The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results and Discussion
4.1. Identification the Main Moisture Uptake Sources for the Shiraz and Mashhad Boxes and Their Contribution Rates
4.2. Studying the Role of Marine Moisture Uptake Sources on Extreme Drought and Wet Conditions in the Shiraz and Mashhad Boxes
4.3. Studying the Role of Climatic Teleconnections on Extreme Drought and Wet Conditions in the Shiraz and Mashhad Boxes
4.4. Studying the Effect of the Dominant Moisture Sources on the Hydrology of Water Resources in the Shiraz and Mashhad Boxes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sori, R.; Nieto, R.; Vicente-Serrano, S.M.; Drumond, A.; Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dyn. 2017, 8, 653–675. [Google Scholar] [CrossRef] [Green Version]
- Sabziparvar, A.A.; Mirmasoudi, S.H.; Tabari, H.; Nazemosadat, M.J.; Maryanaji, Z. ENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of Iran. Int. J. Climatol. 2011, 31, 1710–1723. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011, 396, 313–320. [Google Scholar] [CrossRef]
- Tabari, H.; Aragi, H.; Hosseinzadeh Talaee, P. Impact of the North Atlantic Oscillation on streamflow in Western Iran. Hydrol. Process. 2014, 28, 4411–4418. [Google Scholar] [CrossRef]
- Araghi, A.; Mousavi-Baygi, M.; Adamowski, J.; Martinez, C. Association between three prominent climatic teleconnections and precipitation in Iran using wavelet coherence. Int. J. Climatol. 2016, 37, 2809–2830. [Google Scholar] [CrossRef]
- Nazemosadat, M.J. ENSO’ s Impact on the Occurrence of Autumnal Drought in Iran. Drought Netw. News 1999, 11, 15–18. [Google Scholar]
- Ghasemi, A.R.; Khalili, D. The influence of the Arctic Oscillation on winter temperatures in Iran. Theor. Appl. Climatol. 2006, 85, 149–164. [Google Scholar] [CrossRef]
- Azimi, M.; Golpayegani, F.; Tajrishi, M.; Abrishamchi, A. Seasonal Prediction of Karoon Streamflow Using Large-Scale Climate Indices. In World Environmental and Water Resources Congress; American Socitiey of Civil Engineers: Palm Spring, CA, USA, 2011; pp. 1184–1193. [Google Scholar]
- Regonda, S.K.; Rajagopalan, B.; Clark, M.; Pitlick, J. Seasonal Cycle Shifts in Hydroclimatology over the Western United States. J. Clim. 2005, 18, 372–384. [Google Scholar] [CrossRef]
- Camargo, S.J.; Emanuel, K.A.; Sobel, A.H. Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. J. Clim. 2007, 20, 4819–4834. [Google Scholar] [CrossRef]
- Tindall, J.C.; Valdes, P.J.; Sime, L.C. Stable water isotopes in HadCM3: Isotopic signature of El Niño–Southern Oscillation and the tropical amount effect. J. Geophys. Res. Atmos. 2009, 114, 111. [Google Scholar] [CrossRef]
- Yang, H.; Johnson, K.R.; Griffiths, M.; Yoshimura, K. Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions: Oxygen Isotopes of Asian Monsoon Precip. J. Geophys. Res. Atmos. 2016. [Google Scholar] [CrossRef]
- Cai, Z.; Tian, L.J.; Bowen, G. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region. Earth Planet. Sci. Lett. 2017, 475, 25–33. [Google Scholar] [CrossRef]
- Gao, J.; He, Y.; Masson-Delmotte, V.; Yao, T. ENSO Effects on Annual Variations of Summer Precipitation Stable Isotopes in Lhasa, Southern Tibetan Plateau. J. Clim. 2018, 31, 1173–1182. [Google Scholar] [CrossRef]
- Mares, I.; Mares, C.; Mihailescu, M. NAO impact on the summer moisture variability across Europe. Phys. Chem. Earth Parts A/B/C 2002, 27, 1013–1017. [Google Scholar] [CrossRef]
- Chan Steven, C.; Behers, S.K.; Toshio, Y. Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett. 2008, 35, L14S12. [Google Scholar] [CrossRef]
- Zablone, O.; Ogalo, L. Linkages between the Indian Ocean Dipole and East African Rainfall Anomalies. J. Kenya Meteorol. Soc. 2008, 2, 3–17. [Google Scholar]
- Power, S.B.; Kociuba, G. The impact of global warming on the Southern Oscillation Index. Clim. Dyn. 2011, 37, 1745–1754. [Google Scholar] [CrossRef]
- Gimeno, L.; Stohl, A.; Trigo, R.M.; Dominguez, F.; Yoshimura, K.; Yu, L.; Drumond, A.; Durán-Quesada, A.M.; Nieto, R. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef] [Green Version]
- Criag, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Stohl, A.; James, P. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part II: Moisture Transports between Earth’s Ocean Basins and River Catchments. J. Hydrometeorol. 2005, 6, 961–984. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part I: Method Description, Validation, and Demonstration for the August 2002 Flooding in Central Europe. J. Hydrometeorol. 2004, 5, 656–678. [Google Scholar] [CrossRef]
- Nieto, R.; Gimeno, L.; Trigo, R.M. A Lagrangian identification of major sources of Sahel moisture. Geophys. Res. Lett. 2006, 33, L18707. [Google Scholar] [CrossRef]
- Nieto, R.; Gallego, D.; Trigo, R.; Ribera, P.; Gimeno, L. Dynamic identification of moisture sources in the Orinoco basin in equatorial South America. Hydrol. Sci. J. 2008, 53, 602–617. [Google Scholar] [CrossRef] [Green Version]
- Durán-Quesada, A.M.; Gimeno, L.; Amador, J.A.; Nieto, R. Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res. Atmos. 2010, 115, 103. [Google Scholar] [CrossRef]
- Gómez-Hernández, M.; Drumond, A.; Gimeno, L.; Garcia-Herrera, R. Variability of moisture sources in the Mediterranean region during the period 1980–2000. Water Resour. Res. 2013, 49, 6781–6794. [Google Scholar] [CrossRef] [Green Version]
- Ciric, D.; Nieto, R.M.; Ramos, A.; Drumond, A.; Gimeno, L. Contribution of Moisture from Mediterranean Sea to Extreme Precipitation Events over Danube River Basin. Water 2018, 10, 1182. [Google Scholar] [CrossRef]
- Sorí, R.; Nieto, R.; Drumond, A.; Gimeno, L. The Niger River Basin Moisture Sources: A Lagrangian Analysis. Atmosphere 2017, 8, 38. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation infuence. J. Geophys. Res. 2008, 113, D03107. [Google Scholar] [CrossRef]
- Salih, A.A.M.; Zhang, Q.; Tjernstrom, M. Lagrangian tracing of Sahelian Sudan moisture sources. J. Geophys. Res. Atmos. 2015, 120, 6793–6808. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Reichert, P.; Abbaspour, K.C.; Zehnder, A.J.B. A Water Resources Threshold and Its Implications for Food Security. Environ. Sci. Technol. 2003, 37, 3048–3054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45, 434. [Google Scholar] [CrossRef]
- Alijani, B. Iran Climatology; Payam Nour Publication: Tehran, Iran, 2000; ISBN 978-964-455-621-0. [Google Scholar]
- Rahimzadeh, F.; Asgari, A.; Fattahi, E. Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol. 2009, 29, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. Atmos. 2009, 114, 101. [Google Scholar] [CrossRef]
- Balling, R.; Keikhosravi, M.; Roy, S.; Khoshhal, J. Trends in Extreme Precipitation Indices in Iran: 1951–2007. Adv. Meteorol. 2016, 1–8. [Google Scholar] [CrossRef]
- Ghalhari, G.A.F.; Roudbari, A.A.D.; Asadi, M. Erratum to: Identifying the spatial and temporal distribution characteristics of precipitation in Iran. Arab. J. Geosci. 2016, 9, 629. [Google Scholar] [CrossRef]
- Javari, M. Trend and Homogeneity Analysis of Precipitation in Iran. Climate 2016, 4, 44. [Google Scholar] [CrossRef]
- Karimi, M.; Farajzadeh, M. Spatial and Temporal distribution of Iran’s precipitation moisture. J. Geogr. Sci. Stud. 2011, 19, 109–127. [Google Scholar]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Sabziparvar, A.A.; Movahedi, S.; Asakereh, H.; Maryanaji, Z.; Masoodian, S.A. Geographical factors affecting variability of precipitation regime in Iran. Theor. Appl. Climatol. 2015, 120, 367–376. [Google Scholar] [CrossRef]
- Najmeddin, A.; Moore, F.; Keshavarzi, B.; Sadegh, Z. Pollution, source apportionment and health risk of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Mashhad, the second largest city of Iran. J. Geochem. Explor. 2018, 190, 154–169. [Google Scholar] [CrossRef]
- Eltahir, E.A.B.; Bras, R.L. Precipitation recycling. Rev. Geophys. 1996, 34, 367–378. [Google Scholar] [CrossRef]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. Atmos. 1999, 104, 1957–1972. [Google Scholar] [CrossRef] [Green Version]
- Drumond, A.; Marengo, J.; Ambrizzi, T.; Nieto, R.; Moreira, L.; Gimeno, L. The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: A Lagrangian analysis. Hydrol. Earth Syst. Sci. 2014, 18, 2577–2598. [Google Scholar] [CrossRef] [Green Version]
- Drumond, A.; Taboada, E.; Nieto, R.; Gimeno, L.; Vicente-Serrano, S.M.; Ignacio López-Moreno, J. Lagrangian analysis of the present-day sources of moisture for major ice-core sites. Earth Syst. Dynam 2016, 7, 549–558. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef]
- Forster, C.; Stohl, A.; Seibert, P. Parameterization of Convective Transport in a Lagrangian Particle Dispersion Model and Its Evaluation. J. Appl. Meteorol. Climatol. 2007, 46, 403–422. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Lorenz, C.; Kunstmann, H. The Hydrological Cycle in Three State-of-the-Art Reanalyses: Intercomparison and Performance Analysis. J. Hydrometeorol. 2012, 13, 1397–1420. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In The IX Conference on Applied Climatology; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Morid, S.; Moghadasi, M.; Arshad, S.; Omid, M. Drought Indicies Package; Version 2; Tarbiat Modarres University: Tehran, Iran, 2008. [Google Scholar]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- NOAA. Available online: https://www.esrl.noaa.gov (accessed on 21 October 2018).
- Smith, C.; Sardeshmukh, P. The effect of ENSO on the intraseasonal variance of surface temperatures in winter. Int. J. Climatol. 2000, 20, 1543–1557. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Jónsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Clim. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- NOAA. Available online: http://www.cpc.ncep.noaa.gov (accessed on 15 October 2018).
- NOAA. Available online: https://www.ncdc.noaa.gov (accessed on 15 October 2018).
- Heydarizad, M.; Raeisi, E.; Sori, R.; Gimeno, L. The Identification of Iran’s Moisture Sources Using a Lagrangian Particle Dispersion Model. Atmosphere 2018, 9, 408. [Google Scholar] [CrossRef]
- Barati, G.R.; Heydari, I. Classification of Iran western Precipitation. In The First Iran National Climate Change Conference; Iran Meteorological Organization: Tehran, Iran, 2003; pp. 16–23. [Google Scholar]
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed.; Dmowska, R., Holton, J.R., Thomasrossbay, H., Eds.; ElsevierAcademic Press: San Diego, CA, USA, 2004; ISBN 0-12-354015-1. [Google Scholar]
Range | Category |
---|---|
2 ≤ SPI | Extremely wet |
1.5 ≤ SPI < 2.0 | Severely wet |
1.0 ≤ SPI < 1.5 | Moderate wet |
0 < SPI < 1 | Mild wet |
−1.0 < SPI < 0 | Mild drought |
−1.5 < SPI ≤ −1.0 | Moderate drought |
−2.0 < SPI ≤ −1.5 | Severe drought |
SPI ≤ −2.0 | Extreme drought |
Diverse Moisture Sources Contribution (%) in the Total Moisture Uptake | ||||
---|---|---|---|---|
Source | Shiraz Box | Mashhad Box | ||
Dry | Wet | Dry | Wet | |
Persian Gulf | 43.0 | 26.0 | 8.0 | 17.4 |
Mediterranean Sea | 26.0 | 9.7 | 22.8 | 21.2 |
Red Sea | 6.7 | 23.7 | 2.0 | 18.9 |
Caspian Sea | 10.1 | 0.2 | 60.1 | 18.8 |
Oman Sea | 4.8 | 2.5 | _ | 2.8 |
Black Sea | 1.8 | 0.1 | 7.2 | 0.1 |
Arabian Sea | 4.3 | 36.5 | _ | 20.8 |
Indian Ocean | 3.3 | 1.5 | _ | _ |
Component | UnStan. Coef | Stan. Coef | p-Value | R | R2 | ||
---|---|---|---|---|---|---|---|
Beta | Beta | ||||||
SPI1 | (Constant) | 0.25 | _ | 0.00 | 0.209 | 0.043 | |
SOI | −0.155 | −0.209 | 0.00 | ||||
SPI6 | (Constant) | −0.07 | _ | 0.18 | 0.278 | 0.073 | |
SOI | −0.25 | −0.27 | −0.27 | _ | _ | ||
Shiraz | SPI12 | (Constant) | −0.044 | _ | 0.36 | 0.255 | 0.065 |
Box | SOI | −0.216 | −0.255 | 0.00 | _ | _ | |
SSI | (Constant) | −0.038 | _ | 0.46 | 0.25 | 0.063 | |
SOI | −0.205 | −0.251 | 0.00 | _ | _ | ||
SPI1 | (Constant) | 0.122 | _ | 0.01 | 0.174 | 0.030 | |
SOI | −0.135 | −0.174 | 0.00 | _ | _ | ||
SPI6 | (Constant) | 0.007 | _ | 0.88 | 0.222 | 0.049 | |
SOI | −0.187 | −0.22 | 0.00 | ||||
Mashhad | SPI12 | (Constant) | −0.021 | _ | 0.67 | 0.240 | 0.059 |
box | SOI | −0.207 | −0.242 | 0.00 | _ | _ | |
SSI | (Constant) | −0.017 | _ | 0.77 | 0.129 | 0.017 | |
SOI | −0.114 | −0.129 | 0.03 | _ | _ | ||
SPI1 | (Constant) | 0.274 | 0.00 | 0.20 | 0.04 | ||
BEST | 0.169 | 0.204 | 0.00 | ||||
SPI6 | (Constant) | −0.048 | _ | 0.36 | 0.30 | 0.1 | |
BEST | 0.303 | 0.299 | 0.00 | _ | _ | ||
Shiraz | SPI12 | (Constant) | −0.027 | _ | 0.56 | 0.29 | 0.09 |
Box | BEST | 0.27 | 0.292 | 0.00 | _ | _ | |
SSI | (Constant) | −0.019 | _ | 0.70 | 0.27 | 0.07 | |
BEST | 0.24 | 0.278 | 0.00 | _ | _ | ||
SPI1 | (Constant) | 0.13 | _ | 0.00 | 0.19 | 0.37 | |
BEST | 0.16 | 0.19 | 0.00 | _ | _ | ||
SPI6 | (Constant) | 0.023 | _ | 0.63 | 0.24 | 0.06 | |
BEST | 0.022 | 0.24 | 0.00 | ||||
Mashhad | SPI12 | (Constant) | −0.001 | _ | 0.98 | 0.24 | 0.06 |
box | BEST | 0.228 | 0.24 | 0.00 | _ | _ | |
SSI | (Constant) | 0.003 | _ | 0.95 | 0.08 | 0.007 | |
BEST | 0.081 | 0.083 | 0.16 | _ | _ | ||
SPI1 | (Constant) | 0.282 | _ | 0.00 | 0.047 | 0.002 | |
QBO | −0.003 | −0.047 | 0.38 | ||||
SPI6 | (Constant) | −0.025 | _ | 0.65 | 0.035 | 0.001 | |
QBO | 0.003 | −0.035 | 0.48 | _ | _ | ||
Shiraz | SPI12 | (Constant) | −0.019 | _ | 0.70 | 0.079 | 0.006 |
Box | QBO | −0.006 | −0.079 | 0.11 | _ | _ | |
SSI | (Constant) | 0. 017 | _ | 0.74 | 0.038 | 0.001 | |
QBO | 0.003 | 0.038 | 0.48 | _ | _ | ||
SPI1 | (Constant) | 0.145 | _ | 0.00 | 0.025 | 0.001 | |
QBO | −0.002 | −0.025 | 0.61 | _ | _ | ||
SPI6 | (Constant) | 0.041 | _ | 0.42 | 0.022 | 0.00 | |
QBO | −0.002 | −0.022 | 0.66 | ||||
Mashhad | SPI12 | (Constant) | 0.01 | _ | 0.85 | 0.052 | 0.003 |
box | QBO | −0.004 | −0.052 | 0.29 | _ | _ | |
SSI | (Constant) | 0.008 | _ | 0.89 | 0.041 | 0.002 | |
QBO | −0.003 | −0.041 | 0.49 | _ | _ | ||
SPI1 | (Constant) | 0.298 | _ | 0.00 | 0.078 | 0.006 | |
NAO | −0.069 | −0.078 | 0.15 | ||||
SPI6 | (Constant) | −0.015 | _ | 0.77 | 0.011 | 0.00 | |
NAO | −0.012 | 0.011 | 0.82 | _ | _ | ||
Shiraz | SPI12 | (Constant) | 0.002 | _ | 0.96 | 0.002 | 0.000 |
Box | NAO | −0.002 | −0.002 | 0.97 | _ | _ | |
SSI | (Constant) | 0.003 | _ | 0.94 | 0.091 | 0.008 | |
NAO | 0.086 | 0.09 | 0.08 | _ | _ | ||
SPI1 | (Constant) | 0.154 | _ | 0.00 | 0.066 | 0.004 | |
NAO | −0.059 | −0.066 | 0.18 | _ | _ | ||
SPI6 | (Constant) | 0.047 | _ | 0.34 | 0.004 | 0.000 | |
NAO | 0.004 | 0.004 | 0.94 | ||||
Mashhad | SPI12 | (Constant) | 0.02 | _ | 0.69 | 0.078 | 0.006 |
box | NAO | 0.077 | 0.078 | 0.11 | _ | _ | |
SSI | (Constant) | 0.015 | _ | 0.79 | 0.035 | 0.001 | |
NAO | 0.034 | 0.035 | 0.50 | _ | _ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heydarizad, M.; Raeisi, E.; Sori, R.; Gimeno, L.; Nieto, R. The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology. Water 2018, 10, 1550. https://doi.org/10.3390/w10111550
Heydarizad M, Raeisi E, Sori R, Gimeno L, Nieto R. The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology. Water. 2018; 10(11):1550. https://doi.org/10.3390/w10111550
Chicago/Turabian StyleHeydarizad, Mojtaba, Ezzat Raeisi, Rogert Sori, Luis Gimeno, and Raquel Nieto. 2018. "The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology" Water 10, no. 11: 1550. https://doi.org/10.3390/w10111550
APA StyleHeydarizad, M., Raeisi, E., Sori, R., Gimeno, L., & Nieto, R. (2018). The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology. Water, 10(11), 1550. https://doi.org/10.3390/w10111550