Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Data
2.3. In Situ Radiometric Data
2.4. In Situ IOPs
2.5. QAA General Context
2.6. Re-Parameterization of QAAOMW
2.7. Validation and Accuracy Assessment
3. Results
3.1. Water Quality Characterization
3.2. OSCs Relative Contribution
3.3. Performance of Existing QAAs
3.4. Re-Parameterization of QAA to Derive
3.5. Re-Parameterization of QAA to Derive
3.6. Re-Parameterization of QAA to Derive
3.7. Model Validation
4. Discussion
4.1. Linking QAAOMW-Derived IOP Variability to Physical and Meteorological Conditions
4.2. Other Factors Influencing the Bio-Optical Characteristics of the Reservoir
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brönmark, C.; Hansson, L.-A. Environmental issues in lakes and ponds: Current state and perspectives. Environ. Conserv. 2002, 29. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Rotta, L.H.S.; Mishra, D.R.; Alcântara, E.H.; Imai, N.N. Analyzing the status of submerged aquatic vegetation using novel optical parameters. Int. J. Remote Sens. 2016, 37, 3786–3810. [Google Scholar] [CrossRef]
- Welch, E.B.; Lindell, T. Ecological Effects of Wastewater: Applied Limnology and Pollution Effects; CRC Press: Boca Raton, FL, USA, 1992; ISBN 0203038495. [Google Scholar]
- Alcântara, E.; Novo, E.; Stech, J.; Lorenzzetti, J.; Barbosa, C.; Assireu, A.; Souza, A. A contribution to understanding the turbidity behaviour in an Amazon floodplain. Hydrol. Earth Syst. Sci. 2010, 14, 351–364. [Google Scholar] [CrossRef]
- Yacobi, Y.Z.; Moses, W.J.; Kaganovsky, S.; Sulimani, B.; Leavitt, B.C.; Gitelson, A.A. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 2011, 45, 2428–2436. [Google Scholar] [CrossRef] [PubMed]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Morel, A. In-water and remote measurements of ocean color. Bound.-Layer Meteorol. 1980, 18, 177–201. [Google Scholar] [CrossRef]
- Carder, K.L.; Chen, F.R.; Lee, Z.P.; Hawes, S.K.; Kamykowski, D. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res. Ocean. 1999, 104, 5403–5421. [Google Scholar] [CrossRef]
- Shanmugam, P.; Ahn, Y.H.; Ryu, J.H.; Sundarabalan, B. An evaluation of inversion models for retrieval of inherent optical properties from ocean color in coastal and open sea waters around Korea. J. Oceanogr. 2010, 66, 815–830. [Google Scholar] [CrossRef]
- Gould, R.W., Jr.; Arnone, R.A.; Sydor, M. Absorption, Scattering, and Remote-Sensing Reflectance Relationships in Coastal Waters: Testing a New Inversion Algorithm. J. Coast. Res. 2001, 17, 328–341. [Google Scholar]
- Sathyendranath, S.; Cota, G.; Stuart, V.; Maass, H.; Platt, T. Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches. Int. J. Remote Sens. 2001, 22, 249–273. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Ogashawara, I. Terminology and classification of bio-optical algorithms. Remote Sens. Lett. 2015, 6, 613–617. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [Google Scholar] [CrossRef]
- Brando, V.E.; Dekker, A.G.; Park, Y.J.; Schroeder, T. Adaptive semianalytical inversion of ocean color radiometry in optically complex waters. Appl. Opt. 2012, 51, 2808. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery; Lecture Notes on Coastal and Estuarine Studies; Springer: New York, NY, USA, 1983; Volume 4, ISBN 978-0-387-90923-3. [Google Scholar]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755. [Google Scholar] [CrossRef] [PubMed]
- Le, C.F.; Li, Y.M.; Zha, Y.; Sun, D.; Yin, B. Validation of a quasi-analytical algorithm for highly turbid eutrophic water of meiliang bay in Taihu Lake, China. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2492–2500. [Google Scholar] [CrossRef]
- Yang, W.; Matsushita, B.; Chen, J.; Yoshimura, K.; Fukushima, T. Retrieval of inherent optical properties for turbid inland waters from remote-sensing reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3761–3773. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Lee, Z. Bio-optical inversion in highly turbid and cyanobacteria-dominated waters. IEEE Trans. Geosci. Remote Sens. 2014, 52, 375–388. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Lee, Z.; Tucker, C.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sens. Environ. 2013, 133, 141–151. [Google Scholar] [CrossRef]
- Watanabe, F.; Mishra, D.R.; Astuti, I.; Rodrigues, T.; Alcântara, E.; Imai, N.N.; Barbosa, C. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS J. Photogramm. Remote Sens. 2016, 121, 28–47. [Google Scholar] [CrossRef]
- Lee, Z.; Lubac, B.; Werdell, J.; Arnone, R. An Update of the Quasi-Analytical Algorithm (QAA_v5); International Ocean Color Group Software Report. International Ocean-Color Coordinating Group, 2009; pp. 1–9. Available online: http://ioccg.org/groups/Software_OCA/QAA_v5.pdf (accessed on 25 September 2015).
- Petesse, M.L.; Petrere, M.; Agostinho, A.A. Defining a fish bio-assessment tool to monitoring the biological condition of a cascade reservoirs system in tropical area. Ecol. Eng. 2014, 69, 139–150. [Google Scholar] [CrossRef]
- Torloni, C.E.C.; Corrêa, A.R.A.; Carvalho, A.A., Jr.; Santos, J.J.; Gonçalves, J.L.; Gereto, E.J.; Cruz, J.A.; Moreira, J.A.; Silva, D.C.; Deus, E.F.; et al. Produção Pesqueira e Composição das Capturas em Reservatórios sob 892 Concessão da CESP nos Rios Tietê, Paraná e Grande, no Período de 1986 a 1991; Companhia Energetica de Sao Paulo (CESP): São Paulo, Brazil, 1993; 73p. [Google Scholar]
- Rodgher, S.; Espíndola, E.L.G.; Rocha, O.; Fracácio, R.; Pereira, R.H.G.; Rodrigues, M.H.S. Limnological and ecotoxicological studies in the cascade of reservoirs in the Tietê River (São Paulo, Brazil). Braz. J. Biol. 2005, 65, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.S.; Espíndola, E.L.G.; Rocha, O. Environmental gradient in reservoirs of the medium and low Tietê River: Limnological differences through the habitat sequence. Acta Limnol. Bras. 2014, 26, 73–88. [Google Scholar] [CrossRef]
- Rodrigues, T.W.P.; Guimarães, U.S.; Rotta, L.H.D.S.; Watanabe, F.S.Y.; Alcântara, E.; Imai, N.N. Delineamento amostral em reservatórios utilizando imagens landsat-8/OLI: Um estudo de caso no reservatório de Nova Avanhandava (estado de São Paulo, Brasil). Bol. Cienc. Geod. 2016, 22, 303–323. [Google Scholar] [CrossRef]
- Golterman, H.L.; Clymo, R.S.; Ohnstad, M.A.M. Methods for Physical and Chemical Analysis of Freshwaters, 2nd ed.; 1BP Handbook No 8; Blackwell Scientific Publications: Oxford/Edinburgh/London, UK; Melbourne, Australia, 1978; 213p. [Google Scholar]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA; AWWA; WEF: Washington, DC, USA, 1998; pp. 2–54. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.L. In-water radiometric profile measurements and data analysis protocols. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, 2nd ed.; Fargion, G.S., Mueller, J.L., Eds.; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2000; 184p. [Google Scholar]
- Gordon, H.R. A methodology for dealing with broad spectral. Appl. Opt. 1995, 34, 8363–8374. [Google Scholar] [CrossRef] [PubMed]
- Pelloquin, C.; Nieke, J. SENTINEL-3 Spectral Response Functions for Optical Instruments (Version CDR); Tech. Note. European Space Agency, 2012; pp. 1–4. Available online: https://earth.esa.int/web/guest/home (accessed on 26 September 2015).
- Tassan, S.; Ferrari, G.M. An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr. 1995, 40, 1358–1368. [Google Scholar] [CrossRef]
- Tassan, S.; Ferrari, G.M. A sensitivity analysis of the “Transmittance-Reflectance” method for measuring light absorption by aquatic particles. J. Plankton Res. 2002, 24, 757–774. [Google Scholar] [CrossRef]
- Babin, M.; Stramski, D.; Ferrari, G.; Claustre, H.; Bricuad, A.; Obolensky, G.; Hoepffner, N. Variations in the light absorption coefficient of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 2003, 108, 1–19. [Google Scholar] [CrossRef]
- Green, S.A.; Blough, N.V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 1994, 39, 1903–1916. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Hawes, S.K.; Steward, R.G.; Peacock, T.G.; Davis, C.O. Model for the interpretation of hyperspectral remote-sensing reflectance. Appl. Opt. 1994, 33, 5721. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, P.; Sundarabalan, B.; Ahn, Y.H.; Ryu, J.H. A new inversion model to retrieve the particulate backscattering in coastal/ocean waters. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2463–2475. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Chen, R.F.; Gardner, G.B. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177. [Google Scholar] [CrossRef] [PubMed]
- Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F.E. Remote sensing of particle backscattering in Chesapeake Bay: A 6-year SeaWiFS retrospective view. Estuar. Coast. Shelf Sci. 2007, 73, 792–806. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B.; Jacobs, M.M. Computed Relationships between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean. Appl. Opt. 1975, 14, 417. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef] [PubMed]
- Doerffer, R.; Fischer, J. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. J. Geophys. Res. 1994, 99, 7457–7466. [Google Scholar] [CrossRef]
- Carder, K.L.; Steward, R.G.; Harvey, G.R.; Ortner, P.B. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr. 1989, 34, 68–81. [Google Scholar] [CrossRef]
- Carder, K.L.; Hawes, S.K.; Baker, K.A.; Smith, R.C.; Steward, R.G.; Mitchell, B.G. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. J. Geophys. Res. 1991, 96, 20599. [Google Scholar] [CrossRef]
- Roesler, C.S.; Perry, M.J.; Carder, K.L. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Oceanogr. 1989, 34, 1510–1523. [Google Scholar] [CrossRef]
- Lee, Z.; Arnone, R.; Hu, C.; Werdell, P.J.; Lubac, B. Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm. Appl. Opt. 2010, 49, 369. [Google Scholar] [CrossRef] [PubMed]
- Ogashawara, I.; Mishra, D.R.; Nascimento, R.F.F.; Alcântara, E.H.; Kampel, M.; Stech, J.L. Re-parameterization of a quasi-analytical algorithm for colored dissolved organic matter dominant inland waters. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 128–145. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water II Integrating cavity measurements. Appl. Opt. 1997, 36, 8710. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Jolliff, J.K.; Kindle, J.C.; Shulman, I.; Penta, B.; Friedrichs, M.A.M.; Helber, R.; Arnone, R.A. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 2009, 76, 64–82. [Google Scholar] [CrossRef]
- Friedrichs, M.A.M.; Carr, M.-E.; Barber, R.T.; Scardi, M.; Antoine, D.; Armstrong, R.A.; Asanuma, I.; Behrenfeld, M.J.; Buitenhuis, E.T.; Chai, F.; et al. Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J. Mar. Syst. 2009, 76, 113–133. [Google Scholar] [CrossRef]
- Ribeiro-Filho, R.A.; Junior, M.P.; Benassi, S.F.; Pereira, J.M.A. Itaipu reservoir limnology: Eutrophication degree and the horizontal distribution of its limnological variables. Braz. J. Biol. 2011, 71, 889–902. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; English, D.; Cannizzaro, J.; Chen, Z.; Kovach, C.; Anastasiou, C.J.; Zhao, J.; Carder, K.L. Inherent and apparent optical properties of the complex estuarine waters of Tampa Bay: What controls light? Estuar. Coast. Shelf Sci. 2013, 117, 54–69. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, M.L.; Wang, X.; Zhu, G.W.; Chen, W.M. Bio-optical properties and estimation of the optically active substances in Lake Tianmuhu in summer. Int. J. Remote Sens. 2009, 30, 2837–2857. [Google Scholar] [CrossRef]
- Loos, E.A.; Costa, M. Inherent optical properties and optical mass classification of the waters of the Strait of Georgia, British Columbia, Canada. Prog. Oceanogr. 2010, 87, 144–156. [Google Scholar] [CrossRef]
- Qin, Y.; Brando, V.E.; Dekker, A.G.; Blondeau-Patissier, D. Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Mu, G.; Zhao, Y.; Ma, J.; Ren, J. Evaluation of the Quasi-Analytical Algorithm (QAA) for Estimating Total Absorption Coefficient of Turbid Inland Waters in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4022–4036. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Matsumura-Tundisi, T. Limnology; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-138-07204-6. [Google Scholar]
- Coelho, C.A.S.; Cardoso, D.H.F.; Firpo, M.A.F. Precipitation diagnostics of an exceptionally dry event in São Paulo, Brazil. Theor. Appl. Climatol. 2016, 125, 769–784. [Google Scholar] [CrossRef]
- Khan, S.J.; Deere, D.; Leusch, F.D.L.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Cairo, C.T.; Barbosa, C.C.F.; de Moraes Novo, E.M.L.; do Carmo Calijuri, M. Spatial and seasonal variation in diffuse attenuation coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil. Hydrobiologia 2017, 784, 265–282. [Google Scholar] [CrossRef]
- Soares, A.; Mozeto, A.A. Water Quality in the Tietê River Reservoirs (Billings, Barra Bonita, Bariri and Promissão, SP-Brazil) and Nutrient Fluxes across the Sediment-Water Interface (Barra Bonita). Acta Limnol. Bras. 2006, 18, 247–266. [Google Scholar]
- Cunha, D.G.F.; Sabogal-Paz, L.P.; Dodds, W.K. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecol. Eng. 2016, 94, 516–524. [Google Scholar] [CrossRef]
- Ritter, W.F.; Shirmohammadi, A. (Eds.) Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-1-566-70222-5. [Google Scholar]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Perbiche-Neves, G.; Ferreira, R.A.R.; Nogueira, M.G. Phytoplankton structure in two contrasting cascade reservoirs (Paranapanema River, Southeast Brazil). Biologia 2011, 66, 967–976. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Henry, R.; Maricatto, F.E. Spatial and temporal heterogeneity in the Jurumirim Reservoir. Lake Reserv. Res. Manag. 1999, 4, 107–120. [Google Scholar] [CrossRef]
- Mouri, G.; Takizawa, S.; Oki, T. Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: Effects of land cover and human impact. J. Environ. Manag. 2011, 92, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Le, C.; Lehrter, J.C.; Hu, C.; Schaeffer, B.; Macintyre, H.; Hagy, J.D.; Beddick, D.L. Relation between inherent optical properties and land use and land cover across Gulf Coast estuaries. Limnol. Oceanogr. 2015, 60, 920–933. [Google Scholar] [CrossRef]
- Barbosa, F.A.R.; Padisák, J.; Espíndola, E.L.G.; Borics, G.; Rocha, O. The cascading reservoir continuum concept (CRCC) and its application to the river Tietê-basin, São Paulo State, Brazil. In Proceedings of the Workshop on Theoretical Reservoir Ecology, Sao Pedro, Brazil, 25–30 January 1999; pp. 425–437. [Google Scholar]
- Wu, G.F.; Cui, L.J.; Duan, H.T.; Fei, T.; Liu, Y.L. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China. Appl. Opt. 2011, 50, 6358–6368. [Google Scholar] [CrossRef] [PubMed]
Symbol | Description | Unit |
---|---|---|
Absorption coefficient of pure water | m−1 | |
Represented by the subtraction between | m−1 | |
Absorption coefficient of detritus | m−1 | |
Absorption coefficient of colored dissolved organic matter (CDOM) | m−1 | |
Absorption coefficient of CDOM and detritus | m−1 | |
Absorption coefficient of particulate matter | m−1 | |
Absorption coefficient of phytoplankton | m−1 | |
Total absorption coefficient, | m−1 | |
Backscattering coefficient of pure water | m−1 | |
Backscattering coefficient of particulate matter | m−1 | |
Total backscattering coefficient, | m−1 | |
Spectral power for backscattering coefficient | - | |
Above-surface remote sensing reflectance | sr−1 | |
Subsurface remote sensing reflectance | sr−1 | |
Ratio of backscattering coefficient to the sum of backscattering and absorption coefficients | Unitless | |
Spectral slope of colored detrital matter absorption coefficient | nm−1 | |
- | ||
- | ||
Reference wavelength | nm |
Property | QAALv5 | QAAOMW |
---|---|---|
where | where | |
— | ||
where |
Average | SD | Minimum | Maximum | CV (%) | n | |
---|---|---|---|---|---|---|
April–May 2014 | ||||||
(m−1) | 0.74 | 0.11 | 0.49 | 1.06 | 15.45 | 18 |
(m−1) | 0.16 | 0.05 | 0.10 | 0.29 | 31.55 | 18 |
(m−1) | 0.04 | 0.02 | 0.02 | 0.09 | 48.49 | 18 |
(m−1) | 0.08 | 0.03 | 0.04 | 0.16 | 35.31 | 18 |
(m−1) | 0.32 | 0.08 | 0.13 | 0.55 | 25.06 | 18 |
(m−1) | 0.57 | 0.08 | 0.39 | 0.77 | 13.54 | 18 |
SPM (mg L−1) | 0.95 | 0.63 | 0.10 | 2.60 | 66.04 | 15 |
Chl-a (µg L−1) | 5.95 | 2.11 | 2.46 | 10.65 | 35.46 | 18 |
Chl-a : SPM (µg/mg) | 12.27 | 15.97 | 2.47 | 68.26 | 130.14 | 15 |
Depth (m) | 17.81 | 8.64 | 5.30 | 30.00 | 48.51 | 18 |
Secchi depth (m) | 3.22 | 0.62 | 2.29 | 4.80 | 19.25 | 18 |
Turbidity (NTU) | 1.60 | 0.41 | 1.01 | 2.47 | 25.35 | 18 |
Zenital angle (DD) | 40.15 | 4.38 | 35.45 | 51.96 | 10.90 | 18 |
Wind speed (m s−1) | 3.66 | 1.35 | 2.00 | 6.40 | 36.91 | 18 |
September 2014 | ||||||
(m−1) | 0.88 | 0.21 | 0.58 | 1.45 | 24.02 | 14 |
(m−1) | 0.27 | 0.09 | 0.10 | 0.43 | 33.00 | 14 |
(m−1) | 0.04 | 0.03 | 0.01 | 0.12 | 68.02 | 14 |
(m−1) | 0.09 | 0.04 | 0.02 | 0.16 | 40.52 | 14 |
(m−1) | 0.28 | 0.16 | 0.13 | 0.75 | 55.67 | 14 |
(m−1) | 0.60 | 0.17 | 0.43 | 1.04 | 27.86 | 14 |
SPM (mg L−1) | 0.93 | 0.42 | 0.50 | 2.20 | 45.21 | 13 |
Chl-a (µg L−1) | 7.94 | 3.45 | 3.41 | 16.38 | 43.43 | 14 |
Chl-a : SPM (µg/mg) | 9.83 | 4.23 | 4.75 | 18.57 | 43.05 | 13 |
Depth (m) | 21.56 | 5.27 | 12.00 | 28.00 | 24.44 | 14 |
Secchi depth (m) | 3.14 | 0.86 | 0.90 | 4.65 | 27.58 | 14 |
Turbidity (NTU) | 2.44 | 2.46 | 1.01 | 11.17 | 100.97 | 14 |
Zenital angle (DD) | 29.84 | 9.23 | 20.82 | 47.08 | 30.92 | 14 |
Wind speed (m s−1) | 2.82 | 2.00 | 0.00 | 5.60 | 70.86 | 14 |
May 2016 | ||||||
(m−1) | 0.99 | 0.18 | 0.65 | 1.37 | 17.84 | 19 |
(m−1) | 0.30 | 0.13 | 0.11 | 0.57 | 43.47 | 19 |
(m-1) | 0.06 | 0.05 | 0.00 | 0.15 | 76.24 | 19 |
(m−1) | 0.15 | 0.06 | 0.09 | 0.26 | 38.57 | 19 |
(m−1) | 0.61 | 0.12 | 0.38 | 0.82 | 19.65 | 19 |
(m−1) | 0.68 | 0.12 | 0.45 | 0.91 | 17.68 | 19 |
SPM (mg L−1) | 3.08 | 0.94 | 1.87 | 5.30 | 30.69 | 10 |
Chl-a (µg L−1) | 26.36 | 6.32 | 38.59 | 15.84 | 23.98 | 10 |
Chl-a : SPM (µg/mg) | 8.93 | 1.96 | 4.64 | 12.21 | 21.95 | 10 |
Depth (m) | - | |||||
Secchi depth (m) | 2.97 | 0.63 | 1.91 | 3.80 | 21.03 | 19 |
Turbidity (NTU) | - | |||||
Zenital angle (DD) | 41.10 | 2.33 | 38.78 | 48.15 | 5.67 | 19 |
Wind speed (m s−1) | 3.92 | 2.07 | 0.40 | 600 | 52.86 | 19 |
OLCI Bands | QAALv5 | QAALv6 | QAAM14 | QAAOMW | ||||
---|---|---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 1.21 | 75.88 | 1.01 | 63.01 | 0.93 | 56.21 | 0.35 | 19.74 |
443 | 0.87 | 72.52 | 0.71 | 57.55 | 0.64 | 49.64 | 0.23 | 16.02 |
490 | 0.47 | 65.93 | 0.35 | 46.66 | 0.32 | 41.04 | 0.14 | 16.78 |
510 | 0.37 | 62.96 | 0.26 | 41.76 | 0.24 | 38.12 | 0.13 | 19.02 |
560 | 0.22 | 56.39 | 0.14 | 31.83 | 0.15 | 32.99 | 0.12 | 24.33 |
620 | 0.23 | 43.32 | 0.08 | 13.35 | 0.13 | 20.92 | 0.17 | 29.05 |
665 | 0.34 | 48.56 | 0.16 | 21.48 | 0.13 | 15.30 | 0.09 | 11.17 |
681 | 0.38 | 50.26 | 0.19 | 24.31 | 0.14 | 15.55 | 0.07 | 8.29 |
709 | 0.46 | 46.63 | 0.21 | 20.39 | 0.09 | 9.04 | 0.03 | 2.70 |
Average | 0.51 | 58.05 | 0.35 | 35.59 | 0.31 | 30.98 | 0.15 | 16.35 |
OLCI Bands | QAALv5 | QAALv6 | QAAM14 | QAAOMW | ||||
---|---|---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 1.03 | 81.35 | 0.96 | 75.81 | 0.93 | 72.88 | 0.21 | 12.76 |
443 | 0.74 | 83.90 | 0.69 | 79.13 | 0.67 | 76.61 | 0.13 | 12.99 |
490 | 0.47 | 87.77 | 0.45 | 84.14 | 0.44 | 82.22 | 0.08 | 14.68 |
510 | 0.38 | 89.06 | 0.37 | 85.81 | 0.36 | 84.09 | 0.07 | 15.57 |
560 | 0.22 | 91.53 | 0.21 | 89.02 | 0.21 | 87.70 | 0.04 | 17.98 |
620 | 0.13 | 94.28 | 0.12 | 92.61 | 0.12 | 91.74 | 0.03 | 19.92 |
665 | 0.10 | 96.48 | 0.10 | 95.45 | 0.10 | 94.89 | 0.03 | 21.04 |
681 | 0.10 | 97.15 | 0.09 | 96.31 | 0.09 | 95.86 | 0.03 | 24.18 |
709 | 0.08 | 97.89 | 0.08 | 97.27 | 0.08 | 96.93 | 0.03 | 30.66 |
Average | 0.36 | 91.05 | 0.34 | 88.39 | 0.33 | 86.99 | 0.07 | 18.87 |
OLCI Bands | QAALv5 | QAALv6 | QAAM14 | QAAOMW | ||||
---|---|---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 0.19 | 53.69 | 0.11 | 21.31 | 0.14 | 33.80 | 0.19 | 44.39 |
443 | 0.15 | 40.10 | 0.10 | 25.20 | 0.17 | 45.24 | 0.18 | 42.67 |
490 | 0.04 | 24.02 | 0.14 | 92.11 | 0.22 | 130.02 | 0.10 | 47.57 |
510 | 0.04 | 34.77 | 0.16 | 150.98 | 0.22 | 184.86 | 0.08 | 47.97 |
560 | 0.03 | 42.49 | 0.16 | 238.37 | 0.18 | 229.39 | 0.05 | 47.28 |
620 | 0.11 | 100.73 | 0.33 | 402.82 | 0.19 | 173.98 | 0.06 | 45.56 |
665 | 0.25 | 157.52 | 0.37 | 264.71 | 0.11 | 56.92 | 0.09 | 46.47 |
681 | 0.29 | 167.75 | 0.38 | 241.91 | 0.10 | 42.84 | 0.10 | 46.04 |
709 | 0.38 | 870.85 | 0.69 | 1858.15 | 0.04 | 63.91 | 0.04 | 53.29 |
Average | 0.16 | 165.77 | 0.27 | 366.17 | 0.15 | 106.77 | 0.10 | 46.80 |
OLCI Bands | ||||||
---|---|---|---|---|---|---|
Wavelengths (nm) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) | RMSD (m−1) | MAPE (%) |
412 | 0.43 | 36.00 | 0.56 | 66.21 | 0.14 | 41.23 |
443 | 0.36 | 41.40 | 0.44 | 78.30 | 0.13 | 39.27 |
490 | 0.30 | 57.66 | 0.28 | 79.34 | 0.08 | 46.24 |
510 | 0.26 | 59.74 | 0.22 | 73.89 | 0.05 | 44.65 |
560 | 0.20 | 62.81 | 0.12 | 58.89 | 0.03 | 85.02 |
620 | 0.26 | 54.15 | 0.05 | 30.95 | 0.04 | 176.35 |
665 | 0.16 | 22.81 | 0.04 | 19.37 | 0.08 | 94.12 |
681 | 0.10 | 12.65 | 0.05 | 26.54 | 0.08 | 70.31 |
709 | 0.05 | 4.15 | 0.05 | 35.82 | - | - |
Average | 0.23 | 39.04 | 0.20 | 52.15 | 0.08 | 74.65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, T.; Mishra, D.R.; Alcântara, E.; Astuti, I.; Watanabe, F.; Imai, N. Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters. Water 2018, 10, 449. https://doi.org/10.3390/w10040449
Rodrigues T, Mishra DR, Alcântara E, Astuti I, Watanabe F, Imai N. Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters. Water. 2018; 10(4):449. https://doi.org/10.3390/w10040449
Chicago/Turabian StyleRodrigues, Thanan, Deepak R. Mishra, Enner Alcântara, Ike Astuti, Fernanda Watanabe, and Nilton Imai. 2018. "Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters" Water 10, no. 4: 449. https://doi.org/10.3390/w10040449
APA StyleRodrigues, T., Mishra, D. R., Alcântara, E., Astuti, I., Watanabe, F., & Imai, N. (2018). Estimating the Optical Properties of Inorganic Matter-Dominated Oligo-to-Mesotrophic Inland Waters. Water, 10(4), 449. https://doi.org/10.3390/w10040449