Uncertainty of Rainfall Products: Impact on Modelling Household Nutrition from Rain-Fed Agriculture in Southern Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Local Rainfall Observations
2.3. Rainfall Products
2.4. Time Series Calibration
2.4.1. Cascade Model
2.4.2. Quantile Mapping
2.4.3. Rainfall Statistics
2.5. Crop Growth Model
2.6. Nutritional Scores
3. Results
3.1. Local Rain Gauge Measurements
3.2. Estimated Rainfall
3.3. Estimated Yield
3.4. Nutritional Scores
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brown, M.E.; Brickley, E.B. Evaluating the use of remote sensing data in the U.S. Agency for International Development Famine Early Warning Systems Network. J. Appl. Remote Sens. 2012, 6, 063511. [Google Scholar] [CrossRef]
- McMillan, H.; Jackson, B.; Clark, M.; Kavetski, D.; Woods, R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol. 2011, 400, 83–94. [Google Scholar] [CrossRef]
- WMO. Status of the Global Observing System for Climate; World Meteorological Organization (WMO): Geneva, Switzerland, 2015. [Google Scholar]
- Liu, G. Satellites and satellite remote sensing. Precipitation. In Encyclopedia of Atmospheric Sciences, 2nd ed.; Pyle, J., Zhang, F., Eds.; Academic Press: Oxford, UK, 2015; pp. 107–115. ISBN 978-0-12-382225-3. [Google Scholar]
- Yuter, S.E. RADAR | Precipitation Radar. In Encyclopedia of Atmospheric Sciences, 2nd ed.; Pyle, J., Zhang, F., Eds.; Academic Press: Oxford, UK, 2015; pp. 455–469. ISBN 978-0-12-382225-3. [Google Scholar]
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett. 2012, 39, L09406. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmos. Res. 2014, 137, 145–166. [Google Scholar] [CrossRef]
- Skinner, C.J.; Bellerby, T.J.; Greatrex, H.; Grimes, D.I.F. Hydrological modelling using ensemble satellite rainfall estimates in a sparsely gauged river basin: The need for whole-ensemble calibration. J. Hydrol. 2015, 522, 110–122. [Google Scholar] [CrossRef]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Thornton, P.K.; Bowen, W.T.; Ravelo, A.C.; Wilkens, P.W.; Farmer, G.; Brock, J.; Brink, J.E. Estimating millet production for famine early warning: An application of crop simulation modelling using satellite and ground-based data in Burkina Faso. Agric. For. Meteorol. 1997, 83, 95–112. [Google Scholar] [CrossRef]
- Ramarohetra, J.; Sultan, B.; Baron, C.; Gaiser, T.; Gosset, M. How satellite rainfall estimate errors may impact rainfed cereal yield simulation in West Africa. Agric. For. Meteorol. 2013, 180, 118–131. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, Y.; Xia, J.; Dong, W.; Magliulo, V.; Moors, E.; Olesen, J.E.; Zhang, H. Estimating crop yield using a satellite-based light use efficiency model. Ecol. Indic. 2016, 60, 702–709. [Google Scholar] [CrossRef]
- Roca, R.; Chambon, P.; Jobard, I.; Kirstetter, P.-E.; Gosset, M.; Berges, J.C. Comparing Satellite and Surface Rainfall Products over West Africa at Meteorologically Relevant Scales during the AMMA Campaign Using Error Estimates. J. Appl. Meteorol. Climatol. 2010, 49, 715–731. [Google Scholar] [CrossRef]
- Herforth, A.; Ballard, T.J. Nutrition indicators in agriculture projects: Current measurement, priorities, and gaps. Glob. Food Secur. 2016, 10, 1–10. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Chang. 2015, 5, 830–836. [Google Scholar] [CrossRef]
- Diao, X.; Hazell, P.; Thurlow, J. The Role of Agriculture in African Development. World Dev. 2010, 38, 1375–1383. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extremes 2014, 3, 67–79. [Google Scholar] [CrossRef]
- Collier, P.; Dercon, S. African Agriculture in 50 Years: Smallholders in a Rapidly Changing World? World Dev. 2014, 63, 92–101. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT. Available online: http://faostat3.fao.org/browse/O/*/E (accessed on 18 July 2016).
- Cooper, P.J.M.; Dimes, J.; Rao, K.P.C.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- United Nations (UN). The Millennium Development Goals Report 2015; United Nations (UN): New York, NY, USA, 2015. [Google Scholar]
- UNECA; AU; ADB; UNDP. MDG Report 2015. Lessons Learned in Implementing the MDGs. Assessing Progress in Africa toward the Millennium Development Goals; United Nations Economic Commission for Africa (UNECA); African Union; African Development Bank; United Nations Development Programme (UNDP): Addis Ababa, Ethiopia, 2015; ISBN 978-99944-61-73-8. [Google Scholar]
- Gautam, M. Managing Drought in Sub-Saharan Africa: Policy Perspectives; The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Von Uexkull, N. Sustained drought, vulnerability and civil conflict in Sub-Saharan Africa. Political Geogr. 2014, 43, 16–26. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Jarvis, A.; Robertson, T. A Profile and Atlas of the Cuvelai-Etosha Basin; Research and Information Services of Namibia (RAISON) & Gondwana Collection: Windhoek, Namibia, 2013; ISBN 978-99916-780-7-8. [Google Scholar]
- Geofabrik OpenStreetMap Dataset on Angolan Infrastructure. Available online: http://download.geofabrik.de/africa/angola-latest-free.shp.zip (accessed on 18 December 2017).
- Geofabrik OpenStreetMap Dataset on Namibian Infrastructure. Available online: http://download.geofabrik.de/africa/namibia-latest-free.shp.zip (accessed on 18 December 2017).
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data for the Globe Version4. Available online: http://srtm.csi.cgiar.org/ (accessed on 16 August 2016).
- Namibian Meteorological Service. Precipitation data for central-northern Namibia 2013. (unpublished).
- EM-DAT. International Disaster Database (EM-DAT), Centre for Research on the Epidemiology of Disasters (CRED). Available online: http://www.emdat.be/advanced_search/index.html (accessed on 26 July 2016).
- NSA. Namibia 2011. Population & Housing Census Main Report; Namibia Statistics Agency (NSA): Windhoek, Namibia, 2013; p. 214. [Google Scholar]
- INE. Resultados Definitivos do Recenseamento Geral da Populacao e da Habitacao de Angola 2014; Instituto Nacional de Estatistica (INE): Luanda, Angola, 2016; p. 213. [Google Scholar]
- Andreas, J. Trends of pearl millet (Pennisetum glaucum) yields under climate variability conditions in Oshana Region, Namibia. Int. J. Ecol. Ecosolution 2015, 2, 49–62. [Google Scholar]
- MAWF. Agricultural Statistics Bulletin; Ministry of Agriculture, Water and Forestry (MAWF): Windhoek, Namibia, 2011.
- Luetkemeier, R.; Liehr, S. Impact of drought on the inhabitants of the Cuvelai watershed: A qualitative exploration. In Drought: Research and Science-Policy Interfacing; Alvarez, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., van Lanen, H., Eds.; CRC Press: Leiden, The Netherlands, 2015; pp. 41–48. ISBN 978-1-138-02779-4. [Google Scholar]
- Hoffmann, M.; Schwartengräber, R.; Wessolek, G.; Peters, A. Comparison of simple rain gauge measurements with precision lysimeter data. Atmos. Res. 2016, 174–175, 120–123. [Google Scholar] [CrossRef]
- Di Piazza, A.; Conti, F.L.; Noto, L.V.; Viola, F.; La Loggia, G. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 396–408. [Google Scholar] [CrossRef]
- Unruh, J.D. Eviction policy in postwar Angola. Land Use Policy 2012, 29, 661–663. [Google Scholar] [CrossRef]
- Kaspar, F.; Helmschrot, J.; Mhanda, A.; Butale, M.; de Clercq, W.; Kanyanga, J.K.; Neto, F.O.S.; Kruger, S.; Castro Matsheka, M.; Muche, G.; et al. The SASSCAL contribution to climate observation, climate data management and data rescue in Southern Africa. Adv. Sci. Res. 2015, 12, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.D.; Fiener, P.; Wilken, F.; Kumar, S.; Schneider, K. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol. 2012, 464–465, 388–400. [Google Scholar] [CrossRef]
- Project QGIS User Guide Release 2.8 2016. Available online: http://www.qgis.org/en/docs/index.html (accessed on 4 May 2016).
- Hijmans, R.J.; van Etten, J.; Cheng, J.; Mattiuzzi, M.; Summer, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A. Package “raster”, version 2.5-2. Available online: https://cran.r-project.org/web/packages/raster/raster.pdf (accessed on 4 May 2016).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. Sci. Tech. Data 2015. [Google Scholar] [CrossRef]
- Novella, N.S.; Thiaw, W.M. African Rainfall Climatology Version 2 for Famine Early Warning Systems. J. Appl. Meteorol. Climatol. 2012, 52, 588–606. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.P.; Stringer, M.; Chadwick, R.; Kayitakire, F. Extension of the TAMSAT Satellite-Based Rainfall Monitoring over Africa and from 1983 to Present. J. Appl. Meteorol. Climatol. 2014, 53, 2805–2822. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2014, 96, 69–83. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Allan, R.P.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black, E. The 30 year TAMSAT African Rainfall Climatology and Time series (TARCAT) data set. J. Geophys. Res. Atmos. 2014, 119, 2014JD021927. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; Data Series; U.S. Geological Survey: Reston, VA, USA, 2014; p. 12.
- Ringard, J.; Seyler, F.; Linguet, L. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield. Sensors 2017, 17, 1413. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Jones, D.A.; Moore, R.J. Static and dynamic calibration of radar data for hydrological use. Hydrol. Earth Syst. Sci. 2001, 4, 545–554. [Google Scholar] [CrossRef]
- Olsson, J. Evaluation of a scaling cascade model for temporal rain- fall disaggregation. Hydrol. Earth Syst. Sci. 1998, 2, 19–30. [Google Scholar] [CrossRef]
- Thober, S.; Mai, J.; Zink, M.; Samaniego, L. Stochastic temporal disaggregation of monthly precipitation for regional gridded data sets. Water Resour. Res. 2014, 50, 8714–8735. [Google Scholar] [CrossRef]
- Müller, H.; Haberlandt, U. Temporal Rainfall Disaggregation with a Cascade Model: From Single-Station Disaggregation to Spatial Rainfall. J. Hydrol. Eng. 2015, 20, 04015026. [Google Scholar] [CrossRef]
- Müller, H.; Haberlandt, U. Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology. J. Hydrol. 2018, 556, 847–864. [Google Scholar] [CrossRef]
- Ding, J.; Wallner, M.; Müller, H.; Haberlandt, U. Estimation of instantaneous peak flows from maximum mean daily flows using the HBV hydrological model. Hydrol. Process. 2016, 30, 1431–1448. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations & ndash; a comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2017, 50, 31–49. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. Should we apply bias correction to global and regional climate model data? Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Muerth, M.J.; Gauvin St-Denis, B.; Ricard, S.; Velázquez, J.A.; Schmid, J.; Minville, M.; Caya, D.; Chaumont, D.; Ludwig, R.; Turcotte, R. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 2013, 17, 1189–1204. [Google Scholar] [CrossRef]
- Ngai, S.T.; Tangang, F.; Juneng, L. Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Glob. Planet. Chang. 2017, 149, 79–90. [Google Scholar] [CrossRef]
- Gudmundsson, L. Package “qmap”, version 1.0-4. Available online: https://cran.r-project.org/web/packages/qmap/qmap.pdf (accessed on 12 October 2017).
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Whitbread, A.M.; Robertson, M.J.; Carberry, P.S.; Dimes, J.P. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. Eur. J. Agron. 2010, 32, 51–58. [Google Scholar] [CrossRef]
- Roxburgh, C.W.; Rodriguez, D. Ex-ante analysis of opportunities for the sustainable intensification of maize production in Mozambique. Agric. Syst. 2016, 142, 9–22. [Google Scholar] [CrossRef]
- Mupangwa, W.; Walker, S.; Twomlow, S. Start, end and dry spells of the growing season in semi-arid southern Zimbabwe. J. Arid Environ. 2011, 75, 1097–1104. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agric. Water Manag. 2016, 177, 317–328. [Google Scholar] [CrossRef]
- Supit, I.; van Kappel, R.R. A simple method to estimate global radiation. Sol. Energy 1998, 63, 147–160. [Google Scholar] [CrossRef]
- Bojanowski, J.S. Package “sirad”, version 2.3-3. Available online: https://cran.r-project.org/web/packages/sirad/sirad.pdf (accessed on 18 July 2016).
- SASSCAL WeatherNet. Available online: http://www.sasscalweathernet.org/ (accessed on 18 July 2016).
- Batjes, N.H. World Soil Property Estimates for Broad-Scale Modelling (WISE30sec, Ver. 1.0); ISRIC-World Soil Information: Wageningen, The Netherlands, 2015. [Google Scholar]
- Matanyaire, C.M. Pearl Millet Production System(s) in the Communal Areas of Northern Namibia: Priority Research Foci Arising from a Diagnostic Study. In Drought-Tolerant Crops for Southern Africa; Leuschner, K., Manthe, C.S., Eds.; International Crops Research Institute for the Semi-Arid Tropics: Andhra Pradesh, India, 1994; pp. 43–58. [Google Scholar]
- Jabloun, M.; Ali, S. Development and comparative analysis of pedotransfer functions for predicting soil water characteristic content for Tunisian soils. In Proceedings of the 7th Edition of Tunisia-Japan Symposium on Society, Science and Technology: Partners in Knowledge (TJASSST), Sousse, Tunisia, 4–6 December 2006; pp. 170–178. [Google Scholar]
- Zeng, W.; Wu, J.; Hoffmann, M.P.; Xu, C.; Ma, T.; Huang, J. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Res. 2016, 192, 42–54. [Google Scholar] [CrossRef]
- Pangaribowo, E.H.; Gerber, N.; Torero, M. Food and Nutrition Security Indicators: A Review; Center for Development Research: Bonn, Germany, 2013; p. 63. [Google Scholar]
- IPC Global Partners. Integrated Food Security Phase Classification: Technical Manual Version 2.0: Evidence and Standards for Better Food Security Decisions; FAO: Rome, Italy, 2012; ISBN 978-92-5-107284-4. [Google Scholar]
- Maire, B.; Delpeuch, F. Nutrition Indicators for Development; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Webb, P.; Kennedy, E. Impacts of agriculture on nutrition: Nature of the evidence and research gaps. Food Nutr. Bull. 2014, 35, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.; Hawkes, C.; Jeff, W.; Ferguson, E.; Haseen, F.; Homans, H.; Hussein, J.; Johnston, D.; Marais, D.; McNeill, G.; et al. Agriculture for improved nutrition: The current research landscape. Food Nutr. Bull. 2013, 34, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, J.M.; El Obeid, S.; Roberts, C.; Ministry of Environment and Tourism Namibia. A Profile of North-Central Namibia; Gamsberg Macmillan Publishers: Windhoek, Namibia, 2000; ISBN 978-99916-0-215-8. [Google Scholar]
- USDA Food Composition Databases; NDB No. 20031; USDA National Nutrient Database for Standard Reference: Beltsville, MD, USA, 2016.
- FAO. FAO Methodology for the Measure of Food Deprivation. Updating the Minimum Dietary Energy Requirements; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2008; p. 16. [Google Scholar]
- DeLany, J.P. Energy Requirement Methodology. In Nutrition in the Prevention and Treatment of Disease; Elsevier: Amsterdam, The Netherlands, 2013; pp. 81–95. ISBN 978-0-12-391884-0. [Google Scholar]
- Institute of Medicine (US), Panel on Macronutrients. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; Institute of Medicine, Ed.; National Academy Press: Washington, DC, USA, 2005; ISBN 978-0-309-08537-3. [Google Scholar]
- Gerrior, S.; Juan, W.; Peter, B. An Easy Approach to Calculating Estimated Energy Requirements. Prev. Chronic Dis. 2006, 3, A129. [Google Scholar] [PubMed]
- Sweet, J. Livestock—Coping with Drought: Namibia—A Case Study. Northern Regions Livestock Development Project; FAO/AGAP: London, UK, 1998. [Google Scholar]
- Sanogo, S.; Fink, A.H.; Omotosho, J.A.; Ba, A.; Redl, R.; Ermert, V. Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int. J. Climatol. 2015, 35, 4589–4605. [Google Scholar] [CrossRef]
- Diem, J.E.; Hartter, J.; Ryan, S.J.; Palace, M.W. Validation of Satellite Rainfall Products for Western Uganda. J. Hydrometeorol. 2014, 15, 2030–2038. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of Satellite Rainfall Products over East Africa’s Complex Topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Acidri, J. Namibia Livelihood Baseline Profiles; Namibia Vulnerability Assessment Committee (Nam-VAC), Office of the Prime Minister, Directorate Disaster Risk Management (DDRM): Windhoek, Namibia, 2010; p. 58.
Product | Instrument | Spatial | Temporal | Provider | Reference | ||
---|---|---|---|---|---|---|---|
Cov. | Res. | Cov. | Res. | ||||
CHIRPS 2.0 | IR, MW, RG | 50° N–50° S | 0.05° | 1981–2015 | d | UCSB, CHG | [45] |
GPCCv7 | RG | global | 0.5° | 1901–2013 | m | DWD | [46] |
ARC 2.0 | IR, RG | Africa | 0.1° | 1983–2015 | d | NOAA | [47] |
CRU-TS 3.23 | RG | global | 0.5° | 1901–2013 | m | UEA, CRU | [48] |
TAMSAT | IR, RG | Africa | 0.0375° | 1983–2015 | d | UoR | [49] |
PERSIANN-CDR | MW, IR, RG | 60° N–60° S | 0.25° | 1983–2015 | d | NASA | [50] |
Depth [cm] | BD | AirDry | LL15 | DUL | SAT | CLL | OC | KL | XF |
---|---|---|---|---|---|---|---|---|---|
0–20 | 1.480 | 0.012 | 0.024 | 0.271 | 0.579 | 0.130 | 0.684 | 0.06 | 1 |
20–40 | 1.490 | 0.172 | 0.215 | 0.353 | 0.503 | 0.170 | 0.501 | 0.06 | 1 |
40–60 | 1.520 | 0.251 | 0.251 | 0.394 | 0.469 | 0.180 | 0.382 | 0.06 | 1 |
60–80 | 1.540 | 0.244 | 0.244 | 0.388 | 0.448 | 0.200 | 0.292 | 0.06 | 1 |
80–100 | 1.550 | 0.226 | 0.226 | 0.368 | 0.433 | 0.200 | 0.233 | 0.06 | 1 |
100–150 | 1.550 | 0.176 | 0.176 | 0.314 | 0.413 | 0.200 | 0.169 | 0.06 | 1 |
150–200 | 1.560 | 0.148 | 0.148 | 0.291 | 0.408 | 0.200 | 0.139 | 0.06 | 1 |
Classes | Dietary Energy (kcal) | Proteins (g) | Lipids (g) | Carbohydrates (g) | ||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | |
<14 | 1907.25 | 1726.07 | 190.73 | 172.61 | 381.45 | 345.21 | 858.26 | 776.73 |
15–64 | 2866.80 | 2193.20 | 286.68 | 219.32 | 573.36 | 438.64 | 1290.06 | 986.94 |
>65 | 2457.00 | 1793.00 | 245.70 | 179.30 | 491.40 | 358.60 | 1105.65 | 806.85 |
HH-AV. | 11,513.47 | 1151.35 | 2302.69 | 5181.06 | ||||
Millet | 3780.00 | 11.02 | 4.22 | 72.85 |
Ground Station | Covered Period | Covered Period [days (years)] | Missing Values [%] | Longest Period [days (years)] |
---|---|---|---|---|
Arbeidsgenot | 1 January 2000–31 May 2010 | 3804 (10.4) | 7.2 | 2919 (8.0) |
Choantsas | 1 January 1999–31 December 2009 | 4018 (11.0) | 6.9 | 1794 (4.9) |
Goabforte | 1 January 1999–30 September 2009 | 3926 (10.8) | 10.9 | 1427 (3.9) |
Huttenhof | 1 January 2001–30 June 2010 | 3468 (9.5) | 1.8 | 1731 (4.7) |
Okatana | 1 January 1999–31 December 2009 | 4018 (11.0) | 9.1 | 3437 (9.0) |
Okaukuejo | 1 January 1999–31 May 2010 | 4169 (11.4) | 8.8 | 3284 (9.0) |
Ombika | 1 January 1999–31 December 2009 | 4018 (11.0) | 31.9 | 2251 (6.2) |
Otavi | 1 January 1999–30 September 2007 | 3195 (8.8) | 11.4 | 2098 (5.8) |
Otjirukaku | 1 September 1999–31 May 2010 | 3926 (10.8) | 10.1 | 2311 (6.3) |
Soavis | 1 January 1999–30 April 2010 | 4138 (11.3) | 1.5 | 2191 (6.0) |
Tsumeb | 1 January 1999–31 December 2009 | 4018 (11.0) | 13.7 | 2128 (5.8) |
Una | 1 January 2005–31 January 2010 | 1857 (5.1) | 1.7 | 1792 (4.9) |
Rainfall Time Series | Mean Annual Dry Spell Duration (d) | Mean Annual Number of Rainy Days (d) | Average Daily Rainfall (mm) | Average Daily Rainfall Intensity (mm) | Rainy Season Onset (day of year) | Average Annual Daily Maximum (mm) | Mean Absolute Error (MAE) | |
---|---|---|---|---|---|---|---|---|
Okatana station | 8.34 | 39.00 | 1.35 | 9.02 | 297 | 59.64 | 0.00 | |
Uncalibrated | CHIRPS | 6.73 | 56.56 | 1.18 | 7.31 | 315 | 26.00 | 1.58 |
TAMSAT | 6.15 | 59.67 | 1.20 | 6.30 | 293 | 21.44 | 1.49 | |
ARC | 7.24 | 56.67 | 1.43 | 8.53 | 305 | 47.52 | 1.62 | |
PERSIANN | 5.16 | 85.00 | 1.67 | 4.78 | 324 | 29.63 | 1.82 | |
GPCC | 5.33 | 47.71 | 1.40 | 7.12 | 312 | 58.00 | 2.65 | |
CRU | 5.36 | 50.13 | 1.70 | 7.47 | 305 | 82.20 | 2.41 | |
Calibrated | CHIRPS | * 8.35 | * 41.56 | * 1.36 | * 9.67 | * 304 | * 57.64 | 1.74 |
TAMSAT | * 9.31 | * 38.56 | * 1.37 | * 8.76 | * 298 | * 54.98 | 1.61 | |
ARC | 9.94 | * 35.67 | 1.22 | * 9.10 | * 293 | * 52.39 | * 1.52 | |
PERSIANN | * 9.14 | * 37.78 | * 1.26 | * 8.37 | * 304 | * 55.16 | * 1.70 | |
GPCC | * 6.37 | * 40.74 | 1.43 | * 9.25 | * 303 | 65.69 | * 2.42 | |
CRU | * 6.71 | * 39.96 | * 1.43 | * 9.38 | * 303 | * 69.94 | 2.43 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luetkemeier, R.; Stein, L.; Drees, L.; Müller, H.; Liehr, S. Uncertainty of Rainfall Products: Impact on Modelling Household Nutrition from Rain-Fed Agriculture in Southern Africa. Water 2018, 10, 499. https://doi.org/10.3390/w10040499
Luetkemeier R, Stein L, Drees L, Müller H, Liehr S. Uncertainty of Rainfall Products: Impact on Modelling Household Nutrition from Rain-Fed Agriculture in Southern Africa. Water. 2018; 10(4):499. https://doi.org/10.3390/w10040499
Chicago/Turabian StyleLuetkemeier, Robert, Lina Stein, Lukas Drees, Hannes Müller, and Stefan Liehr. 2018. "Uncertainty of Rainfall Products: Impact on Modelling Household Nutrition from Rain-Fed Agriculture in Southern Africa" Water 10, no. 4: 499. https://doi.org/10.3390/w10040499