Effectiveness of Contour Farming and Filter Strips on Ecosystem Services
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition, Calibration, and Validation of the SWAT Model
2.3. Model Setup
- SWt: the final soil water content (mm),
- SW0: the initial water content in day i (mm),
- R: the amount of precipitation in day i (mm),
- Qs: the amount of surface runoff in day i (mm),
- Ea: the amount of evaporation in day i (mm),
- Wseep: the amount of water entering the vadose zone in day i (mm),
- Qqw: the amount of return flow in day i (mm).
- Sed: Sediment yield from a given Hydrologic Response Unit HRU on storm event basis (t/ha),
- Q: Surface runoff volume (mm/ha),
- qp: Peak runoff (m3/s),
- K: Soil erodibility (Mg MJ−1 mm−1),
- C: Crop management factor (Dimensionless)
- P: Soil erosion control practice (Dimensionless)
- LS: Topographic factor (L: slope length, S: slope steepness) (Dimensionless),
- A: Hydrologic Response Unit (HRU) (ha),
- CFRG: Coarse fragment factor (Dimensionless).
2.4. Model Parameter Sensitivity Analysis, Calibration, and Validation
2.5. Simulating Contour Farming
2.6. Simulating Filter Strips
3. Results and Discussion
3.1. Calibration and Validation of Streamflow and Sediments
3.2. Contour Farming Impact on Sediment and Water Yield
3.3. Filter Strips’ Impacts on Sediment and Water Yield
3.4. Combination of Contour Farming and Filter Strips
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, M.J.; Brown, M.T.; Shepherd, K.D. Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis. Agric. Ecosyst. Environ. 2006, 114, 249–269. [Google Scholar] [CrossRef]
- Angima, S.D.; Stott, D.E.; Neill, M.K.O.; Ong, C.K.; Weesies, G.A. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Mourad, K.A.; Alshihabi, O. Assessment of future Syrian water resources supply and demand by the WEAP model. Hydrol. Sci. J. 2015, 61, 393–401. [Google Scholar] [CrossRef]
- Metobwa, O.G.M.; Mourad, K.A.; Ribbe, L. Water demand simulation using WEAP 21: A Case Study Mara River Basin, Kenya. Int. J. Nat. Resour. Ecol. Manag. 2018, 3, 9–18. [Google Scholar] [CrossRef]
- Mourad, K.; Berndtsson, R.; Abu-El-Sha’r, W.; Qudah, M.A. Modeling tool for air stripping and carbon adsorbers to remove trace organic contaminants. Int. J. Therm. Environ. Eng. 2012, 4, 99–106. [Google Scholar] [CrossRef]
- Khorchani, N.; Mourad, K.A.; Ribbe, L. Assessing the impact of land-use change to the hydrological response in Mellegue river, Tunisia. Curr. Environ. Eng. 2018, 5, 125–135. [Google Scholar] [CrossRef]
- Mourad, K.A.; Berndtsson, R. Syrian water resources between the present and the future. Air Soil Water Res. 2011, 4, 93–100. [Google Scholar] [CrossRef]
- Mourad, K.A.; Berndtsson, R. Water status in the Syrian water basins. Open J. Mod. Hydrol. 2012, 2, 15–20. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Jha, M.K. SWAT: Model use, calibration and validation. Am. Soc. Agric. Boil. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Ajwang’, O.R.; Kitaka, N.; Oduor, O.S. Assessment of provisioning and cultural ecosystem services in natural wetlands and rice fields in Kano floodplain, Kenya. Ecosyst. Serv. 2016, 21, 166–173. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion & Conservation, 3rd; Wiley-Blackwell: Malden, MA, USA, 2005. [Google Scholar]
- Quinton, J.N.; Catt, J.A. The effects of minimal tillage and contour cultivation on surface runoff, soil loss and crop yield in the long-term Woburn Erosion Reference Experiment on sandy soil at Woburn, England. Soil Use Manag. 2004, 20, 343–349. [Google Scholar] [CrossRef]
- Tadesse, L.D.; Morgan, R.P.C. Contour grass strips: A laboratory simulation of their role in erosion control using live grasses. Soil Technol. 1996, 9, 83–89. [Google Scholar] [CrossRef]
- Yuan, Y.; Mbonimpa, E.G.; Nash, M.S.; Mehaffey, M.H. Sediment and total phosphorous contributors in Rock River watershed. J. Environ. Manag. 2014, 133, 214–221. [Google Scholar] [CrossRef]
- Tuppad, P.; Kannan, N.; Srinivasan, R.; Rossi, C.G.; Arnold, J.G. Simulation of agricultural management alternatives for watershed protection. Water Resour. Manag. 2010, 24, 3115–3144. [Google Scholar] [CrossRef]
- Vogl, A.L.; Bryant, B.P.; Hunink, J.E.; Wolny, S.; Apse, C.; Droogers, P. Valuing investments in sustainable land management in the Upper Tana River basin, Kenya. J. Environ. Manag. 2016, 195, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lowrance, R.R.; Bosch, D.D.; Strickland, T.C.; Her, Y.; Vellidis, G. Effect of watershed subdivision and filter width on swat simulation of a coastal plain watershed. J. Am. Water Resour. Assoc. 2010, 46, 586–602. [Google Scholar] [CrossRef]
- Droogers, P.; Hunink, J.E.; Kauffman, J.H.; Van Lynden, G.W.J. Costs and Benefits of Land Management Options in the Upper Tana, Kenya Using the Water Evaluation and Planning System—WEAP; ISRIC—World Soil Information: Wageningen, The Netherlands, 2011. [Google Scholar]
- Herweg, K.; Ludi, E. The performance of selected soil and water conservation measures—Case studies from Ethiopia and Eritrea. Catena 1999, 36, 99–114. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Mankin, K.R.; Barnes, P.L. Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT. Agric. Water Manag. 2008, 95, 1189–1200. [Google Scholar] [CrossRef]
- Archer, D. Suspended sediment yields in the Nairobi area of Kenya and environmental controls. In Proceedings Exeter Symposium; IAHS Publishers: Wallingford, UK, 1996; pp. 37–48. [Google Scholar]
- Hunink, J.E.; Droogers, P. Impact Assessment of Investment Portfolios for Business Case Development of the Nairobi Water Fund in the Upper Tana River, Kenya; FutureWater: Wageningen, The Netherlands, 2015; Volume 31. [Google Scholar]
- Leisher, C.; Makau, J.; Kihara, F.; Kariuki, A.; Sowles, J.; Courtemanch, D.; Njugi, G.; Apse, C. Upper Tana-Nairobi Water Fund Monitoring and Evaluation Plan. 2013. Available online: https://s3.amazonaws.com/tnc-craft/library/Upper-Tana-ME-Plan-v7.pdf?mtime=20180218223009 (accessed on 20 August 2018).
- Hunink, J.E.; Immerzeel, W.W.; Droogers, P.; Kauffman, J.H. Impacts Land Manag. Options Up. Tana, Kenya Using Soil Water Assess: Tool—SWAT. 2011. Available online: https://www.researchgate.net/publication/254906365 (accessed on 21 September 2018).
- Gathagu, J.N.; Mutua, B.M.; Mourad, K.A.; Oduor, B.O. Uncertainty analysis and calibration of SWAT model for estimating impacts of conservation methods on streamflow and sediment yield in Thika River catchment, Kenya. Int. J. Hydrol. Res. 2018, 3, 1–11. [Google Scholar] [CrossRef]
- Hunink, J.E.; Droogers, P. Physiographical Baseline Survey for the Upper Tana Catchment: Erosion and Sediment Yield Assessment; FutureWater: Wageningen, The Netherlands, 2011; Volume 31. [Google Scholar]
- Mwangi, H.M. Evaluation of the Impacts of Soil and Water Conservation Practices on Ecosystem Services in Sasumua Watershed, Kenya, Using SWAT Model; Jomo Kenyatta University of Agriculture and Technology: Juja, Kenya, 2011. [Google Scholar]
- Humberto, B.; Rattan, L. Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Jha, M.; Gassman, P.W.; Secchi, S.; Gu, R.; Arnold, J. Effect of watershed subdivision on SWAT Flow, sediment, and nutrient predictions. J. Am. Water Resour. Assoc. 2004, 40, 811–825. [Google Scholar] [CrossRef]
- Jabro, J.D. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Am. Soc. Agric. Eng. 1992, 35, 557–560. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation. 2011. Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 21 September 2018).
- Hunink, J.E.; Niadas, I.A.; Antonaropoulos, P.; Droogers, P.; de Vente, J. Targeting of intervention areas to reduce reservoir sedimentation in the Tana catchment (Kenya) using SWAT. Hydrol. Sci. J. 2013, 58, 600–614. [Google Scholar] [CrossRef] [Green Version]
- Mwangi, J.K.; Shisanya, C.A.; Gathenya, J.M.; Namirembe, S.; Moriasi, D.N. A modeling approach to evaluate the impact of conservation practices on water and sediment yield in Sasumua Watershed, Kenya. Soil Water Conserv. 2015, 70, 75–90. [Google Scholar] [CrossRef]
- Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Representation of agricultural conservation practices with SWAT. Hydrol. Process. 2008, 22, 3042–3055. [Google Scholar] [CrossRef]
- Wischmeir, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; U.S. Department of Agriculture: Washington, DC, USA, 1978.
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs. 2015. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 21 September 2018).
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.; Van Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am. Soc. Agric. Boil. Eng. 2007, 50, 885–900. [Google Scholar]
- Meaurio, M.; Zabaleta, A.; Angel, J.; Srinivasan, R.; Antigüedad, I. Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. J. Hydrol. 2015, 525, 326–334. [Google Scholar] [CrossRef]
- Rostamian, R.; Aazam, J.; Afyuni, M.; Farhad, S.; Heidarpour, M.; Jalalian, A.; Abbaspour, K. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J. 2010, 53, 977–988. [Google Scholar] [CrossRef]
- Tolson, B.A.; Shoemaker, C.A. Watershed Modeling of the Cannonsville Basin Using SWAT2000: Model Development, Calibration and Validation for the Prediction of Flow, Sediment and Phosphorus Transport to the Cannonsville Reservoir; Cornell University Library: Ithaca, NY, USA, 2004. [Google Scholar]
- Mwangi, H.M.; Gathenya, J.M.; Mati, B.M.; Mwangi, J.K. Evaluation of Agricultural Conservation Practices on Ecosystem Services in Sasumua Watershed, Kenya Using SWAT Model. 2013, pp. 659–673. Available online: http://ir.jkuat.ac.ke/handle/123456789/994 (accessed on 21 September 2018).
- Singh, G.; Babu, R.; Narain, P.; Bhushan, L.S.; Abrol, I.I. Soil erosion rates in India. J. Soil Water Conserv. 1992, 1, 97–99. [Google Scholar]
- Phomcha, P.; Wirojanagud, P.; Vangpaisal, T.; Thaveevouthti, T. Modeling the impacts of alternative soil conservation practices for an agricultural watershed with the SWAT model. Procedia Eng. 2012, 32, 1205–1213. [Google Scholar] [CrossRef]
- Gassman, P.W.; Osei, E.; Saleh, A.; Rodecap, J.; Norvell, S.; Williams, J. Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agric. Ecosyst. Environ. 2006, 117, 135–144. [Google Scholar] [CrossRef]
- Yuan, Y.; Bingner, R.A.; Locke, M.A. Review of effectiveness of vegetative buffers on sediment trapping in agricultural areas. Ecohydrology 2009, 2, 321–336. [Google Scholar] [CrossRef]
- Vaché, K.B.; Eilers, J.M.; Santelmann, M.V. Water quality modeling of alternative agricultural scenarios in the U.S. Corn Belt. J. Am. Water Resour. Assoc. 2003, 38, 773–787. [Google Scholar] [CrossRef]
- Gharabaghi, B.; Rudra, R.P.; Whiteley, H.R.; Dickinson, W.T. Performance testing of vegetative filter strips. Am. Soc. Civ. Eng. 2004, 1–9. [Google Scholar]
- National Environmental Management Authority (NEMA). Integrated National Landuse Guidelines; NEMA: Nairobi, Kenya, 2011.
- Helmmers, M.; Thomas, I.; Dosskey, M.G.; Dabney, S.M.; Strock, J. Buffers and vegetative filter strips. In Upper Mississippi River Sub-basin Hypoxia Nutrient Committee (UMRSHNC); National Forest Service: Washington, DC, USA, 2008; pp. 43–58. [Google Scholar]
Datasets | Detail |
---|---|
Digital elevation model | 30 m resolution |
SOTER-UT soils map | Scale 1:250,000 |
Upper Tana Land use map (2009) | 30 m resolution |
Meteorological data | Daily (1996–2013) |
Streamflow data | Daily (1996–2013) |
Sediments load/Turbidity data | Point data 2010 |
Bathymetric survey data | Thika dam, Sasumua dam, Masinga dam |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gathagu, J.N.; Mourad, K.A.; Sang, J. Effectiveness of Contour Farming and Filter Strips on Ecosystem Services. Water 2018, 10, 1312. https://doi.org/10.3390/w10101312
Gathagu JN, Mourad KA, Sang J. Effectiveness of Contour Farming and Filter Strips on Ecosystem Services. Water. 2018; 10(10):1312. https://doi.org/10.3390/w10101312
Chicago/Turabian StyleGathagu, John Ng’ang’a, Khaldoon A. Mourad, and Joseph Sang. 2018. "Effectiveness of Contour Farming and Filter Strips on Ecosystem Services" Water 10, no. 10: 1312. https://doi.org/10.3390/w10101312