A Hydroclimatological Analysis of Precipitation in the Ganges–Brahmaputra–Meghna River Basin
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. GBM Precipitation Analysis
4.2. Global Climate Analysis
4.3. Sub-Basin Scale Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGregor, G. Hydroclimatology, modes of climatic variability and stream flow, lake and groundwater level variability. Prog. Phys. Geogr. 2017, 41, 496–512. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K. On the relationship between Iran surface temperature and northwest India summer monsoon rainfall. Int. J. Climatol. 2016, 36, 4425–4438. [Google Scholar] [CrossRef]
- Choi, J.-W.; Cha, Y.; Lu, R. Interdecadal variation of summer monsoon over the southern part of Asia in mid-1990s. Int. J. Climatol. 2017, 37, 1138–1146. [Google Scholar] [CrossRef]
- Ashok, K.; Saji, N.H. On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat. Hazards 2007, 42, 273–285. [Google Scholar] [CrossRef]
- Khandu; Awange, J.L.; Kuhn, M.; Anyah, R.; Forootan, E. Changes and variability of precipitation and temperature in the Ganges-Brahmaputra-Meghna river basin based on global high-resolution reanalyses. Int. J. Climatol. 2017, 37, 2141–2159. [Google Scholar]
- Pervez, M.S.; Henebry, G.M. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought. Nat. Hazards Earth Syst. Sci. 2015, 15, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Khandu; Awange, J.L.; Anyah, R.; Kuhn, M.; Fukuda, Y. Assessing regional climate simulations of the last 30 years (1982–2012) over Ganges-Brahmaputra-Meghna River Basin. Clim. Dyn. 2017, 49, 2329–2350. [Google Scholar]
- Frenken, K. Irrigation in Southern and Eastern Asia in Figures; Food and Agriculture Organization (FAO): Rome, Italy, 2012; Available online: www.fao.org/nr/water/aquastat/basins/gbm/index.stm (accessed on 1 November 2017).
- Chowdhury, M.R.; Ward, N. Hydro-meteorological variability in the greater Ganges-Brahmaputra-Meghna basins. Int. J. Climatol. 2004, 24, 1495–1508. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.S.; Haque, A.; Bala, S.K. Hydrologic characteristics of floods in Ganges-Brahmaputra-Meghna (GBM) delta. Nat. Hazards 2010, 54, 797–811. [Google Scholar] [CrossRef]
- Mutton, D.; Haque, C.E. Human vulnerability, dislocation and resettlement: Adaptation processes of river-bank erosion-induced displacees in Bangladesh. Disasters 2004, 28, 41–62. [Google Scholar] [CrossRef]
- Masmood, M.; Yeh, P.J.-F.; Hanasaki, N.; Takeuchi, K. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna basin. Hydrol. Earth Syst. Sci. 2015, 19, 747–770. [Google Scholar] [CrossRef]
- Hossain, F.; Katiyar, N.; Hong, Y.; Wolf, A. The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world. Nat. Hazards 2007, 43, 199–210. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2017, 21, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.; Lakshmi, V.; Hashemi, H. Intercomparison of trend analysis of multisatellite monthly precipitation products and gauge measurements for river basins of India. J. Hydrol. 2018, 565, 779–790. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; Gruber, A.; Susskind, J.; Nelkin, E.; et al. The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydromet. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s largest river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T.M.L. Global patterns of ENSO induced precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Mayer, D.A.; Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys Res. Oceans 1999, 104, 7841–7848. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Met. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Mishra, V.; Smoliak, B.V.; Lettenmaier, D.P.; Wallace, J.M. A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA 2012, 109, 7213–7217. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, J.; Zhou, T.; Wang, B. Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationships with ENSO since the late 1970s. J. Clim. 2008, 21, 1771–1789. [Google Scholar] [CrossRef]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Krishna Kumar, K.; Rajagopalan, B.; Cane, M.A. On the weakening relationship between the Indian monsoon and ENSO. Science 1999, 284, 2156–2159. [Google Scholar] [CrossRef]
- Kucharski, F.; Bracco, A.; Yoo, J.H.; Molteni, F. Low-frequency variability of the Indian monsoon-ENSO climate relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Clim. 2007, 20, 4255–4266. [Google Scholar] [CrossRef]
- Kucharski, F.; Bracco, A.; Yoo, J.H.; Tompkins, A.M.; Feudale, L.; Ruti, P.; Dell’Aquila, A. A Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q. J. R. Met. Soc. 2009, 135, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Syed, F.S.; Kucharski, F. Statistically related coupled modes of South Asian summer monsoon interannual variability in the tropics. Atmos. Sci. Lett. 2016, 17, 183–189. [Google Scholar] [CrossRef]
- Koninklijk Nederlands Meteorologisch Instituut Climate Explorer. Available online: https://climexp.knmi.nl (accessed on 1 November 2017).
Sub-Basin | Clim Rain mm mo−1 | Average PC2 | Average PC3 | PC2 1994 mm mo−1 | PC3 1987 mm mo−1 | % of Total PC2 1994 | % of Total PC3 1987 | r Rain vs. Nino 3.4 | r Rain vs. TSA |
---|---|---|---|---|---|---|---|---|---|
Meghna (4522) | 480.8 (10.1%) | 181 | 362 | 77.7 | 131.2 | 19 | 22 | +0.03 | +0.33 |
E Ganges (4523) | 383.9 (0.5%) | 113 | 438 | 48.5 | 158.6 | 18 | 37 | +0.20 | +0.35 1 |
W Ganges (4524) | 234.0 (56.0%) | 261 | 241 | 111.9 | 87.3 | 44 | 38 | −0.51 2 | +0.29 |
SW Brahm. (4525) | 338.3 (15.9%) | 142 | 272 | 60.7 | 98.6 | 21 | 24 | −0.09 | +0.35 1 |
C Brahm. (4526) | 240.3 (2.0%) | 128 | 277 | 54.8 | 100.4 | 28 | 33 | −0.16 | +0.50 2 |
SE Brahm. (4527) | 406.2 (2.5%) | 325 | 240 | 139.4 | 87.0 | 34 | 18 | +0.04 | −0.07 |
E Brahm. (4528) | 187.6 (1.9%) | 103 | 271 | 44.1 | 98.0 | 30 | 39 | +0.16 | +0.22 |
N Brahm. (4529) | 169.3 (11.3%) | 114 | 235 | 48.7 | 85.1 | 36 | 51 | − 0.50 2 | + 0.60 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtis, S.; Crawford, T.; Rahman, M.; Paul, B.; Miah, M.G.; Islam, M.R.; Patel, M. A Hydroclimatological Analysis of Precipitation in the Ganges–Brahmaputra–Meghna River Basin. Water 2018, 10, 1359. https://doi.org/10.3390/w10101359
Curtis S, Crawford T, Rahman M, Paul B, Miah MG, Islam MR, Patel M. A Hydroclimatological Analysis of Precipitation in the Ganges–Brahmaputra–Meghna River Basin. Water. 2018; 10(10):1359. https://doi.org/10.3390/w10101359
Chicago/Turabian StyleCurtis, Scott, Thomas Crawford, Munshi Rahman, Bimal Paul, M. Giashuddin Miah, M. Rafiqul Islam, and Mohin Patel. 2018. "A Hydroclimatological Analysis of Precipitation in the Ganges–Brahmaputra–Meghna River Basin" Water 10, no. 10: 1359. https://doi.org/10.3390/w10101359
APA StyleCurtis, S., Crawford, T., Rahman, M., Paul, B., Miah, M. G., Islam, M. R., & Patel, M. (2018). A Hydroclimatological Analysis of Precipitation in the Ganges–Brahmaputra–Meghna River Basin. Water, 10(10), 1359. https://doi.org/10.3390/w10101359