Comparison of Pressure-Driven Formulations for WDN Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pressure-Driven Formulations
2.2. WDN Resolution
3. Application
3.1. Case Studies
3.2. Results
4. Conclusions
- -
- The increase in nodal demands tends to cause the growth of the number of iterations for WDN algorithm convergence due to the activation of the pressure-driven relationship.
- -
- -
- All formulations similarly simulate nodal outflows.
- -
- -
- The different effects of the formulations were accentuated in this work due to the large and uniform amplification of WDN demands. In real cases, the pressure-driven behavior is usually remarkable in small pressure-deficient areas, due to hydrant activations or segment isolations. Therefore, the differences are expected to be more confined.
- -
- Only the comparison with experimental data can reveal which formula is the most consistent with the real WDN behavior.
- -
- In the absence of experimental data, the use of formulations based on statistical simulation of a varied set of situations and phenomena governing the actual water delivery, such as the formulation of Ciaponi et al. [20], may be preferable.
Author Contributions
Conflicts of Interest
References
- Wood, D.J.; Charles, O.A. Hydraulic network analysis using linear theory. J. Hydraul. Division 1970, 96, 1221–1234. [Google Scholar]
- Isaacs, L.T.; Mills, K.G. Linear theory methods for pipe network analysis. J. Hydraul. Division 1980, 106, 1191–1201. [Google Scholar]
- Todini, E.; Pilati, S. A Gradient Algorithm for the Analysis of Pipe Networks; Wiley: London, UK, 1988; pp. 1–20. [Google Scholar]
- Creaco, E.; Franchini, M. Comparison of Newton-Raphson Global and Loop Algorithms for Water Distribution Network Resolution. J. Hydraul. Eng. 2014, 140, 313–321. [Google Scholar] [CrossRef]
- Walski, M.; Chase, D.; Savic, D.; Grayman, W.; Beckwith, S.; Koelle, E. Advanced Water Distribution Modelling and Management; Haestad: Waterbury, CT, USA, 2003. [Google Scholar]
- Wu, Z.Y.; Walski, T. Pressure dependent hydraulic modelling for water distribution systems under abnormal conditions. In Proceedings of the IWA World Water Congress and Exhibition, Beijing, China, 10–14 September 2006. [Google Scholar]
- Bhave, P.R. Node flow analysis of water distribution systems. J. Transp. Eng. 1981, 107, 457–467. [Google Scholar]
- Germanopoulos, G. A technical note on the inclusion of pressure dependent demand and leakage terms in water supply network models. J. Civ. Eng. Syst. 1985, 2, 171–179. [Google Scholar] [CrossRef]
- Wagner, B.J.M.; Shamir, U.; Marks, D.H. Water distribution reliability: Simulation method. J. Water Resour. Plan. Manag. 1988, 276–294. [Google Scholar] [CrossRef]
- Chandapillai, J. Realistic simulation of water distribution system. J. Transp. Eng. 1991, 258–263. [Google Scholar] [CrossRef]
- Gupta, R.; Bhave, P.R. Comparison of methods for predicting deficient-network performance. J. Water Resour. Plan. Manag. 1996, 214–217. [Google Scholar] [CrossRef]
- Fujiwara, O.; Li, J. Reliability analysis of water distribution networks in consideration of equity, redistribution, and pressuredependent demand. J. Water Resour. Res. 1998, 34, 1843–1850. [Google Scholar] [CrossRef]
- Tucciarelli, T.; Criminisi, A.; Termini, D. Leak Analysis in Pipeline System by Means of Optimal Value Regulation. J. Hydraul. Eng. 1999, 125, 277–285. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M. Near-optimal rehabilitation scheduling of water distribution systems based on a multi-objective genetic algorithm. Civ. Eng. Environ. Syst. 2006, 23, 143–160. [Google Scholar] [CrossRef]
- Giustolisi, O.; Savic, D.; Kapelan, Z. Pressure-driven demand and leakage simulation for water distribution networks. J. Hydraul. Eng. 2008, 626–635. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, R.H.; Walski, T.M.; Yang, S.Y.; Bowdler, D.; Baggett, C.C. Extended global-gradient algorithm for pressure-dependent water distribution analysis. J. Water Resour. Plan. Manag. 2009. [Google Scholar] [CrossRef]
- Tanyimboh, T.; Templeman, A. Seamless pressure-deficient water distribution system model. J. Water Manag. 2010, 163, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Creaco, E.; Franchini, M.; Alvisi, S. Evaluating water demand shortfalls in segment analysis. Water Resour. Manag. 2012, 26, 2301–2321. [Google Scholar] [CrossRef]
- Siew, C.; Tanyimboh, T.T. Pressure-dependent EPANET extension. J. Water Resour. Manag. 2012, 26, 1477–1498. [Google Scholar] [CrossRef] [Green Version]
- Ciaponi, C.; Franchioli, L.; Murari, E.; Papiri, S. Procedure for defining a pressure-outflow relationship regarding indoor demands in pressure-driven analysis of water distribution networks. Water Resour. Manag. 2015, 29, 817–832. [Google Scholar] [CrossRef]
- Elhay, S.; Piller, O.; Deuerlein, J.; Simpson, A. A robust, rapidly convergent method that solves the water distribution equations for pressure-dependent models. J. Water Resour. Plan. Manag. 2015, 04015047. [Google Scholar] [CrossRef]
- Pacchin, E.; Alvisi, S.; Franchini, M. Analysis of Non-Iterative Methods and Proposal of a New One for Pressure-Driven Snapshot Simulations with EPANET. Water Resour. Manag. 2017, 31, 75–91. [Google Scholar] [CrossRef]
- Todini, E.; Rossman, L.A. Unified framework for deriving simultaneous equation algorithms for water distribution networks. J. Hydraul. Eng. 2013, 139, 511–526. [Google Scholar] [CrossRef]
- Pezzinga, G. Procedure per la riduzione delle perdite mediante il controllo delle pressioni. In Ricerca e Controllo delle Perdite Nelle Reti di Condotte. Manuale per una Moderna Gestione degli Acquedotti; Brunone, B., Ferrante, M., Meniconi, S., Eds.; CittàStudiEdizioni: Novara, Italy, 2008. (In Italian) [Google Scholar]
- Creaco, E.; Pezzinga, G. Embedding Linear Programming in Multi Objective Genetic Algorithms for Reducing the Size of the Search Space with Application to Leakage Minimization in Water Distribution Networks. Environ. Model. Softw. 2015, 69, 308–318. [Google Scholar] [CrossRef]
- Creaco, E.; Franchini, M. Fast network multi-objective design algorithm combined with an a posteriori procedure for reliability evaluation under various operational scenarios. Urban Water J. 2012, 9, 385–399. [Google Scholar] [CrossRef]
- Creaco, E.; Franchini, M.; Todini, E. Generalized Resilience and Failure Indices for Use with Pressure-Driven Modeling and Leakage. J. Water Resour. Plan. Manag. 2017, 142, 04016019. [Google Scholar] [CrossRef]
Formulation | αdem = 1 | αdem = 10 | αdem = 20 |
---|---|---|---|
Fujiwara and Li [12] | 0 | 0.00022 | 0.00049 |
Tucciarelli et al. [13] | 0 | 0.00024 | 0.00049 |
Tanyimboh and Templeman [17] | 0 | 0.00042 | 0.00044 |
Ciaponi et al. [20] | 0 | 0.00029 | 0.00051 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaponi, C.; Creaco, E. Comparison of Pressure-Driven Formulations for WDN Simulation. Water 2018, 10, 523. https://doi.org/10.3390/w10040523
Ciaponi C, Creaco E. Comparison of Pressure-Driven Formulations for WDN Simulation. Water. 2018; 10(4):523. https://doi.org/10.3390/w10040523
Chicago/Turabian StyleCiaponi, Carlo, and Enrico Creaco. 2018. "Comparison of Pressure-Driven Formulations for WDN Simulation" Water 10, no. 4: 523. https://doi.org/10.3390/w10040523
APA StyleCiaponi, C., & Creaco, E. (2018). Comparison of Pressure-Driven Formulations for WDN Simulation. Water, 10(4), 523. https://doi.org/10.3390/w10040523