Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Location and Conditions
2.2. Experimental
2.2.1. INP Concentrations
2.2.2. Meteorological Parameters
2.2.3. Size Inferred Parameters
2.2.4. Absorption and Scattering Measurements
2.2.5. Chemical Components
2.2.6. Trace Gases
2.2.7. Cloud Water Samples
2.2.8. Overview INP Predictor Parameters
2.3. Identification of FT Conditions
2.4. Comparison to Parameterization
3. Results and Discussions
3.1. Distinction by Air Mass Type
3.1.1. Meteorological Conditions
3.1.2. Size Inferred Parameters and eBC
3.1.3. Chemical Compounds
3.2. Distinction by Seasonal Variability and Air Mass Type
3.2.1. Meteorological Conditions
3.2.2. Size Inferred Parameters and eBC
3.3. Testing INP Parameterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Koop, T.; Luo, B.; Tsias, A.; Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 2000, 406, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Vali, G.; DeMott, P.J.; Möhler, O.; Whale, T.F. Technical note: A proposal for ice nucleation terminology. Atmos. Chem. Phys. 2015, 15, 10263–10270. [Google Scholar] [CrossRef]
- Korolev, A.; McFarquhar, G.; Field, P.R.; Franklin, C.; Lawson, P.; Wang, Z.; Williams, E.; Abel, S.J.; Axisa, D.; Borrmann, S.; et al. Mixed-phase clouds: Progress and challenges. Meteorol. Monogr. 2017, 58. [Google Scholar] [CrossRef]
- Field, P.R.; Lawson, R.P.; Brown, P.R.A.; Lloyd, G.; Westbrook, C.; Moisseev, D.; Miltenberger, A.; Nenes, A.; Blyth, A.; Choularton, T.; et al. Secondary ice production: Current state of the science and recommendations for the future. Meteorol. Monogr. 2017, 58. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Ladino, L.A.; Wex, H.; Boose, Y.; Burkert-Kohn, M.; Cziczo, D.J.; Krämer, M. Overview of ice nucleating particles. Meteorol. Monogr. 2017, 58. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Archuleta, C.M.; DeMott, P.J.; Kreidenweis, S.M. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys. 2005, 5, 2617–2634. [Google Scholar] [CrossRef] [Green Version]
- Kanji, Z.A.; Abbatt, J.P.D. Ice nucleation onto arizona test dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem. 2010, 114, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Welti, A.; Lüönd, F.; Stetzer, O.; Lohmann, U. Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys. 2009, 9, 6705–6715. [Google Scholar] [CrossRef]
- Hoose, C.; Moehler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef]
- Després, V.; Huffman, J.; Burrows, S.; Hoose, C.; Safatov, A.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64. [Google Scholar] [CrossRef]
- Conen, F.; Stopelli, E.; Zimmermann, L. Clues that decaying leaves enrich arctic air with ice nucleating particles. Atmos. Environ. 2016, 129, 91–94. [Google Scholar] [CrossRef]
- Creamean, J.M.; Suski, K.J.; Rosenfeld, D.; Cazorla, A.; DeMott, P.J.; Sullivan, R.C.; White, A.B.; Ralph, F.M.; Minnis, P.; Comstock, J.M.; et al. Dust and biological aerosols from the sahara and asia influence precipitation in the western U.S. Science 2013, 339, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- DeMott, P.J.; Hill, T.C.J.; McCluskey, C.S.; Prather, K.A.; Collins, D.B.; Sullivan, R.C.; Ruppel, M.J.; Mason, R.H.; Irish, V.E.; Lee, T.; et al. Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA 2016, 113, 5797–5803. [Google Scholar] [CrossRef] [PubMed]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. PNAS 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, R.H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J.D.; Ladino, L.A.; Jones, K.; et al. Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions. Atmos. Chem. Phys. 2015, 15, 12547–12566. [Google Scholar] [CrossRef]
- Prenni, A.J.; Tobo, Y.; Garcia, E.; DeMott, P.J.; Huffman, J.A.; McCluskey, C.S.; Kreidenweis, S.M.; Prenni, J.E.; Pöhlker, C.; Pöschl, U. The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys. Res. Lett. 2013, 40, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.D.; Suter, K.; Olivarez, L. Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. J. Phys. Chem. 2014, 118, 10036–10047. [Google Scholar] [CrossRef] [PubMed]
- DeMott, P.J. An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteorol. 1990, 29, 1072–1079. [Google Scholar] [CrossRef]
- Gorbunov, B.; Baklanov, A.; Kakutkina, N.; Windsor, H.L.; Toumi, R. Ice nucleation on soot particles. J. Aerosol Sci. 2001, 32, 199–215. [Google Scholar] [CrossRef]
- Grawe, S.; Augustin-Bauditz, S.; Hartmann, S.; Hellner, L.; Pettersson, J.B.C.; Prager, A.; Stratmann, F.; Wex, H. The immersion freezing behavior of ash particles from wood and brown coal burning. Atmos. Chem. Phys. 2016, 16, 13911–13928. [Google Scholar] [CrossRef]
- Petters, M.D.; Parsons, M.T.; Prenni, A.J.; DeMott, P.J.; Kreidenweis, S.M.; Carrico, C.M.; Sullivan, A.P.; McMeeking, G.R.; Levin, E.; Wold, C.E.; et al. Ice nuclei emissions from biomass burning. J. Geophys. Res. Atmos. 2009, 114, D07209. [Google Scholar] [CrossRef]
- Popovicheva, O.; Kireeva, E.; Persiantseva, N.; Khokhlova, T.; Shonija, N.; Tishkova, V.; Demirdjian, B. Effect of soot on immersion freezing of water and possible atmospheric implications. Atmos. Res. 2008, 90, 326–337. [Google Scholar] [CrossRef]
- Umo, N.S.; Murray, B.J.; Baeza-Romero, M.T.; Jones, J.M.; Lea-Langton, A.R.; Malkin, T.L.; O'Sullivan, D.; Neve, L.; Plane, J.M.C.; Williams, A. Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds. Atmos. Chem. Phys. 2015, 15, 5195–5210. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef] [Green Version]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Fletcher, N.H. The Physics of Rainclouds; Cambridge University Press: Cambridge, UK, 1962. [Google Scholar]
- Meyers, M.P.; DeMott, P.J.; Cotton, W.R. New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol. 1992, 31, 708–721. [Google Scholar] [CrossRef]
- Ardon-Dryer, K.; Levin, Z.; Lawson, R.P. Characteristics of immersion freezing nuclei at the south pole station in antarctica. Atmos. Chem. Phys. 2011, 11, 4015–4024. [Google Scholar] [CrossRef] [Green Version]
- Boose, Y.; Kanji, Z.A.; Kohn, M.; Sierau, B.; Zipori, A.; Crawford, I.; Lloyd, G.; Bukowiecki, N.; Herrmann, E.; Kupiszewski, P.; et al. Ice nucleating particle measurements at 241 K during winter months at 3580 m msl in the swiss alps. J. Atmos. Sci. 2016, 73, 2203–2228. [Google Scholar] [CrossRef]
- Boose, Y.; Sierau, B.; García, M.I.; Rodríguez, S.; Alastuey, A.; Linke, C.; Schnaiter, M.; Kupiszewski, P.; Kanji, Z.A.; Lohmann, U. Ice nucleating particles in the saharan air layer. Atmos. Chem. Phys. 2016, 16, 9067–9087. [Google Scholar] [CrossRef]
- Mason, R.H.; Si, M.; Chou, C.; Irish, V.E.; Dickie, R.; Elizondo, P.; Wong, R.; Brintnell, M.; Elsasser, M.; Lassar, W.M.; et al. Size-resolved measurements of ice-nucleating particles at six locations in north america and one in europe. Atmos. Chem. Phys. 2016, 16, 1637–1651. [Google Scholar] [CrossRef]
- Prenni, A.J.; DeMott, P.J.; Sullivan, A.P.; Sullivan, R.C.; Kreidenweis, S.M.; Rogers, D.C. Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; et al. Immersion freezing of birch pollen washing water. Atmos. Chem. Phys. 2013, 13, 10989–11003. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Nowoisky, J.; Hill, T.C.J.; Pummer, B.G.; Yordanova, P.; Franc, G.D.; Pöschl, U. Ice nucleation activity in the widespread soil fungus mortierella alpina. Biogeosciences 2015, 12, 1057–1071. [Google Scholar] [CrossRef]
- O'Sullivan, D.; Murray, B.J.; Ross, J.F.; Whale, T.F.; Price, H.C.; Atkinson, J.D.; Umo, N.S.; Webb, M.E. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 2015, 5, 8082. [Google Scholar] [CrossRef] [PubMed]
- Pummer, B.G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys. 2012, 12, 2541–2550. [Google Scholar] [CrossRef] [Green Version]
- Rosinski, J.; Haagenson, P.L.; Nagamoto, C.T.; Parungo, F. Ice-forming nuclei of maritime origin. J. Aerosol Sci. 1986, 17, 23–46. [Google Scholar] [CrossRef]
- Tong, H.J.; Ouyang, B.; Nikolovski, N.; Lienhard, D.M.; Pope, F.D.; Kalberer, M. A new electrodynamic balance (EDB) design for low-temperature studies: Application to immersion freezing of pollen extract bioaerosols. Atmos. Meas. Tech. 2015, 8, 1183–1195. [Google Scholar] [CrossRef]
- Wilson, T.W.; Ladino, L.A.; Alpert, P.A.; Breckels, M.N.; Brooks, I.M.; Browse, J.; Burrows, S.M.; Carslaw, K.S.; Huffman, J.A.; Judd, C.; et al. A marine biogenic source of atmospheric ice-nucleating particles. Nature 2015, 525, 234–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoose, C.; Kristjánsson, J.E.; Burrows, S.M. How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett. 2010, 5, 024009. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Diehl, K. Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J. Atmos. Sci. 2006, 63, 968–982. [Google Scholar] [CrossRef]
- Sesartic, A.; Lohmann, U.; Storelvmo, T. Modelling the impact of fungal spore ice nuclei on clouds and precipitation. Environ. Res. Lett. 2013, 8, 014029. [Google Scholar] [CrossRef] [Green Version]
- Spracklen, D.V.; Heald, C.L. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmos. Chem. Phys. 2014, 14, 9051–9059. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, R.; Hoose, C.; Möhler, O.; Niemand, M.; Wagner, R.; Höhler, K.; Hiranuma, N.; Saathoff, H.; Leisner, T. A new ice nucleation active site parameterization for desert dust and soot. J. Atmos. Sci. 2017, 74, 699–717. [Google Scholar] [CrossRef]
- Niemand, M.; Möhler, O.; Vogel, B.; Vogel, H.; Hoose, C.; Connolly, P.; Klein, H.; Bingemer, H.; DeMott, P.; Skrotzki, J.; et al. A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci. 2012, 69, 3077–3092. [Google Scholar] [CrossRef]
- Phillips, V.T.J.; Demott, P.J.; Andronache, C.; Pratt, K.A.; Prather, K.A.; Subramanian, R.; Twohy, C. Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci. 2013, 70, 378–409. [Google Scholar] [CrossRef]
- Kamphus, M.; Ettner-Mahl, M.; Klimach, T.; Drewnick, F.; Keller, L.; Cziczo, D.J.; Mertes, S.; Borrmann, S.; Curtius, J. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the cloud and aerosol characterization experiment (CLACE 6). Atmos. Chem. Phys. 2010, 10, 8077–8095. [Google Scholar] [CrossRef]
- Kupiszewski, P.; Zanatta, M.; Mertes, S.; Vochezer, P.; Lloyd, G.; Schneider, J.; Schenk, L.; Schnaiter, M.; Baltensperger, U.; Weingartner, E.; et al. Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site. J. Geophys. Res. Atmos. 2016, 121, 12343–312362. [Google Scholar] [CrossRef] [PubMed]
- Mahrt, F.; Marcolli, C.; David, R.O.; Grönquist, P.; Barthazy Meier, E.J.; Lohmann, U.; Kanji, Z.A. Ice nucleation abilities of soot particles determined with the horizontal ice nucleation chamber. Atmos. Chem. Phys. Discuss. 2018, 2018, 1–41. [Google Scholar] [CrossRef]
- Koehler, K.A.; DeMott, P.J.; Kreidenweis, S.M.; Popovicheva, O.B.; Petters, M.D.; Carrico, C.M.; Kireeva, E.D.; Khokhlova, T.D.; Shonija, N.K. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys. Chem. Chem. Phys. 2009, 11, 7906–7920. [Google Scholar] [CrossRef] [PubMed]
- Lugauer, M.; Baltensperger, U.; Furger, M.; Gäggeler, H.W.; Jost, D.T.; Schwikowski, M.; Wanner, H. Aerosol transport to the high alpine sites jungfraujoch (3454 m a.s.l.) and colle gnifetti (4452 m a.s.l.). Tellus B Chem. Phys. Meteorol. 1998, 50, 76–92. [Google Scholar] [CrossRef]
- Coen, C.M.; Weingartner, E.; Furger, M.; Nyeki, S.; Prévôt, A.S.H.; Steinbacher, M.; Baltensperger, U. Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types. Atmos. Chem. Phys. 2011, 11, 5931–5944. [Google Scholar] [CrossRef] [Green Version]
- Harrison, A.D.; Whale, T.F.; Carpenter, M.A.; Holden, M.A.; Neve, L.; O'Sullivan, D.; Vergara Temprado, J.; Murray, B.J. Not all feldspars are equal: A survey of ice nucleating properties across the feldspar group of minerals. Atmos. Chem. Phys. 2016, 16, 10927–10940. [Google Scholar] [CrossRef] [Green Version]
- Stopelli, E.; Conen, F.; Morris, C.E.; Herrmann, E.; Bukowiecki, N.; Alewell, C. Ice nucleation active particles are efficiently removed by precipitating clouds. Sci. Rep. 2015, 5, 16433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.; Henneberger, J.; Fugal, J.P.; David, R.O.; Lacher, L.; Lohmann, U. Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations. Atmos. Chem. Phys. Discuss. 2017, 18, 8909–8927. [Google Scholar] [CrossRef]
- Conen, F.; Rodríguez, S.; Hüglin, C.; Henne, S.; Herrmann, E.; Bukowiecki, N.; Alewell, C. Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus B Chem. Phys. Meteorol. 2015, 67. [Google Scholar] [CrossRef]
- Lacher, L.; DeMott, P.J.; Levin, E.J.T.; Suski, K.J.; Boose, Y.; Zipori, A.; Herrmann, E.; Bukowiecki, N.; Steinbacher, M.; Gute, E.; et al. Background free-tropospheric ice nucleating particle concentrations at mixed-phase cloud conditions. J. Geophys. Res. Atmos. 2018, 123. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Parkes, S.D.; Chambers, S.D.; McCabe, M.F.; Williams, A.G. Improved mixing height monitoring through a combination of lidar and radon measurements. Atmos. Meas. Tech. 2013, 6, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, E.; Weingartner, E.; Henne, S.; Vuilleumier, L.; Bukowiecki, N.; Steinbacher, M.; Conen, F.; Collaud Coen, M.; Hammer, E.; Jurányi, Z.; et al. Analysis of long-term aerosol size distribution data from jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. J. Geophys. Res. Atmos 2015, 120, 9459–9480. [Google Scholar] [CrossRef]
- Zellweger, C.; Forrer, J.; Hofer, P.; Nyeki, S.; Schwarzenbach, B.; Weingartner, E.; Ammann, M.; Baltensperger, U. Partitioning of reactive nitrogen (Noy) and dependence on meteorological conditions in the lower free troposphere. Atmos. Chem. Phys. 2003, 3, 779–796. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Weingartner, E.; Schaub, D.; Hueglin, C.; Corrigan, C.; Henning, S.; Schwikowski, M.; Baltensperger, U. Saharan dust events at the jungfraujoch: Detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos. Chem. Phys. 2004, 4, 2465–2480. [Google Scholar] [CrossRef]
- Cui, J.; Pandey Deolal, S.; Sprenger, M.; Henne, S.; Staehelin, J.; Steinbacher, M.; Nédélec, P. Free tropospheric ozone changes over europe as observed at jungfraujoch (1990–2008): An analysis based on backward trajectories. J. Geophys. Res. Atmos. 2011, 116, D10304. [Google Scholar] [CrossRef]
- Chou, C.; Stetzer, O.; Weingartner, E.; Juranyi, Z.; Kanji, Z.A.; Lohmann, U. Ice nuclei properties within a sahara dust event at the jungfraujoch in the swiss alps. Atmos. Chem. Phys. 2011, 11, 4725–4738. [Google Scholar] [CrossRef]
- Baltensperger, U.; Gäggeler, H.W.; Jost, D.T.; Lugauer, M.; Schwikowski, M.; Weingartner, E. Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland. J. Geophys. Res. 1997, 102, 19707–19715. [Google Scholar] [CrossRef] [Green Version]
- Bukowiecki, N.; Weingartner, E.; Gysel, M.; Collaud Coen, M.; Zieger, P.; Herrmann, E.; Steinbacher, M.; Gäggeler, H.W.; Baltensperger, U. A review of more than 20 years of aerosol observation at the high altitude research station Jungfraujoch, Switzerland (3580 m a.s.l.). Aerosol Air Qual. Res. 2016, 16, 764–788. [Google Scholar] [CrossRef]
- Steinbacher, M.; Wyss, S.; Emmenegger, L.; Hüglin, C. National Air Pollution Monitoring Network (NABEL). Available online: https://www.hfsjg.ch/en/publications/activity-reports/ (accessed on 1 January 2018).
- Appenzeller, C.; Begert, M.; Zenklusen, E.; Scherrer, S.C. Monitoring climate at jungfraujoch in the high swiss alpine region. Sci Total Environ. 2008, 391, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Lacher, L.; Lohmann, U.; Boose, Y.; Zipori, A.; Herrmann, E.; Bukowiecki, N.; Steinbacher, M.; Kanji, Z.A. The horizontal ice nucleation chamber (HINC): Inp measurements at conditions relevant for mixed-phase clouds at the high altitude research station Jungfraujoch. Atmos. Chem. Phys. 2017, 17, 15199–15224. [Google Scholar] [CrossRef]
- Weingartner, E.; Nyeki, S.; Baltensperger, U. Seasonal and diurnal variation of aerosol size distributions (10 < d < 750 nm) at a high-alpine site (Jungfraujoch 3580 m a.s.l.). J. Geophys. Res. 1999, 104, 26809–26820. [Google Scholar]
- Sjogren, S.; Gysel, M.; Weingartner, E.; Alfarra, M.R.; Duplissy, J.; Cozic, J.; Crosier, J.; Coe, H.; Baltensperger, U. Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland. Atmos. Chem. Phys. 2008, 8, 5715–5729. [Google Scholar] [CrossRef] [Green Version]
- VDI-Richtlinie: VDI 2463 Blatt 11 Messen von Partikeln—Messen der Massenkonzentration (Immission)—Filterverfahren—Filterwechsel Digitel DA-80H. Available online: https://www.din.de/en/wdc-beuth:din21:1182655/toc-7266891/download (accessed on 1 October 1996).
- Bruggisser, N.; Bruggisser, T.; Buchmann, B.; Bugmann, S.; Fischer, A.; Gehrig, R.; Graf, P.; Hill, M.; Hueglin, C.; Nyffeler, U.; et al. Technischer Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL); EMPA: Dübendorf, Switzerland, 2016. (In German) [Google Scholar]
- Zellweger, C.; Steinbacher, M.; Buchmann, B. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements. Atmos. Meas. Tech. 2012, 5, 2555–2567. [Google Scholar] [CrossRef] [Green Version]
- Zipori, A.; Rosenfeld, D.; Shpund, J.; Steinberg, D.M.; Erel, Y. Targeting and impacts of Agi cloud seeding based on rain chemical composition and cloud top phase characterization. Atmos. Res. 2012, 114, 119–130. [Google Scholar] [CrossRef]
- Zipori, A.; Rosenfeld, D.; Tirosh, O.; Teutsch, N.; Erel, Y. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures. J. Geophys. Res. Atmos. 2015, 120, 9653–9669. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Conen, F.; Weingartner, E.; Zimmermann, L.; Chambers, S.D.; Williams, A.G.; Steinbacher, M. Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch. Atmos. Chem. Phys. 2014, 14, 12763–12779. [Google Scholar] [CrossRef] [Green Version]
- Pandey Deolal, S.; Staehelin, J.; Brunner, D.; Cui, J.; Steinbacher, M.; Zellweger, C.; Henne, S.; Vollmer, M.K. Transport of pan and noy from different source regions to the swiss high alpine site Jungfraujoch. Atmos. Environ. 2013, 64, 103–115. [Google Scholar] [CrossRef]
- Zanis, P.; Ganser, A.; Zellweger, C.; Henne, S.; Steinbacher, M.; Staehelin, J. Seasonal variability of measured ozone production efficiencies in the lower free troposphere of central europe. Atmos. Chem. Phys. 2007, 7, 223–236. [Google Scholar] [CrossRef]
- Turekian, K.K. Oceans; Prentice-Hall: Upper Saddle River, NJ, USA, 1968. [Google Scholar]
- Phillips, V.T.J.; Choularton, T.W.; Illingworth, A.J.; Hogan, R.J.; Field, P.R. Simulations of the glaciation of a frontal mixed-phase cloud with the explicit microphysics model. Q. J. R. Meteorol. Soc. 2003, 129, 1351–1371. [Google Scholar] [CrossRef]
- Burkert-Kohn, M.; Wex, H.; Welti, A.; Hartmann, S.; Grawe, S.; Hellner, L.; Herenz, P.; Atkinson, J.D.; Stratmann, F.; Kanji, Z.A. Leipzig ice nucleation chamber comparison (LINC): Intercomparison of four online ice nucleation counters. Atmos. Chem. Phys. 2017, 17, 11683–11705. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Vali, G. Quantitative evaluation of experimental results an the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 1971, 28, 402–409. [Google Scholar] [CrossRef]
- China, S.; Alpert, P.A.; Zhang, B.; Schum, S.; Dzepina, K.; Wright, K.; Owen, R.C.; Fialho, P.; Mazzoleni, L.R.; Mazzoleni, C.; et al. Ice cloud formation potential by free tropospheric particles from long-range transport over the northern atlantic ocean. J. Geophys. Res. Atmos 2017, 122, 3065–3079. [Google Scholar] [CrossRef]
- Cziczo, D.J.; Froyd, K.D.; Hoose, C.; Jensen, E.J.; Diao, M.; Zondlo, M.A.; Smith, J.B.; Twohy, C.H.; Murphy, D.M. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 2013, 340, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- DeMott, P.J.; Cziczo, D.J.; Prenni, A.J.; Murphy, D.M.; Kreidenweis, S.M.; Thomson, D.S.; Borys, R.; Rogers, D.C. Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA 2003, 100, 14655–14660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCluskey, C.S.; Hill, T.C.J.; Sultana, C.M.; Laskina, O.; Trueblood, J.; Santander, M.V.; Beall, C.M.; Michaud, J.M.; Kreidenweis, S.M.; Prather, K.A.; et al. A mesocosm double feature: Insights into the chemical makeup of marine ice nucleating particles. J. Atmos. Sci. 2018, 75, 2405–2423. [Google Scholar] [CrossRef]
- Richardson, M.S.; DeMott, P.J.; Kreidenweis, S.M.; Cziczo, D.J.; Dunlea, E.J.; Jimenez, J.L.; Thomson, D.S.; Ashbaugh, L.L.; Borys, R.D.; Westphal, D.L.; et al. Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res. Atmos 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Theloke, J.; Thiruchittampalam, B.; Orlikova, S.; Uzbasich, M.; Gauger, T. Methodology Development for the Spatial Distribution of the Diffuse Emissions in Europe. Available online: http://prtr.ec.europa.eu/#/diffemissionsair (accessed on 9 May 2018).
Parameter | Time Resolution | |
---|---|---|
Meteorology | RHa (%) | 60 min |
Ta (K) | 10 min | |
pressure (hPa) | ||
wind velocity (m s−1) | ||
wind direction (°) | ||
Size-inferred | N<0.1 µm (cm−3) | 6 min |
N0.1–0.5 µm (cm−3) | ||
N>0.5 µm (cm−3) | ||
Atot (m−3) | ||
Absorption | eBC (ng m−3) | 60 min |
Chemistry | sulfate (µg m−3) | 24 h |
nitrate (µg m−3) | ||
chloride (µg m−3) | ||
gravimetric weight (µg m−3) |
Time (h) | BLI (%) | FTbackground (%) | |
---|---|---|---|
all | 534 | 43 | 55 |
spring | 119 | 78 | 20 |
(2015, 2016) | |||
summer | 155 | 65 | 36 |
(2014, 2015, 2016) | |||
winter | 260 | 12 | 82 |
(2015, 2016, 2017) |
Within Factor (%) | |||
---|---|---|---|
2 | 5 | ||
all | total | 32 | 57 |
spring | 21 | 52 | |
summer | 44 | 75 | |
winter | 27 | 47 | |
BLI | total | 36 | 64 |
spring | 23 | 55 | |
summer | 49 | 80 | |
winter | 12 | 23 | |
FTbackground | total | 30 | 53 |
spring | 20 | 52 | |
summer | 33 | 58 | |
winter | 20 | 41 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacher, L.; Steinbacher, M.; Bukowiecki, N.; Herrmann, E.; Zipori, A.; Kanji, Z.A. Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch. Atmosphere 2018, 9, 363. https://doi.org/10.3390/atmos9090363
Lacher L, Steinbacher M, Bukowiecki N, Herrmann E, Zipori A, Kanji ZA. Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch. Atmosphere. 2018; 9(9):363. https://doi.org/10.3390/atmos9090363
Chicago/Turabian StyleLacher, Larissa, Martin Steinbacher, Nicolas Bukowiecki, Erik Herrmann, Assaf Zipori, and Zamin A. Kanji. 2018. "Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch" Atmosphere 9, no. 9: 363. https://doi.org/10.3390/atmos9090363
APA StyleLacher, L., Steinbacher, M., Bukowiecki, N., Herrmann, E., Zipori, A., & Kanji, Z. A. (2018). Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch. Atmosphere, 9(9), 363. https://doi.org/10.3390/atmos9090363