0.2 |
2 | ≤3 | ≤25 | ≤0.03 | ≤0.4 |
3 | ≤6 | ≤25 | ≤0.05 | ≤0.6 |
4 | ≤8 | ≤100 | ≤0.10 | ≤1.0 |
5 | ≤10 | No trash | ≤0.15 | ≤1.5 |
Site (Year) | Primary Land Use (%) | BOD | COD | SS | TN | TP | Sources |
---|---|---|---|---|---|---|---|
In South Korea | |||||||
Imsilstream | Forest (over 70%) | 2.7 | 6.9 | 75.9 | 2.7 | 0.19 | Kwak et al. 2008 [42] |
Seomjin River | 2.6 | 5.1 | 46.5 | 2.3 | 0.13 | ||
Three Sites in Seomjin River Watershed | Forest | 3.1–5.7 | 3.4–12.7 | 2.1–30.0 | 0.9–2.9 | 0.02–0.13 | Park et al. 2005 [43] |
Paddy | 8.2–15.5 | 15.6–33.4 | 3.2–7.2 | 0.21–0.42 | |||
Dry field | 4.6–11.8 | 6.7–17.6 | 2.3–3.7 | 0.03–0.44 | |||
Sutong | Forest (99.5%) | - | - | - | 0.9 | 0.28 | Kim et al. 2007 [44] |
Sansuchon | Forest (94.2%) | - | - | - | 0.9 | 0.16 | |
Daegokchon | Forest (82.3%) | - | - | - | 2.1 | 0.62 | |
Sinheung | Agriculture (35.9%) | - | - | - | 4.9 | 1.36 | |
Two Sites in Sangju Basin | Paddy & forest (58.6%) | 26.0 | - | 11.1 | - | - | Choi et al. 2011 [45] |
Paddy & forest (55.5%) | 22.6 | - | 17.6 | - | - | ||
Streams in Kokseong River System | Forest (100%) | 0.6 | 1.5 | 1.7 | 0.0 | 0.48 | Yang 2006 [46] |
Forest (71.9%) | 2.9 | 4.8 | 63.5 | 0.2 | 1.67 | ||
Jawoon Stream | Forest (85.6%) | 1.8 | - | 207 | 4.0 | 0.27 | Jung et al. 2009 [34] |
Soyang River 2004 | Forest (85%) | 1.4 | 8.9 | 199 | 1.6 | 0.20 | Kim and Jung 2007 [47] |
Soyang River 2005 | 0.8 | 4.2 | 303 | 2.1 | 0.10 | ||
Soyang River 2006 | 1.7 | 10.1 | 531 | 2.4 | 0.24 | ||
Mandae Stream 2004 | (same site as the Site M in this study) | 1.3 | 11.8 | 436 | 2.8 | 0.36 | Jung 2012 [48] |
Mandae Stream 2006 | 1.6 | 9.0 | 387 | 2.7 | 0.34 | ||
International Publication | |||||||
Siheshui Watershed, China | Forest & agriculture | 3.1 | 5.8 | 58.3 | 3.5 | 0.26 | Hu and Huang 2014 [38] |
River Yamuna, India | Agriculture | 21.8 | 73.5 | 77.6 | 15.3 | - | Sharma et al. 2012 [49] |
Embarras River, USA (1997–2003) | Agriculture | - | - | - | - | 0.14–0.35 | Gentry et al. 2007 [50] |
Lake Fork Watershed, USA (1998–2003) | Agriculture | - | - | - | - | 0.11–0.21 | |
Big Ditch Watershed, USA (2001–2003) | Agriculture | - | - | - | - | 0.19–0.38 | |
North Willyung Catchment, Australia | Cattle | 9.9 Med | 2.5 Med. | 0.48 Med. | McKergow et al. 2003 [51] | ||
Site M | Forest & agriculture | 3.5 | 18.6 | 2545 | 2.4 | 1.27 | This study |
Site M | 4.5 | 11.9 | 579 | 3.7 | 0.71 |
Site | BOD | COD | SS | TN | N-NO3 | TP |
---|---|---|---|---|---|---|
M | +40.5 | −46.6 | −81.9 | +51.7 | +31.5 | −66.4 |
W | −12.3 | −50.7 | −89.8 | +26.8 | −10.8 | −80.2 |
K | −17.1 | −24.3 | −94.7 | +53.2 | +46.5 | −76.8 |
N | +6.3 | +9.2 | −70.3 | +5.1 | −5.2 | −36.6 |
C | +10.6 | −56.5 | −79.4 | +79.2 | +22.3 | −63.0 |
S | −48.9 | −37.5 | −88.1 | +41.6 | +32.9 | −65.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, B.; Eum, J.; Seo, B.; Shope, C.L.; Peiffer, S. Impacts of Land Use Change and Summer Monsoon on Nutrients and Sediment Exports from an Agricultural Catchment. Water 2018, 10, 544. https://doi.org/10.3390/w10050544
Kim K, Kim B, Eum J, Seo B, Shope CL, Peiffer S. Impacts of Land Use Change and Summer Monsoon on Nutrients and Sediment Exports from an Agricultural Catchment. Water. 2018; 10(5):544. https://doi.org/10.3390/w10050544
Chicago/Turabian StyleKim, Kiyong, Bomchul Kim, Jaesung Eum, Bumsuk Seo, Christopher L. Shope, and Stefan Peiffer. 2018. "Impacts of Land Use Change and Summer Monsoon on Nutrients and Sediment Exports from an Agricultural Catchment" Water 10, no. 5: 544. https://doi.org/10.3390/w10050544
APA StyleKim, K., Kim, B., Eum, J., Seo, B., Shope, C. L., & Peiffer, S. (2018). Impacts of Land Use Change and Summer Monsoon on Nutrients and Sediment Exports from an Agricultural Catchment. Water, 10(5), 544. https://doi.org/10.3390/w10050544