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Abstract: Many studies over the years have focused on bio-optical modeling of inland waters
to monitor water quality. However, those studies have been conducted mainly in eutrophic and
hyper-eutrophic environments dominated by phytoplankton. With the launch of the Ocean and Land
Colour Instrument (OLCI)/Sentinel-3A in 2016, a range of bands became available including the
709 nm band recommended for scaling up these bio-optical models for productive inland waters.
It was found that one category of existing bio-optical models, the quasi-analytical algorithms (QAAs),
when applied to colored dissolved organic matter (CDOM) and detritus-dominated waters,
produce large errors. Even after shifting the reference wavelength to 709 nm, the recently
re-parameterized QAA versions could not accurately retrieve the inherent optical properties (IOPs)
in waterbodies dominated by inorganic matter. In this study, three existing versions of QAA
were implemented and proved inefficient for the study site. Therefore, several changes were
incorporated into the QAA, starting with the re-parameterization of the empirical steps related to
the total absorption coefficient retrieval. The re-parameterized QAA, QAAOMW showed a significant
improvement in the mean absolute percentage error (MAPE). MAPE decreased from 58.05% for
existing open ocean QAA (QAALv5) to 16.35% for QAAOMW. Considerable improvement was also
observed in the estimation of the absorption coefficient of CDOM and detritus from a MAPE of 91.05%
for QAALv5 to 18.87% for QAAOMW. The retrieval of the absorption coefficient of phytoplankton (aφ)
using the native form of QAA proved to be inaccurate for the oligo-to-mesotrophic waterbody due to
the low aφ returning negative predictions. Therefore, a novel approach based on the normalized aφ

was adopted to maintain the spectral shape and retrieve positive values, resulting in an improvement
of 119% in QAAOMW. Further tuning and scale-up of QAAOMW to OLCI bands will aid in monitoring
water resources and associated watershed processes.
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1. Introduction

The inland waters represented by rivers, lakes, and reservoirs play a key role in the hydrological
cycle providing different habitats and ecosystem services [1]. As many other ecosystems, inland
waters have been under increasing anthropogenic or developmental pressure from industry,
agriculture, and urban activities, increasing nutrient loading and other organic and inorganic
pollution [2]. Infusion of nutrients (nitrogen (N) and phosphorus (P)) from the land via runoff
often leads to eutrophication increasing the primary production of phytoplankton and macrophytes [3].
In oligo-to-mesotrophic reservoirs, the submersed species of macrophytes, which are usually rooted,
occupy the edges and often the slow-moving zones of rivers [4]. They are dependent on the sediment
supply and light availability for their optimal growth [5]. The clarity of the water is affected by the
turbidity generated from sediments or other suspended particles, algae, and dissolved matter [6].
Frequent spatiotemporal monitoring of the physical, chemical, and biological constituents is of great
importance for monitoring point and non-point source pollution for effective lake and reservoir
management. Brazilian inland waters are being adversely affected by increased runoff originating
from anthropogenic activities, such as expansions in agriculture and urban centers. They are still being
managed using traditional methods such as in situ point sampling and lab analysis, which often fail to
provide information about the spatiotemporal variability of water constituents. Due to the synoptic
view and periodicity provided by the orbital sensors, remote sensing is considered an appropriate
method for monitoring water quality, although the accuracy of bio-optical models for inland waters is
still a challenge.

Yacobi et al. and Odermatt et al. [7,8] highlighted the main scientific challenges in studying
complex waters using remote sensing. The variability within these types of waters in terms
of concentrations, as well as specific inherent optical properties (SIOPs) of chlorophyll-a (Chl-a),
suspended particulate matter (SPM), and colored dissolved organic matter (CDOM), can be difficult
to separate. On the contrary, in the open ocean, the concentrations of non-algal particles (NAP) and
CDOM are directly correlated with phytoplankton [9]. This means that at certain wavelengths, such as
blue and green, it is possible to retrieve Chl-a concentrations in the open ocean but in inland waters,
it can be highly erroneous because CDOM and NAP have strong overlapping absorption, particularly
in the blue spectral region. To address this issue, much effort has been given to understanding
the bio-optical properties of inland waters in order to retrieve the optically significant constituents
(OSCs: Chl-a, SPM, NAP, and CDOM) by using inversion models based on empirical and analytical
approaches [10,11]. In general, the inversion models first derive the inherent optical properties
(IOPs) using the in situ measured apparent optical property (AOP) and then retrieve the OSC
concentration [12].

Empirical models retrieve the water quality parameters by statistical relationships between
an AOP, such as the remote sensing reflectance (Rrs) or the irradiance reflectance (R), and a known
OSC [13–15]. The method can be time and site limited and it is not related to any physical principle [16].
The semi-analytical and quasi-analytical (QAA) algorithms are based on radiative transfer theory
and often include some empirical steps [8,11,17,18]. A semi-analytical algorithm estimates the
total absorption coefficient (at(λ)) by the sum of the absorption coefficients of phytoplankton
(aφ(λ)), CDOM (aCDOM(λ)), and NAP (aNAP(λ)), while QAA estimates at(λ) using Rrs alone.
A semi-analytical algorithm also estimates a backscattering coefficient (bb(λ)) by summing the
backscattering of each in-water constituent except for CDOM while the QAA retrieves bb(λ) [19].

The original QAA by [20] was developed to retrieve absorption and backscattering properties
in the open ocean and coastal waters and later re-parameterized for turbid inland waters [21–23].
The model follows several steps mixing empirical and analytical approaches to derive the IOPs
using radiative transfer equations, considering the reference wavelength (λ0) at 555 nm [20] (Table 1).
At this wavelength, the contribution of SPM is very high in turbid eutrophic waters, which requires λ0

to be shifted to longer wavelengths such as 710 nm [21], 754 nm [22], and 708 nm [23,24]. Lee et al. [20]
also showed the performance of QAA using 640 nm as λ0 and noticed considerable improvement
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for high-absorption environments where at(400) is higher than 0.3 m−1. However, Le et al. [21]
emphasized the importance of more validation to improve the performance of this approach.
In mesotrophic inland waters, Yacobi et al. [7] highlighted that for wavelengths longer than 600 nm,
aw increases over other OSCs, which means that at shorter wavelengths the contribution of other OSCs,
except water, is decreasing the performance of QAA.

Table 1. List of symbols and abbreviations.

Symbol Description Unit

aw(λ) Absorption coefficient of pure water m−1

at−w(λ) Represented by the subtraction between at(λ)− aw(λ) m−1

ad(λ) Absorption coefficient of detritus m−1

aCDOM(λ) Absorption coefficient of colored dissolved organic matter (CDOM) m−1

aCDM(λ) Absorption coefficient of CDOM and detritus m−1

ap(λ) Absorption coefficient of particulate matter m−1

aφ(λ) Absorption coefficient of phytoplankton m−1

at(λ) Total absorption coefficient, aφ(λ) + aw(λ) + aCDM(λ) m−1

bbw(λ) Backscattering coefficient of pure water m−1

bbp(λ) Backscattering coefficient of particulate matter m−1

bb(λ) Total backscattering coefficient, bbp(λ) + bbw(λ) m−1

η Spectral power for backscattering coefficient -
Rrs(λ) Above-surface remote sensing reflectance sr−1

rrs(λ) Subsurface remote sensing reflectance sr−1

u Ratio of backscattering coefficient to the sum of backscattering and absorption coefficients Unitless
SCDM Spectral slope of colored detrital matter absorption coefficient nm−1

ζ aφ(412)/aφ(443) -
ξ aCDOM(412)/aCDOM(443) -

λ0 Reference wavelength nm

The performance of QAAs for inland waters has been tested in various studies using the center
bands from the medium resolution imaging spectrometer (MERIS), which is not operational now;
however, the sites considered were all highly turbid and productive inland waters. For instance,
Le et al. [21] studied the turbid Taihu Lake with a Chl-a concentration ranging between 3.07 and
299.60 mg m−3, Yang et al. [22] studied three turbid Asian lakes with Chl-a varying between 9.79
and 153.92 mg m−3, and Mishra et al. [23] explored the performance of QAA in aquaculture ponds
dominated by cyanobacteria with Chl-a ranging between 95.68 and 1376.57 mg m−3 and aφ accounting
for 54% of at(413). The main modification carried out by these studies, besides shifting λ0 to the
near-infrared (NIR), was in the estimation of the spectral slope of particle backscattering (η).

With the launch (16 February 2016) of the Ocean and Land Colour Instrument (OLCI) onboard
Sentinel-3A (OLCI/Sentinel-3A), a broader range of spectral bands became available mainly for
applications in inland waters where the contribution of SPM in longer wavelengths is still present.
Watanabe et al. [25] modified the original empirical steps of QAA from Lee et al. [26] to estimate the
IOPs in an inland water dominated by phytoplankton and then shifted the λ0 to 709 nm, achieving an
average normalized root mean square error (NRMSE) of 21.88% for at(λ). Their results confirmed the
suitability of a band at 709 nm to study inland waters, which means that the OLCI can be a powerful
instrument for water quality monitoring considering inland waters. These findings have opened a
new frontier for QAA applications based on re-parameterizations for inland waters. However, there is
still a lack of research related to non-productive inland waters with at dominated by CDOM and NAP
and not by phytoplankton. Therefore, we hypothesized that even with the OLCI band at 709 nm
(width of 10 nm), the accuracy of the IOP retrieval will be compromised by the version of QAA chosen,
which means that the empirical steps should be locally tuned to increase its accuracy. This is justified
because the inorganic matter presented in our study site can increase the reflectance in the NIR spectral
region affecting the QAA accuracy. For that reason, this study aimed at evaluating the performance
and potential of the OLCI/Sentinel-3A in retrieving the IOPs in a non-productive tropical reservoir.
The specific objectives were (i) to validate three different approaches for QAA in non-productive
inland water; (ii) to re-parameterize key steps of QAA using field data typical of non-turbid inland
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water and validate the model using an independent dataset; (iii) to replace the original steps associated
with aφ estimation for non-productive inland waters and propose an alternative method in order to
avoid negative predictions; (iv) to link the QAA-derived IOP variability to physical and meteorological
conditions; and (v) to characterize the factors that affect the bio-optical properties.

2. Materials and Methods

2.1. Study Area

Nova Avanhandava (Nav) is a run-of-river reservoir with a mean water level fluctuation lower
than 0.50 m/year [27] (Figure 1). Nav is also the fifth of six reservoirs situated along the Tietê River in
the west region of São Paulo State, Brazil, and started its activity in 1982, flooding an area of 210 km2

(at its maximum quota), with a usable volume of 2.83 × 106 m3, perimeter of 462 km, maximum depth
of 30 m, mean residence time of water of about 46 days, and an average flow of 688 m3 s−1 [28].

Figure 1. Map of the study area emphasizing (a) the land cover of the Tietê River basin and the cascade
system (from upstream to downstream: Barra Bonita, Bariri, Ibitinga, Promissão, Nova Avanhandava,
and Três Irmãos); (b) Tietê River basin placed in São Paulo State and (c) the distribution of the sampling
locations for Nav 1; (d) Nav 2, and (e) Nav 3.

Nav is an oligo-to-mesotrophic reservoir with the upper layer of the water column well
oxygenated and pH ranging from slightly acid to alkaline (6.47–8.2), conductivity relatively high
(83–150 µS cm−1), and low concentrations of nutrients (total N 0.05–0.23 µg L−1 and total P
18.02–32.33 µg L−1) [29,30]. The high transparency of the water often leads to the growth of submerged
macrophytes (e.g., Egeria sp.) [30], although during sample collections we avoided those areas.
The catchment basin surrounding the reservoir receives input from non-point source pollution, such as
sugarcane and citric plantation (orange and lemon) and cattle breeding.
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The reservoir is part of a region where the influences of continental, tropical, and polar Antarctic
air masses are marked. The first air mass is hot and dry and occurs mainly in the summer (24 and 30 ◦C),
while the second one is cold and damp and despite being active all year its occurrence is more intense
during winter, causing a temperature drop (14 to 22 ◦C).

2.2. Water Quality Data

Three field trips were conducted during 2014 and 2016. The first field trip (Nav 1) occurred
in austral autumn (28 April to 2 May 2014), the second (Nav 2) in austral spring (23–26 September 2014),
and the third (Nav 3) in austral autumn (7 and 14 of May 2016). Fifty-one samples were used
in this study for model calibration, validation, and temporal comparison (Nav 1: 18 samples for
model calibration; Nav 2: 14 samples for model validation; and Nav 3: 19 samples for temporal
comparison) (see Figure 1 for sampling station locations) following the sampling strategy described by
Rodrigues et al. [31], which consisted of selecting samples randomly, taking into account the spectral
differences of regions (stratum).

Water samples (1L from each location) were collected just below the air–water interface (~20 cm)
and then filtered on the same day of collection under vacuum pressure through a pre-ashed and
pre-weighed Whatman fiberglass GF/F filter (nominal pore size of 0.7 µm), and kept in a refrigerator
for further laboratory analysis. Chl-a was extracted with 90% acetone solution and analyzed
spectrophotometrically [32]. The SPM concentration was determined by applying the method
described by APHA [33] where the samples were previously filtered in calcined filters to remove the
inorganic substance. The filters with the particulate were dried in an oven at 100 ◦C for 12 h and
then weighed using an analytical scale. To retrieve the suspended inorganic matter (SIM), the dried
filters were subjected to a muffle furnace for 75 min at 550 ◦C and weighed again. In the end, the SPM
and inorganic fraction were determined. To estimate the organic fraction, the last filter weight was
subtracted from the original filter weight after first drying.

2.3. In Situ Radiometric Data

The Rrs spectra were estimated from radiometric measurements taken between 10 a.m. and 2 p.m.
This procedure was carried out in order to maintain consistent acquisition geometry based on the
time window of light availability [34]. At each sample station, below and above water readings were
acquired using hyperspectral radiometers RAMSES TriOS® (TriOS, Rastede, Germany) operating in the
spectral range between 400 and 900 nm. The radiance sensor was equipped with a 7◦ field-of-view and
the irradiance sensor with a cosine collector. Before being used, the radiometric quantities such as the
total upwelling radiance (Lt(λ); W m−2 sr−1 nm−1), incident sky radiance (Ls(λ); W m−2sr−1 nm−1)

and downwelling irradiance incident onto the water surface (Ed(λ); W m−2 nm−1) were subjected to a
linear interpolation to transform the original spectral resolution of ~3.3 nm to 1 nm. This procedure
was designed to homogenize RAMSES measurements between the sensors, since they have different
wavelength values.

The sampling rate was around 15 s per sample resulting in 16 readings at each sampling location.
From these measurements, a median value was retrieved to represent the spectrum of that location.
The acquisition geometry followed the protocol described by Mobley [34] and Mueller [35].
During the campaigns, the sky was mostly clear with few days partially covered by clouds and
no whitecaps or foam were observed. Care was taken to avoid the effects of specular reflectance and
boat shading. The instruments were positioned on a steel frame and the Lt sensor was set with a
viewing angle of 40◦ from nadir and an azimuth of 135◦ (oriented from the sun), and the Ls sensor was
set with the same angles of 40◦ from zenith and 135◦ azimuth. Rrs(sr−1) spectra were calculated from
the radiometric profiles in accordance with Mobley [34]:

Rrs(λ) =
Lt(λ)− ρLs(λ)

Ed(λ)
, (1)
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where ρ is the proportionality factor that considers the wind speed and sky radiance distribution.
ρ was chosen as 0.028 since the average wind speed did not exceed 5 m s−1 during data collection and
the geometry of acquisition was kept the same as Mobley [34].

In situ Rrs is the main input data for QAA to retrieve the OSC concentration. However, for broader
applicability of a model, it is necessary to match the hyperspectral data with satellite data by using the
spectral response functions of the sensor of choice. In this study, the OLCI/Sentinel-3A band spectral
response functions were convolved with in situ Rrs data to derive the band-weighted reflectance
data [36]:

ROLCI
rs (λk) =

∫ λj
λi

S(λ)Rrs(λ)∫ λj
λi

S(λ)
, (2)

where ROLCI
rs is the in situ Rrs matching the band width of the OLCI sensor; λi and λj are the lower

and upper limits of the band λk; and S(λ) is the spectral response function of the ith spectral band of
OLCI [37].

Due to the unavailability of OLCI data during the collection of calibration and validation datasets,
the model’s performance was tested on simulated OLCI data. Independent coincident OLCI and field
data will be acquired for future studies to scale-up and examine the model’s performance.

2.4. In Situ IOPs

Water samples were filtered through a 0.7 µm pore size GF/F fiberglass that was stored flat
under freezing conditions. The determination of the total particulate (algal and detritus) absorption
(ap) was performed by an integrating sphere module in the double-beam Shimadzu UV-2600 UV-Vis
spectrophotometer (SHIMADZU, Kyoto, Japan) with spectral sampling from 280 nm to 800 nm.
A white filter wetted with ultrapure water was used as a reference. The filter containing the
particulate was positioned in the integrating sphere to measure their optical density (OD). The T–R
(transmittance–reflectance) filter-pad technique presented in Tassan and Ferrari [38,39] was employed
to obtain ap. To acquire the phytoplankton (aφ) and detritus (ad) absorption coefficients, the filter
underwent pigmentation bleaching with 10% sodium hypochlorite (NaClO), ensuring that the samples
would not contain any pigment interference. Using the empirical relationships described by Tassan
and Ferrari [38,39], the respective coefficients were determined and aφ was obtained by the difference
between the OD of the total particulate and detritus fractions.

To estimate the CDOM absorption coefficient (aCDOM), water samples were filtered through
a fiberglass Whatman GF/F with 0.7 µm pores and then re-filtered under low vacuum pressure
using a Whatman nylon membrane filter with 0.2 µm pores. The readings were performed using the
absorbance mode and the samples were placed in 10 cm quartz cuvettes. For each set of measurements,
a reference reading was performed containing Milli-Q water and for each read sample (ODsample),
the reference absorbance value (ODreference) was subtracted. The ODsample was converted to an
absorption coefficient according to Equation (3):

aCDOM(λ) = 2.303
ODsample

l
, (3)

where l is the path length (l = 0.1 m for a 10 cm cuvette).
A baseline correction was performed by subtracting the average value between 700 and 750 nm

from all the spectrum values [40]. This procedure was used because CDOM absorption is negligible in
this range and the temperature and salinity have a slight effect on water absorption [41]. Due to the
similarities in the absorption spectrum and the difficulty in separating aCDOM and ad fractions from
their total absorption coefficient, many studies have treated both components as a single measure,
such as the aCDM comprised of the sum of aCDOM and ad [42–44]. The spectral slope of aCDM (SCDM)
is a constant obtained by the exponential fit within the 400–700 nm wavelength range [23].
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2.5. QAA General Context

Following the first step from native QAA [20], at(λ) was retrieved based on several parameters
described in Table 2. The success in determining at(λ) is of great importance in estimations of bb(λ)

and the OSCs absorption coefficients (CDM and phytoplankton). The partitioning of at(λ) into
aCDM(λ) followed the same flow proposed in native QAA; however, to derive aφ(λ), an alternative
step (see Section 3.6) was needed to avoid negative predictions due to low aφ(λ) signal.

Table 2. Quasi-analytical algorithm (QAA) steps comparing version 5 from Lee et al. [20] and the
QAAOMW proposed in this study.

Property QAALv5 QAAOMW

rrs(λ) rrs(λ) = Rrs(λ)/(0.52 + 1.7Rrs(λ))

u = bb
at+bb u(λ) =

−0.0895+
√
(g0)

2+4g1∗rrs(λ)

2∗g1
; g0 = 0.089, g1 = 0.125

λ0

χ = log

(
rrs(443)+rrs(490)

rrs(λ0)+5 (rrs (667))2

rrs (490)

)
at(λ0) = aw(λ0) + 10−1.146−1.366χ−0.469χ2

where λ0 = 550; 555; 560

χ = log

(
rrs(443)+rrs(665)

rrs(λ0)+5 (rrs (681))2

rrs (443)

)
at(λ0) = aw(λ0) + 10−1.148+2.814χ−5.813χ2

where λ0 = 709

η η = 2 ×
(

1 − 1.2 × exp
(
−0.9 × rrs443

rrs(λ0)

))
η = 2 ×

(
1 − 1.2 × exp

(
−0.9 × rrs665

rrs754

))
ζ =

aφ(412)
aφ(443) ζ = 0.74 +

(
0.2

0.8+rrs443/rrsλ0

)
ζ = 0.5 +

(
0.2

0.8+rrs443/rrsλ0

)
ξ = aCDM(412)

aCDM(443)

ξ = exp [S × (443 − 412)]

SCDM = 0.015 +
(

0.002
0.6+(rrs443/rrsλ0)

) ξ = exp [S × (443 − 412)]

SCDM = 0.0095 +
(

0.002
0.6+(rrs490/rrsλ0)

)
aCDM(443) aCDM(443) = [at(412)−ζat(443)]−[aw(412)−ζaw(443)]

ξ−ζ aCDM(443) = [at(412)−ζat(443)]−[aw(412)−ζaw(412)]
ξ−ζ

aCDM(λ) aCDM(λ) = aCDM(443)e−SCDM(λ−443) aCDM(λ) = aCDM(443)e−SCDM(λ−443)

aφ(443) — aφ(443) = [ξat(443)−at(412)]−[ξaw(412)−aw(412)]
ξ−ζ

aφ(λ) aφ(λ) = at(λ)− aCDM(λ)− aw(λ)
aφ(λ) = aφ(443)× a+φ (λ)

where a+φ (λ) = aφ(λ)/
∫

ax(λ)dλ
λmax−λmin

Three existing models were used to test their performance using Nav’s dataset convoluted to
OLCI bands. Two of the models proposed by Lee et al. [26,42] are referred to as QAALv5 and QAALv6

for versions 5 (λ0 = 560 nm) and 6 (λ0 = 665 nm) and are available on the International Ocean Colour
Coordinating Group (IOCCG) website (http://www.ioccg.org/groups/software.html). The third
model was based on Mishra et al. [23] and referred to as QAAM14 (λ0 = 709 nm). The performance
of the new re-parameterized model developed in this study (QAAOMW) was also compared with the
three existing models.

2.6. Re-Parameterization of QAAOMW

The λ0 plays a critical role in at retrieval and bands in the NIR region should be considered for λ0

selection even in an oligo-to-mesotrophic environment with very low Chl-a and SPM concentrations.
In Nav, both OSCs did not co-vary among themselves, which is different from case-1 waters and
that could be the reason why QAALv5 or QAALv6 were expected to fail in Nav. The set of steps
described by Lee et al. [20] to derive at is comprised of empirical, semi-analytical, and analytical
approaches and was modified to parameterize the current model. The absorption at 709 nm, at (709),
was chosen as λ0 to derive χ in the empirical model, which combines four bands associated with
the OSCs contribution. To parameterize this variable, the relationship between at−w(709) and OLCI
bands was verified and the best combination was chosen based on the coefficient of determination
(R2) using bands at 443, 665, and 681 nm (R2 = 0.52, p < 0.001) (Equation (4)). As an empirical step and
considered as second-order of importance by Lee et al. [20], the parameterization of χ is necessary

http://www.ioccg.org/groups/software.html
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because it affects the performance of the entire routine. Therefore, for better results, regional and
seasonal information must be introduced to improve the end product.

χ = log10

(
rrs443 + rrs665

rrs(λ0) + (0.05 × rrs6812

rrs443 )

)
, (4)

The band at 443 nm was used to highlight the contribution of CDOM despite being the spectral
region of Chl-a absorption as well [45]. Mishra et al. [23] found that these bands reflect the different
contributions of OSCs typically present in inland waters to the total absorption budget and, therefore,
the band combinations used in QAAM14 worked well for Nav. The estimation of at is analytically
related to bb(λ). Considering that bb(λ) is the sum of bbw and bbp and the value of bbw is already
known [46], the spectral dependency of bbp(λ) is widely expressed as [14,45]:

bbp(λ) = bbp(λ0)(
λ0

λ
)

η

, (5)

bb(λ) = bbp(λ) + bbw(λ), (6)

where bbw(λ) is the pure water backscattering coefficient from Smith and Baker [46]; bbp(λ0) is the
particulate backscattering coefficient at λ0 and can be estimated using Lee et al. [20]; η is the spectral
power factor for the particulate backscattering coefficient and can be empirically retrieved using the
Rrs band ratio sensitive to phytoplankton and CDOM absorption [12]. To model η, Lee et al. [20]
used an empirical band ratio between 440 and 550 nm while Yang et al. [22] used a semi-analytical
algorithm based on bands at 750 and 780 nm from MERIS. Previous studies showed that shifting the
λ0 to longer wavelengths alone is not enough to produce accurate IOPs therefore the improving of η

retrieval is required. Thus, the calibration of η was performed by comparing in situ at with derived at.
Several band combinations were tested and the best result was achieved with the ratio of 665 over 754
nm as shown below:

η = 2 ×
(

1 − 1.2 × exp
(
−0.9 × rrs665

rrs754

))
, (7)

The estimation of η is based on an empirical relationship, and according to Yang et al. [22],
the impact of this step on the final product is significant mainly at shorter wavelengths. The use of a
longer wavelength was replaced instead with one in the green spectral region. The values of η typically
ranged from 0 to 2.2 and the higher values are associated mainly with oligotrophic waters [14,20,47].
η ranged from 1.24 to 2.17 in Nav. η is higher when the backscattering is due to small particles and/or
water [19]. After bb retrieval, the derivation of at followed the equation that relates the ratio of bb to the
sum of absorption and backscattering coefficients (u) as defined by Gordon et al. [48] and expressed as:

at(λ) =
[1 − u(λ)]bb(λ)

u(λ)
, (8)

The re-parameterization involved improvements to derive the CDM spectral slope (SCDM)
and the parameters ξ and ζ. ζ is related to the Chl-a concentration or pigment absorption at a
specific wavelength. However, according to Lee et al. (2002), due to the lack of absolute measurements,
ζ was empirically estimated using a blue-to-green band ratio of rrs(440)/ rrs(555) and successfully
applied in case-1 waters [19,49]. At this spectral region, the organic and inorganic suspended matters
also affect the absorption budget [11,50]. Yang et al. [22] used another approach to estimate aφ(443)
independently of ξ and ζ with an assumption that the applicability of these empirical estimations was
unclear for turbid waters. On the contrary, Mishra et al. [23] maintained the original band ratio, but the
coefficients used in ζ estimation were changed. A new band ratio was proposed in this study by
considering the local information and as recommended by Lee et al. [20], this procedure is needed to
improve the split-up of pigment and CDOM absorption fractions. After recalibration, a suitable band
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ratio between 443 and 709 nm (rrs(443)/rrs(709)) was applied to the Nav dataset. Besides, the offset
coefficient was also recalibrated by testing values ranging between 0.5 and 0.74 and followed the form:

ζ = 0.5 +
(

0.2
0.8 + rrs443/rrsλ0

)
, (9)

ξ approximated using a ratio (aCDM(410)/(aCDM(440) and SCDM is associated with the water
composition such as pigment, dissolved organic and detritus [43,51,52]. In the Nav dataset, the spectral
slope varied from 0.010 to 0.012 nm−1. Therefore, the original offset value from Mishra et al. [23] was
replaced with 0.0095 after a simple optimization using the in situ range. The new calibration for ξ is
given below:

SCDM = 0.0095 +
(

0.002
0.6 + (rrs490/rrsλ0)

)
, (10)

ξ = exp [S × (443 − 412)]. (11)

The remaining steps proposed by Mishra et al. [23] were used to derive aCDM in the current model
as presented below:

aCDM(443) =
[at(412) − ζat(443)] − [aw(412) − ζaw(412)]

ξ − ζ
, (12)

aCDM(λ) = aCDM(443)e−SCDM(λ−443). (13)

The re-parameterization of aφ used a combined method based on Roesler et al. [53] and
Lee et al. [54], which was also referenced by Ogashawara et al. [55]; however, the former study
used neither the factors C1 and C2 to compute CDOM influence on the water column nor the band
combination to derive aφ(λ0). aφ(443) was calculated according to Lee et al. [54] as a function of
ξ and ζ, both used in the estimation of aCDM(λ0). The combination of wavelengths was slightly
changed from the original as presented in Equation (14).

aφ(443) =
[ξat(443) − at(412)] − [ξaw(412) − aw(412)]

ξ − ζ
, (14)

aφ(λ) was then calculated by multiplying aφ(443) by the normalized spectral absorption, a+phi(λ)

as described by Roesler et al. [53] using Equation (15). The a+φ (λ) component aims to reproduce the
spectral shape for aφ(λ). To find a suitable spectrum of a+φ (λ), the calibrated dataset was used in
Equations (16) and (17).

aφ(λ) = aφ(443)× a+φ (λ), (15)

a+phi(λ) =
aφ(λ)i

aφi
(16)

aφi =

∫
aφ(λ)idλ

λmax − λmin
, (17)

where aφ(λ)i is the spectral absorption of phytoplankton, aφi is spectrally averaged
absorption coefficient of phytoplankton (350–800 nm), λmax and λmin are the maximum and
minimum wavelengths. The denominator of Equation (16) was derived based on the area under the
curve (AUC) and then divided by the spectral difference (λmax − λmin) as shown in Equation (17). Then,
the in situ aφ(λ)i was divided by the latter component. A representative spectrum from Equation (16)
was chosen based on statistical metrics (average, standard deviation, minimum, maximum and median)
and for Nav’s dataset, the metric based on the minimum value was suitable to represent the a+φ (λ).
Equation (16) is used to remove the effect of the Chl-a concentration and permits the estimation of
variance due uniquely to spectral shape [53].
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2.7. Validation and Accuracy Assessment

The performance of the three QAAs was tested using Nav’s dataset before the re-parameterization
procedure. For this step, water samples collected on the first field trip were analyzed in the laboratory
by the filter-pad technique to retrieve aCDM and aφ including aw(λ) from Pope and Fry [56] and
combined to obtain at(λ). The re-parameterization steps in QAAOMW primarily involved modifying
the intermediary steps such as the computation of χ, at(λ0), and η for at estimation (see Table 2).
After that, the partitioning of at into aCDM and aφ was assessed by comparing the estimated with in
situ measures. To validate the newly parameterized model related to oligo-to-mesotrophic waters,
the samples collected in the second field trip were used.

The statistical indicators used for the validation were the total root mean square difference
(RMSD) and the mean absolute percentage error (MAPE). To provide a broader statistical overview
of the error, the normalized bias (B*), normalized standard deviation (σ*), linear correlation (R),
and normalized unbiased RMSD (uRMSD*) were also analyzed. The term normalized stands for
all statistical metrics divided by the standard deviation of the reference and here named as σmeas,
while unbiased, the measure removes any information about the potential bias. σ* and R represent the
magnitude of data dispersion and shape patterns. To obtain the ideal situation, the magnitude and
shape of data dispersion may consider σ* = R = 1, which leads to the minimum uRMSD*.

A different perspective about the contribution of the error at a specific wavelength was achieved
by using the Taylor and target graphics [57,58]. In the polar coordinate diagram (Taylor graphic),
the radial (along-axis) distance from the origin is related to σ* and the angular position corresponds
to R. The distance between the reference and the measured points are proportional to uRMSD*.
The observation is the reference point, which is indicated by the polar coordinates (1.0, 1.0) when the
metrics are considered normalized. The target diagram considers the Cartesian plane (uRMSD*, B*)
where uRMSD* > 0 means that the model standard deviation is larger than the reference, whilst uRMSD* < 0
indicates the contrary. B* > 0 signifies positive bias while B* < 0 indicates negative bias. The distance
from the origin to the model value is defined by the normalized total RMSD (RMSD* = RMSD/σmeas).
A circle is created to represent RMSD* = 1.0 and the model values falling inside the circle (total RMSD
values are less than the σmeas) tend to provide a better estimate than the mean of the observations [59].
The Taylor graphic can be displayed in 90◦ or, as presented here, in 180◦ covering negative correlations.
Values of σ* higher than 2.0 were not depicted while B* and uRMSD* higher than 3 and/or less than
−3 were also disregarded in the target diagrams. This condition was used to avoid presenting huge
error models.

The error indices are defined based on Equations (18)–(23):

RMSD =

√
1
n

n

∑
i=1

(xest,i − xmeas,i)
2, (18)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ xest,i − xmeas,i

xmeas,i

∣∣∣∣, (19)

B∗ =

(
xest − xmeas

σmeas

)
, (20)

σ∗ =
σest

σmeas
, (21)

R =
1
n ∑n

i=1 (xest,i − xest)(xmeas,i − xmeas)

σmeasσest
, (22)

uRMSD∗ = sign(σest − σmeas)
√

1 + σ∗2 − 2σ∗R, (23)
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where n is the number of samples, and xest,i and xmeas,i represent the estimated and measured values,
respectively; xest and xmeas represent the average of estimated and measured values, respectively;
σmeas and σest are the standard deviation of the measured and the estimated values, respectively.

3. Results

3.1. Water Quality Characterization

Samples collected during the first field trip or dry season showed very low concentrations of Chl-a
(average of 5.95 µg L−1) and SPM (average of 0.63 mg L−1) and an average Secchi depth of 3.22 m
(Table 3). The concentrations of the OSCs in the samples collected during the second field trip showed
a modest increase in Chl-a (average of 7.94 µg L−1) and SPM (average of 1.58 mg L−1) and an average
Secchi depth of 3.14 m. In situ at(443) represented non-productive waters with values ranging between
0.72 and 1.52 m−1 from the first field trip and 0.58–1.45 m−1 from the second field trip. Lee et al. [20]
recommended their open ocean version of QAA to be applied for datasets where at(443) is less than
0.3 m−1. In NAV, the at(443) was higher than this threshold and, therefore, a poor performance was
expected from the native QAA approach.

The low turbidity caused by the low Chl-a and SPM concentrations provided more transparency to
the water column and, hence, the high Secchi depth measures. The water transparency was negatively
correlated with rainfall and according to Table 3 the Secchi depth range changed from 2.29–4.80 m
during the dry season to 0.90–4.65 m during the wet season [60]. Smith et al. [30] highlighted that
the high concentrations of suspended matter during the rainy season in Nav can be attributed to
the runoff effect. Slight differences in the limnological parameters from one season to another were
observed and factors such as water level fluctuation and seasonality are of great importance for the
changes in geochemical dynamics of the reservoir [30]. The relationship (not shown here) between
Chl-a and SPM concentrations during the first (R2 = 0.12, p > 0.05, n = 18) and second (R2 = 0.07,
p > 0.05, n = 14) field campaigns indicated the non-productive property of Nav, which was mostly
dominated by inorganic matter.
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Table 3. Descriptive statistics of the water quality variables used for calibration and validation. SD is
the standard deviation, CV is the coefficient of variation, and n is the number of samples.

Average SD Minimum Maximum CV (%) n

April–May 2014

at(443) (m−1) 0.74 0.11 0.49 1.06 15.45 18
aφ(443) (m−1) 0.16 0.05 0.10 0.29 31.55 18
aφ(560) (m−1) 0.04 0.02 0.02 0.09 48.49 18
aφ(665) (m−1) 0.08 0.03 0.04 0.16 35.31 18
aNAP(443) (m−1) 0.32 0.08 0.13 0.55 25.06 18
aCDM(443) (m−1) 0.57 0.08 0.39 0.77 13.54 18

SPM (mg L−1) 0.95 0.63 0.10 2.60 66.04 15
Chl-a (µg L−1) 5.95 2.11 2.46 10.65 35.46 18
Chl-a : SPM (µg/mg) 12.27 15.97 2.47 68.26 130.14 15
Depth (m) 17.81 8.64 5.30 30.00 48.51 18
Secchi depth (m) 3.22 0.62 2.29 4.80 19.25 18
Turbidity (NTU) 1.60 0.41 1.01 2.47 25.35 18
Zenital angle (DD) 40.15 4.38 35.45 51.96 10.90 18
Wind speed (m s−1) 3.66 1.35 2.00 6.40 36.91 18

September 2014

at(443) (m−1) 0.88 0.21 0.58 1.45 24.02 14
aφ(443) (m−1) 0.27 0.09 0.10 0.43 33.00 14
aφ(560) (m−1) 0.04 0.03 0.01 0.12 68.02 14
aφ(665) (m−1) 0.09 0.04 0.02 0.16 40.52 14
aNAP(443) (m−1) 0.28 0.16 0.13 0.75 55.67 14
aCDM(443) (m−1) 0.60 0.17 0.43 1.04 27.86 14

SPM (mg L−1) 0.93 0.42 0.50 2.20 45.21 13
Chl-a (µg L−1) 7.94 3.45 3.41 16.38 43.43 14
Chl-a : SPM (µg/mg) 9.83 4.23 4.75 18.57 43.05 13
Depth (m) 21.56 5.27 12.00 28.00 24.44 14
Secchi depth (m) 3.14 0.86 0.90 4.65 27.58 14
Turbidity (NTU) 2.44 2.46 1.01 11.17 100.97 14
Zenital angle (DD) 29.84 9.23 20.82 47.08 30.92 14
Wind speed (m s−1) 2.82 2.00 0.00 5.60 70.86 14

May 2016

at(443) (m−1) 0.99 0.18 0.65 1.37 17.84 19
aφ(443) (m−1) 0.30 0.13 0.11 0.57 43.47 19
aφ(560) (m-1) 0.06 0.05 0.00 0.15 76.24 19
aφ(665) (m−1) 0.15 0.06 0.09 0.26 38.57 19
aNAP(443) (m−1) 0.61 0.12 0.38 0.82 19.65 19
aCDM(443) (m−1) 0.68 0.12 0.45 0.91 17.68 19

SPM (mg L−1) 3.08 0.94 1.87 5.30 30.69 10
Chl-a (µg L−1) 26.36 6.32 38.59 15.84 23.98 10
Chl-a : SPM (µg/mg) 8.93 1.96 4.64 12.21 21.95 10
Depth (m) -
Secchi depth (m) 2.97 0.63 1.91 3.80 21.03 19
Turbidity (NTU) -
Zenital angle (DD) 41.10 2.33 38.78 48.15 5.67 19
Wind speed (m s−1) 3.92 2.07 0.40 600 52.86 19

3.2. OSCs Relative Contribution

The relative contribution of phytoplankton, CDOM, and detritus absorption to the total absorption
budget without the water fraction (at−w) can be visualized in Figure 2. The wavelengths chosen for
analysis (443, 560, and 665 nm) characterize the light interaction with the particulate and dissolved
organic matter [61–63]. According to the ternary plots, the first set of field data were dominated
by ad, mainly in the blue (443 nm) and green (560 nm) wavelengths with 52.05 ± 6.37% and
56.78 ± 8.80%, respectively. aφ dominated in the red (655 nm) wavelength with 59.87 ± 8.34%
contribution toward at−w. The contribution of the OSCs was a little more balanced in the second
field dataset. At 443 nm, the aCDOM contributed with 37.22 ± 9.18% while at 560 nm the ad accounted



Water 2018, 10, 449 13 of 28

for 47.13 ± 10.44% and aφ for 40.17 ± 12.38% at 665 nm. At 443 nm, the samples from the second
field trip were spread within the central zone of the ternary plot indicating that all three absorption
coefficients co-varied.

Figure 2. Ternary plots displaying the relative contribution of absorption of colored dissolved organic
matter (CDOM) (aCDOM), phytoplankton (aφ) and detritus (ad) to the total absorption at different
wavelengths of (a) 443 nm, (b) 560 nm, (c) 665 nm and (d) the relative contribution of water (aw),
particulate (ap) and CDOM to the absorption at 709 nm.

As expected, the ternary plot showed the predominance of aφ at 665 nm to (at−w) from both
datasets with a slight dominance in the first. ad dominated the absorption at 560 nm and at 443 nm
the absorption was mainly governed by ad in the first and aCDOM in the second dataset. Since the
QAA approach combines the absorption by CDOM and detritus, it can be considered that IOP data
in Nav were dominated by aCDM in the blue-green region and aφ had a moderate contribution in the
red region. The QAALv5 was developed using case-1 waters where at at 440 nm was less than 0.3 m−1.
The QAAM14 was developed using data from very turbid productive waters where the average at(443)
was 19.9 m−1 and 13.5 m−1 in July and April, respectively. The accuracy of QAA for ocean waters
generally degrades rapidly with increasing CDOM and NAP concentrations [64]. Li et al. [65] used
QAA with λ0 shifted to longer wavelengths and found that if the average contribution of aCDOM(443)
dominates the absorption budget, then QAA can achieve a better result in turbid inland waters;
however, the higher contribution of ap(443) leads to poorer prediction results. The datasets used
in previous QAAs did not fit to bio-optical properties of the current dataset with at(443) ranging
between 0.72 and 1.52 m−1. In addition, the poorer performance can also be related to allochthonous
substances such as suspended matter and organic matter that increase the uncertainties, which called
for a re-parameterization.
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3.3. Performance of Existing QAAs

The first step was to test the performance of the existing QAAs: QAALv5, QAALv6, and QAAM14.
Shifting the λ0 from 560 to 708 nm, the at(λ) retrieval improved (Figure 3). QAALv5 and QAALv6

consistently underestimated at at all wavelengths while QAAM14 showed some improvement,
particularly at longer wavelengths. The underestimation can be attributed to the inefficiency
of the model at λ0 (560 and 665 nm, respectively) and due to the contribution of other OSCs,
such as suspended matter, to the absorption budget. The ternary plot showed that aw contributed
approximately 87% to the absorption budget at 709 nm, which means aCDOM, ad, and aφ together
contributed 13% to at (Figure 2d). QAAM14 showed more consistency when compared with
measured at; however, since it was developed for highly productive environments, the coefficients
and band combinations are not suitable to describe the particularities of non-productive waters such
as Nav. Therefore, the re-parameterization of the model was needed and initially based on QAAM14

using 709 nm as λ0 and then followed the steps proposed by QAALv5.

Figure 3. Relationship between estimated and measured at(λ) using existing quasi-analytical
algorithms (QAAs): (a) QAALv5; (b) QAALv6 and (c) QAAM14. The colored circles represent the
band centers of the OLCI sensor.

3.4. Re-Parameterization of QAA to Derive at

After re-parameterization, the estimation accuracy of at improved significantly with a MAPE = 16.35%
and RMSD = 0.15 m−1. The errors were considerably less compared to existing QAAs such as QAALv5

(MAPE = 58.05% and RMSD = 0.51 m−1), QAALv6 (MAPE = 35.59% and RMSD = 0.35 m−1), and
QAAM14 (MAPE = 30.98% and RMSD = 0.31 m−1). However, the improvement was not consistent
across all OLCI bands, particularly at 620 nm, which exhibited the second highest error among all
tested versions (Table 4). This may not be a problem for oligo-to-mesotrophic reservoirs such as Nav
where phycocyanin concentration (620 nm absorption feature) is negligible. This could be an issue for
waters dominated by cyanobacteria, such as highly productive inland lakes and ponds.
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Table 4. Comparative band-specific errors related to the re-parameterization of at(λ) based on mean
absolute percentage error (MAPE) (%) and root square mean difference (RSMD) (m−1) metrics. The first
column represents the nominal OLCI center bands (nm).

OLCI Bands QAALv5 QAALv6 QAAM14 QAAOMW

Wavelengths
(nm)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

412 1.21 75.88 1.01 63.01 0.93 56.21 0.35 19.74
443 0.87 72.52 0.71 57.55 0.64 49.64 0.23 16.02
490 0.47 65.93 0.35 46.66 0.32 41.04 0.14 16.78
510 0.37 62.96 0.26 41.76 0.24 38.12 0.13 19.02
560 0.22 56.39 0.14 31.83 0.15 32.99 0.12 24.33
620 0.23 43.32 0.08 13.35 0.13 20.92 0.17 29.05
665 0.34 48.56 0.16 21.48 0.13 15.30 0.09 11.17
681 0.38 50.26 0.19 24.31 0.14 15.55 0.07 8.29
709 0.46 46.63 0.21 20.39 0.09 9.04 0.03 2.70

Average 0.51 58.05 0.35 35.59 0.31 30.98 0.15 16.35

The Taylor diagram was used to understand how good model simulations were compared to
observations. As shown in Figure 4a, the distance between the red data symbol (reference) on the x-axis
and each colored model symbol represents the uRMSD*. For the four models, the R was very different,
ranging between 0.09 (QAAM14) and 0.63 (QAALv5). Among all tested models at 443 nm, QAALv5

produced the lowest σ* (0.26), which means that the variance of at(443) derived using the model was
far from the variance of the reference (1.00 − 0.26 = 0.74 units), and highest R (0.63) in comparison
with the reference. As stated in [60], for an R value of 0.63, the minimum uRMSD* should occur where
σ* = 0.63. However, if the goal is to move R and σ* closer to an ideal value of 1.0, then uRMSD* is not a
suitable validation metric. If we want to reduce the variability of both measured and estimated values,
then σ* < 1.0. Thus, QAALv5 presented the best performance. However, if we intend to bring the
model patterns to the ideal value of the reference, then QAAOMW presented the best combination of R
and σ* (R = 0.54, σ* = 0.96) as compared to the reference. To support the choice of the model, the target
function was also used. At 443 nm (Figure 4b), QAAOMW was the only model that showed the lowest
B* (−1.07) and all of them underestimated the variance of at(443). QAALv5 retrieved the highest B*
(−5.43) emphasizing the bad performance of this model when compared to QAAOMW. The other
models did not appear because they presented B* out of the range bound by the interval of −3 and 3.
Models positioned at the positive side of uRMSD* mean that σest > σmeas.

At 560 nm (Figure 4c), QAALv5 was the only model that produced R > 0.50 and σ* = 0.14. Therefore,
the uRMSD* was minimum relative to the other models studied. However, B* achieved again the
highest value (−4.47) showing the underestimation pattern of this approach in retrieving at(560).
Both QAALv6 and QAAM14 also underestimated at(560). QAAOMW produced a high value for σ* (2.12)
and a low value for R (0.03) showing the high variability between the measured and estimated values;
however, B* was the lowest (0.84) compared to the other models (Figure 4d). Models not displayed in
the target graphic presented values outside the established range. Figure 4e showed that QAAOMW

was the only model that retrieved at least one error metric close to the reference (σ* = 1.34) at
665 nm. Based on Figure 4f, QAAOMW overestimated at(665) while QAAM14 (B* = −1.32) showed
underestimation, as well as QAALv5 (B* = −7.10) and QAALv6 (B* = −3.18). Overall, the error analysis
showed a significant improvement by the newly re-parametrized model mainly in the shorter and
longer wavelengths (Table 4). The Taylor diagrams showed that QAALv5 could model at(λ) with low
variability when compared to the reference data; however, the underestimation was reasonably high,
becoming unviable for at(λ) retrieval.
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Figure 4. Taylor diagrams for at(λ) at (a) 443 nm, (c) 560 nm, and (e) 665 nm. Target diagrams for at(λ)

at (b) 443 nm, (d) 560 nm, and (f) 665 nm. Color symbols indicate the following: QAALv5 (gray dot),
QAALv6 (yellow dot), QAAM14 (blue dot), QAAOMW (green dot), and the reference observation
(red dot). The black circle in the target diagrams (M0) corresponds to a normalized total RMSD of 1.0;
therefore, all points between this circle and the origin are positively correlated.

3.5. Re-Parameterization of QAA to Derive aCDM

The average errors showed improvements mainly at shorter wavelengths when compared to
the previous versions (Table 5). The agreement between measured and estimated values showed
an average MAPE of 18.87% and the bands at 681 and 709 nm had the highest errors of 24.18 and
30.66%, respectively. Mishra et al. [23] observed a similar trend of high errors at longer wavelengths
starting from 560 nm and highlighted that the magnitude of aCDM at this region is small and, therefore,
does not affect the overall performance to a large extent. Besides, the main spectral region associated
with aCDOM is situated in the blue region. For instance, at 440 nm, aCDOM is considered a proxy of its
concentration and used in inversion models [44]. aCDM using QAAOMW produced the least error at
blue wavelengths, specifically at 443 nm.

Figure 5a showed that both QAALv5 and QAALv6 presented low σ* (0.21 and 0.31, respectively)
and R very close to these values (0.28 and 0.34, respectively), which means that uRMSD* was minimum
in those models. On the other hand, QAAOMW showed σ* = 1.16 and R = 0.54, which is closer to
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the reference value when compared to other models. The difference from all the models can be
distinguished in the target diagram (Figure 5b), and QAAOMW is only displayed with B* = −0.12,
depicting the underestimation of aCDM(443), while the others presented B* between −6.28 and −5.73.
The green data symbol is close to the black circle, indicating a uRMSD* close to 1. Figure 5c also
showed the good performance of QAAOMW in retrieving aCDM(560). Overall, the result showed
a similar result at 443 nm but the parameterized model presented a B* = 0.59, highlighting the
overestimation pattern (Figure 6d). At 665 nm, QAAOMW again showed an improved combination
of σ*, R, and B* (Figure 5e,f). Information about the bias contributes to the sense of scale or magnitude
in the model skill assessment process; therefore, it is not suitable to use the Taylor diagram alone to
evaluate the performance of a model.

Figure 5. Taylor diagrams for aCDM(λ) at (a) 443 nm, (c) 560 nm, and (e) 665 nm. Target diagrams for
aCDM(λ) at (b) 443 nm, (d) 560 nm, and (f) 665 nm. Symbols indicate the following: QAALv5 (gray dot),
QAALv6 (yellow dot), QAAM14 (blue dot), QAAOMW (green dot), and the reference observation
(red dot). The black circle in the Target diagrams (M0) corresponds to a normalized total RMSD of 1.0.
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Table 5. Comparative band-specific errors related to the re-parameterization of aCDM(λ) based on
MAPE (%) and RSMD (m−1) metrics. The first column represents the nominal OLCI center bands (nm).

OLCI Bands QAALv5 QAALv6 QAAM14 QAAOMW

Wavelengths
(nm)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

412 1.03 81.35 0.96 75.81 0.93 72.88 0.21 12.76
443 0.74 83.90 0.69 79.13 0.67 76.61 0.13 12.99
490 0.47 87.77 0.45 84.14 0.44 82.22 0.08 14.68
510 0.38 89.06 0.37 85.81 0.36 84.09 0.07 15.57
560 0.22 91.53 0.21 89.02 0.21 87.70 0.04 17.98
620 0.13 94.28 0.12 92.61 0.12 91.74 0.03 19.92
665 0.10 96.48 0.10 95.45 0.10 94.89 0.03 21.04
681 0.10 97.15 0.09 96.31 0.09 95.86 0.03 24.18
709 0.08 97.89 0.08 97.27 0.08 96.93 0.03 30.66

Average 0.36 91.05 0.34 88.39 0.33 86.99 0.07 18.87

3.6. Re-Parameterization of QAA to Derive aφ

QAALv5 and QAALv6 produced very high errors and negative predictions particularly at longer
wavelengths in aφ estimation (Table 6). On the other hand, QAAM14 provided positive values but
the errors remained too high. As a result, the agreement between the measured and estimated aφ(λ)

from the re-parameterized model produced the lowest average values of MAPE = 46.80% and RMSD
= 0.10 m−1 (Table 6). The band-specific contribution showed that other models performed slightly
better in the blue regions compared to the QAAOMW. For instance, QAALv6 produced the least errors
at 412 and 443 nm; similarly, QAAM14 had a MAPE of 42.84% at 681 nm. However, the QAAOMW

showed consistent results across all OLCI bands without a spike in errors in a specific band, unlike the
other QAAs. In addition, the QAAOMW produced the least errors at 620, 665, and 709 nm with MAPE
ranging between 45.56 and 53.29%.

Table 6. Comparative band-specific errors related to the re-parameterization of aφ(λ) based on MAPE
(%) and RSMD (m−1) metrics. The first column represents the nominal OLCI center bands (nm).

OLCI Bands QAALv5 QAALv6 QAAM14 QAAOMW

Wavelengths
(nm)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

412 0.19 53.69 0.11 21.31 0.14 33.80 0.19 44.39
443 0.15 40.10 0.10 25.20 0.17 45.24 0.18 42.67
490 0.04 24.02 0.14 92.11 0.22 130.02 0.10 47.57
510 0.04 34.77 0.16 150.98 0.22 184.86 0.08 47.97
560 0.03 42.49 0.16 238.37 0.18 229.39 0.05 47.28
620 0.11 100.73 0.33 402.82 0.19 173.98 0.06 45.56
665 0.25 157.52 0.37 264.71 0.11 56.92 0.09 46.47
681 0.29 167.75 0.38 241.91 0.10 42.84 0.10 46.04
709 0.38 870.85 0.69 1858.15 0.04 63.91 0.04 53.29

Average 0.16 165.77 0.27 366.17 0.15 106.77 0.10 46.80

As depicted in Figure 6a, both QAALv5 and QAALv6 showed low variability in the reference
dataset at 443 nm, while QAAM14 and the QAAOMW presented high σ* (1.55 and 1.60, respectively).
Figure 6b showed that QAAM14 overestimated aφ and produced high uRMSD* (1.92) followed by
QAAOMW (2.13). To produce the best match between measured and estimated values, it requires a
combination of low uRMSD* and B*. At 443 nm, QAALv6 provided the best fit for aφ followed by
QAALv5 and QAAOMW. At 560 nm, QAALv5 and QAAOMW presented the lowest σ* (0.14 and 0.76,
respectively) while R was 0.40 and −0.31, respectively (Figure 6c). Again, only QAALv5 and QAAOMW

produced low uRMSD* and B* but QAALv5 yielded a better result than QAAOMW (Figure 6d).
Even after producing the lowest variability between the reference and modeled data, QAALv6
still overestimated the variance of aφ(665). On the other hand, QAAOMW presented the lowest
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B* (−0.246) indicating the most accurate method amongst all those evaluated in this study (Figure 6e,f).
As mentioned in the previous section, the band-specific errors varied widely between models.

Figure 6. Taylor diagrams for aφ(λ) at (a) 443 nm, (c) 560 nm, and (e) 665 nm. Target diagrams also for
aφ(λ) at (b) 443 nm, (d) 560 nm, and (f) 665 nm. Symbols indicate the following: QAALv5 (gray dot),
QAALv6 (yellow dot), QAAM14 (blue dot), the QAAOMW (green dot), and the reference observation
(red dot).

The modifications improved the aφ(λ) retrieval with an average error (MAPE) of ~47%.
The difficulty in retrieving aφ(λ) was probably due to the very low Chl-a concentration combined
with the dominance of ad in the blue and green regions followed by aCDOM dominating at at 412 nm.
Lee et al. [54] also highlighted the difficulties in estimating aphi(λ) in complex waters. They observed
that uncertainties associated with aCDM(λ) are smaller than that of aφ(λ) and, therefore, methods other
than simple algebraic inversions are required to improve the accuracy of aφ(λ) prediction. Besides,
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refinements are expected when parameterizations to at(λ0), η, ζ and ξ are carried out for different
study sites.

3.7. Model Validation

An independent dataset (n = 14) collected in September 2014 (Nav 2, see Figure 1 for sampling
location) was used to verify the performance of QAAOMW by comparing in situ and derived
measurements at OLCI spectral bands. The results related to backscattering were not assessed due
to the lack of data availability. Shorter wavelengths were highly affected by inorganic and dissolved
matter (Figure 2).

The uncertainty based on the average MAPE (Table 7) was above 50% for at between 490 and
620 nm and the lowest average error was observed at 709 nm (4.15%), 681 nm (12.65%), 665 nm (22.81%),
and 412 nm (36.00%). Five specific sampling stations (P1, P9, P10, P13 and P19) were responsible for
the increase in error above 50% and after the removal of these samples, the average MAPE decreased
below 50% at all OLCI wavelengths, representing an average error of 26.62%. The average MAPE
for aCDM was 52.15% and high errors were observed at 490 nm (79.34%), 443 nm (78.30%), 412 nm
(66.21%), and 560 nm (58.89%). However, when the same five outlier stations’ data were eliminated,
the average MAPE decreased to 42.94%. The accuracy of aCDM(λ) and aφ(λ) is associated with the
uncertainties in at(λ) and the parameters ζ and ξ [54]. The reference aCDM(443) was overestimated,
possibly due to the mismatch between in situ and measured ζ and ξ. The estimation of aφ followed a
method different from the native QAA to avoid negative prediction and maintain the shape, which can
be difficult to achieve in waters with very low Chl-a concentrations.

Table 7. Comparative band-specific errors after validation procedure of at(λ), aCDM(λ), and aφ(λ)

based on MAPE (%) and RSMD (m−1) metrics. The first column represents the nominal OLCI center
bands (nm).

OLCI Bands at aCDM aφ

Wavelengths
(nm)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

RMSD
(m−1)

MAPE
(%)

412 0.43 36.00 0.56 66.21 0.14 41.23
443 0.36 41.40 0.44 78.30 0.13 39.27
490 0.30 57.66 0.28 79.34 0.08 46.24
510 0.26 59.74 0.22 73.89 0.05 44.65
560 0.20 62.81 0.12 58.89 0.03 85.02
620 0.26 54.15 0.05 30.95 0.04 176.35
665 0.16 22.81 0.04 19.37 0.08 94.12
681 0.10 12.65 0.05 26.54 0.08 70.31
709 0.05 4.15 0.05 35.82 - -

Average 0.23 39.04 0.20 52.15 0.08 74.65

The prediction of aφ was dependent on the uncertainties associated with at(λ) and ζ and
ξ parameters. High MAPE values (average 74.65%) were observed from 412 to 681 nm and the
highest errors were associated at longer wavelengths, mainly at 520, 620, and 665 nm. The previous
five samples contributed to this increased error. After excluding those samples, the average error
decreased to 48.23%. It is worth mentioning that in situ aφ(709) returned negative values using
the protocol described in Section “Data and Methods”; for that reason, the data at that wavelength
were disregarded.

Overall, QAAOMW improved the estimation of at and aCDM for Nav but the challenge remains
for aφ retrieval in low Chl-a waters. Ogashawara et al. [55] also found a low accuracy for the
Itumbiara Reservoir (CDOM-rich water), located in the west center of Brazil, in the blue and green
region for at. For aCDM, the uncertainties decreased but the errors were associated with higher
wavelengths such as 500–600 nm and 600–750 nm, whereas for aφ, the challenge was to improve the
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accuracy between 400 and 500 nm and between 500 and 600 nm. These results imply that optical
properties of a waterbody can have a big influence on the results obtained by a QAA. However,
the re-parameterization steps presented in this study showed promise in accurately estimating IOPs in
oligo-to-mesotrophic waterbodies. The authors also highlighted the need for additional tuning and
validation exercises using data from broad geographic regions to further increase the accuracy of the
IOP prediction.

4. Discussion

4.1. Linking QAAOMW-Derived IOP Variability to Physical and Meteorological Conditions

IOPs are intrinsically related to water quality parameters and, therefore, they are governed
by physical and meteorological variations at a broader landscape scale, such as rainfall, runoff,
discharge, and water level. After heavy rainfall, for example, sediment can enter the aquatic system by
surface runoff, reducing the euphotic zone and leading to a decrease in the primary production
by planktonic communities and submerged macrophytes [66]. Over dry seasons, the opposite
can be expected and the increase in primary production due to light availability and higher
nutrient concentration can be inferred by the increase of aφ(443). QAAOMW-derived IOPs and
their spatiotemporal variability can be used to study and isolate the environmental forces related to
landscape or atmosphere that control the bio-optical properties of the reservoir.

In situ Rrs(λ) data from the third field trip was used to retrieve the IOPs using QAAOMW.
at(443) data retrieved from QAAOMW from all field trips were averaged and analyzed with rainfall,
runoff, water level, and discharge data (Figure 7). Total rainfall during the months of April 2014,
September 2014, and May 2016 were 60.33 mm, 169.95 mm, and 197.49 mm, respectively (Figure 7a).
An increasing trend in rainfall was observed from October 2013 to August 2016. The State of São Paulo
experienced a dramatic drought event in 2014 and early 2015, which affected water availability for
agriculture, hydropower generation, and public use during the austral summer (December–March) [67].
Extreme events such as droughts can affect the water supply, as well as degrade water quality [68].
Besides, Cairo et al. [69] reported the influence of an atypical dry year, such as 2014, on the quality of
inland waters. They noticed that the Ibitinga Reservoir, displayed along the Tietê River cascade system
in Figure 1, worked as an accumulator of organic matter due to the decrease in precipitation rate and
increase in retention time. The water quality composition is highly affected by the seasons and the rise
in nutrient loads could be due to allochthonous sources that are maximized during the rainy season as
a result of high surface runoff [70,71]. Although a definitive pattern cannot be established because of
limited IOP data, the QAAOMW-derived at(443) showed an increasing trend and seemed to correlate
with the rainfall data.
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Figure 7. Temporal trends in (a) rainfall, (b) runoff, (c) water level, and (d) discharge variability from
October 2013 to August 2016. The green diamonds represent at(443) predicted by QAAOMW from
the three field trips carried out in Nav during April 2014, September 2014, and May 2016. Rainfall
data were acquired from NASA’s GIOVANNI database based on TRMM data with 0.25◦ of spatial
resolution (http://giovanni.sci.gsfc.nasa.gov/giovanni/). Runoff data were also acquired through
NASA’s GIOVANNI database. Water levels, as well as discharge data, were downloaded from the
Water National Agency of Brazil via their website (http://sar.ana.gov.br/).

The runoff corroborated the rainfall data, meaning that in April 2014 the runoff to the reservoir
was lower compared to September 2014 and May 2016 (Figure 7b). Non-point pollutants attributable
to agricultural activities can be carried across the land surface by runoff and reach the reservoir,
increasing the nutrient load leading to water quality degradation [72]. Rodgher et al. [29] and
Smith et al. [30] found an increase in total phosphorus, nitrite, and suspended materials during
rainy seasons from upstream to downstream in the Tietê River. The increase in nitrite and total
phosphorus was related to soil fertilization. Numerous studies have reported similar phenomena
of increased nutrient load caused by stream inputs and surface runoff [73–75]. QAAOMW-derived
at(443) also increased with increasing runoff emphasizing the growing trend from 2014 to 2016 and
indicating input from the watershed contributed to the increase in absorbing components, such as
dissolved and particulate matter. The annual average of the water level in the Nav Reservoir was
357.18 ± 0.15 m in 2014 and 357.56 ± 0.23 m in 2015. From January to August of 2016, the average
was 357.70 ± 0.20 m, showing low variability but a growing trend from 2014 to 2016 (Figure 7c).
The low water level variance is because the Nav is a run-of-river reservoir and, therefore, there is

http://giovanni.sci.gsfc.nasa.gov/giovanni/
http://sar.ana.gov.br/
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no water storage. The discharge (Figure 7d) also showed a direct relationship with at(443) and an
increasing trend. The period between 2012 and early 2015 showed that the discharge was low, which
was probably related to rainfall dynamics where low rainfall rates led to the closing of the floodgates;
the opposite situation was found in 2016 where the floodgates were opened to control floods due to
heavy rains.

4.2. Other Factors Influencing the Bio-Optical Characteristics of the Reservoir

Land use and land cover (LULC) can affect the supply of particulate and dissolved matter into
a waterbody leading to the modification of its bio-optical properties. Land uses such as urban and
agricultural areas can contribute with high suspended solids, intensifying the primary production
in inland waters [71,76]. Similar phenomena have been commonly observed in estuarine systems
where both land uses (urban + agriculture) have played an important role in triggering phytoplankton
growth and increasing light attenuation [77]. The intensification of the primary production increases
the magnitude of aφ(443). In the Tietê River, the most significant sources of pollution come from
the metropolitan and industrial region of São Paulo [30]. However, the water quality consistently
improves from the upstream reservoirs to the downstream due to auto-depuration and sedimentation
of suspended matter increasing the dissolved oxygen and water clarity [78]. LULC surrounding Nav
is primarily composed of agriculture, especially sugarcane and pasture [27]. That is in accordance
with Figure 2, which shows detritus and CDOM mainly controlling the IOPs in Nav. It implies that the
origin of the dominant OSCs in Nav can be linked to watershed activities.

When at(443) was analyzed using the entire dataset, the correlation with SPM and Chl-a was
very high (r = 0.80 and r = 0.79, p < 0.001, respectively) (Figure 8a,d). However, when at(443) was
analyzed using data from individual campaigns, the correlation with SPM dropped and only data
from the second field trip showed statistical significance (r = 0.54, p < 0.05). The correlation between
at(443) and Chl-a was non-significant (p > 0.05) when the campaigns were considered individually.
aCDM(443) using the entire dataset presented a correlation of 0.66 (p < 0.001) with both SPM and Chl-a.
On the other hand, the individual campaigns did not present any statistical correlation (Figure 8b,e).
Using the overall data, the correlation between SPM and Chl-a was 0.88 (p < 0.001) although from
all campaigns only the second and third were statistically significant (r = 0.62 and 0.80, respectively,
p < 0.05) (Figure 8c). The relationship between aφ(443) and Chl-a was weak but significant (r = 0.51,
p < 0.001) (Figure 8f). A poor correlation between SPM and Chl-a in the first field trip (r = 0.35,
p > 0.05) indicated that Chl-a was not the only parameter controlling the water’s optical properties,
thus assuming the properties of a typical case-2 water [10]. Besides, the weak or non-correlation allied
with the low Chl-a concentration suggested that both SPM and CDOM originated from allochthonous
sources or even sediment resuspension but not from the degradation of phytoplankton. Wu et al. [79]
who studied an inorganic matter-dominated lake (Poyang, China) made a similar observation. Thus,
factors such as LULC introduce different sources of sediments into the water modulating its bio-optical
composition and affecting the bio-optical modeling.
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Figure 8. Relationship between optical properties and water quality parameters: (a) at(443) versus SPM;
(b) aCDM(443) versus SPM; (c) aφ(443) versus SPM; (d) at(443) versus Chl-a; (e) aCDM(443)
versus Chl-a, and (f) aφ(443) versus Chl-a.

5. Conclusions

There have been significant efforts to accurately retrieve IOPs using QAAs for open ocean, coastal,
and very productive inland waters. However, their accuracies decline when applied to non-productive
inorganic matter-dominated inland waters. In this study, three well-known QAAs—QAALv5, QAALv6

and QAAM14—were applied to an oligo-to-mesotrophic reservoir in Southeast Brazil. The three QAAs
were developed to retrieve IOPs in open ocean, coastal waters, and hyper-eutrophic inland waters,
respectively, using different λ0. These models did not show a good agreement between estimated
and measured at(λ), aCDM(λ), and aφ(λ) even with the shifting of λ0 to 709 nm, confirming the
hypothesis presented in this study and justifying the need for a re-parameterization and development
of QAAOMW.

For re-parameterization, in addition to shifting the λ0 to 709 nm (available in both MSI/Sentinel-2
and OLCI/Sentinel-3), the at(λ0) and η were also modified to improve the retrieval of at(λ)

and bb(λ). This step was crucial to minimize the propagation of error in subsequent steps i.e.,
aCDM(λ), and aφ(λ) estimation. Moreover, the parameters ζ and ξ, often considered as second
order of importance, were shown to be significant for retrieving aCDM(λ0) and aφ(λ0). Specifically,
the changes involved were the modification of band combinations (443, 665, 709, 681 nm) designed to
retrieve χ and further the estimation of new coefficients for at(λ0) retrieval. In addition, the tuning
of η based on bands 665 and 754 nm increased the accuracy of at(λ) estimation. The main obstacle
found with the previous QAAs were related to the accuracy of aφ(λ) retrieval based on simple
subtraction between at(λ), aw(λ), and aCDM(λ). The errors were very high surpassing 100% at
critical wavelengths. Therefore, a new approach that was recently suggested was incorporated but
with relevant modifications aiming to derive aφ(443) based on the normalized a+φ (λ). As result,
the uncertainties went below 50% (412–681 nm) for aφ estimation. Validation using an independent
dataset showed QAAOMW to be promising in retrieving the IOPs in oligo-to-mesotrophic reservoirs
dominated by inorganic matter.

In general, the model has provided new insight for IOP and water quality monitoring in
oligo-to-mesotrophic environments such as in tropical reservoirs; however, the retrieval of aφ with high
accuracy still needs to be addressed. To further tune QAAOMW, more data from different sites, as well
as in situ backscattering coefficients, must be included to improve the estimation of at. Only then can
the scaling-up of QAAOMW to the OLCI sensor be performed, since the sensor would have the necessary
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band architecture to support the model. Successful scale-up of QAAOMW would facilitate frequent
large-scale bio-optical characterization of these reservoirs for effective water resource management.
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