Preface: Morphology and Internal Mixing of Atmospheric Particles
1. Introduction
2. Summary of This Special Issue
2.1. Sampling and Laboratory Techniques
2.2. Analyses of Atmospheric Particles
2.3. Theoretical and Numerical Studies
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.T.; Bergstrom, W.R. Light absorption by carbonaceous particles: An investigative review. Aerosol. Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Sorensen, C.M. Light scattering by fractal aggregates: A review. Aerosol. Sci. Technol. 2001, 35, 648–687. [Google Scholar] [CrossRef]
- China, S.; Scarnato, B.; Owen, R.C.; Zhang, B.; Ampadu, M.T.; Kumar, S.; Dzepina, K.; Dziobak, M.P.; Fialho, P.; Perlinger, J.A.; et al. Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties. Geophys. Res. Lett. 2015, 42, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Cappa, C.D.; Onasch, T.B.; Massoli, P.; Worsnop, D.R.; Bates, T.S.; Cross, E.S.; Davidovits, P.; Hakala, J.; Hayden, K.L.; Jobson, B.T.; et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 2012, 337, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Aiken, A.C.; Gorkowski, K.; Dubey, M.K.; Cappa, C.D.; Williams, L.R.; Herndon, S.C.; Massoli, P.; Fortner, E.C.; Chhabra, P.S.; et al. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat. Commun. 2015, 6, 8435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahrt, F.; Marcolli, C.; David, R.O.; Grönquist, P.; Barthazy Meier, E.J.; Lohmann, U.; Kanji, Z.A. Ice nucleation abilities of soot particles determined with the horizontal ice nucleation chamber. Atmos. Chem. Phys. Discuss. 2018, 41. [Google Scholar] [CrossRef]
- Adachi, K.; Buseck, P.R. Changes of ns-soot mixing states and shapes in an urban area during calnex. J. Geophys. Res. Atmos. 2013, 118, 3723–3730. [Google Scholar] [CrossRef]
- Adachi, K.; Chung, S.H.; Buseck, P.R. Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Enekwizu, O.; Ma, Y.; Zakharov, D.; Khalizov, A. The impact of sampling medium and environment on particle morphology. Atmosphere 2017, 8, 162. [Google Scholar] [CrossRef]
- Bhandari, J.; China, S.; Onasch, T.; Wolff, L.; Lambe, A.; Davidovits, P.; Cross, E.; Ahern, A.; Olfert, J.; Dubey, M.; et al. Effect of thermodenuding on the structure of nascent flame soot aggregates. Atmosphere 2017, 8, 166. [Google Scholar] [CrossRef]
- Kulkarni, G. Immersion freezing of total ambient aerosols and ice residuals. Atmosphere 2018, 9, 55. [Google Scholar] [CrossRef]
- Brus, D.; Škrabalová, L.; Herrmann, E.; Olenius, T.; Trávničková, T.; Makkonen, U.; Merikanto, J. Temperature-Dependent Diffusion of H2SO4 in Air at Atmospherically Relevant Conditions: Laboratory Measurements Using Laminar Flow Technique. Atmosphere 2017, 8, 7. [Google Scholar] [CrossRef]
- Kiriya, M.; Okuda, T.; Yamazaki, H.; Hatoya, K.; Kaneyasu, N.; Uno, I.; Nishita, C.; Hara, K.; Hayashi, M.; Funato, K.; et al. Monthly and diurnal variation of the concentrations of aerosol surface area in Fukuoka, Japan, measured by diffusion charging method. Atmosphere 2017, 8, 114. [Google Scholar] [CrossRef]
- Mahish, M.; Jefferson, A.; Collins, D. Influence of common assumptions regarding aerosol composition and mixing state on predicted CCN concentration. Atmosphere 2018, 9, 54. [Google Scholar] [CrossRef]
- Xu, L.; Liu, L.; Zhang, J.; Zhang, Y.; Ren, Y.; Wang, X.; Li, W. Morphology, composition, and mixing state of individual aerosol particles in northeast china during wintertime. Atmosphere 2017, 8, 47. [Google Scholar] [CrossRef]
- Wang, W.; Shao, L.; Xing, J.; Li, J.; Chang, L.; Li, W. Physicochemical characteristics of individual aerosol particles during the 2015 China victory day parade in Beijing. Atmosphere 2018, 9, 40. [Google Scholar] [CrossRef]
- Fraund, M.; Pham, D.; Bonanno, D.; Harder, T.; Wang, B.; Brito, J.; de Sá, S.; Carbone, S.; China, S.; Artaxo, P.; et al. Elemental mixing state of aerosol particles collected in central amazonia during goamazon2014/15. Atmosphere 2017, 8, 173. [Google Scholar] [CrossRef]
- Sorensen, C.; Heinson, Y.; Heinson, W.; Maughan, J.; Chakrabarti, A. Q-space analysis of the light scattering phase function of particles with any shape. Atmosphere 2017, 8, 68. [Google Scholar] [CrossRef]
- Ching, J.; West, M.; Riemer, N. Quantifying impacts of aerosol mixing state on nucleation-scavenging of black carbon aerosol particles. Atmosphere 2018, 9, 17. [Google Scholar] [CrossRef]
- Hughes, M.; Kodros, J.; Pierce, J.; West, M.; Riemer, N. Machine learning to predict the global distribution of aerosol mixing state metrics. Atmosphere 2018, 9, 15. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
China, S.; Mazzoleni, C. Preface: Morphology and Internal Mixing of Atmospheric Particles. Atmosphere 2018, 9, 249. https://doi.org/10.3390/atmos9070249
China S, Mazzoleni C. Preface: Morphology and Internal Mixing of Atmospheric Particles. Atmosphere. 2018; 9(7):249. https://doi.org/10.3390/atmos9070249
Chicago/Turabian StyleChina, Swarup, and Claudio Mazzoleni. 2018. "Preface: Morphology and Internal Mixing of Atmospheric Particles" Atmosphere 9, no. 7: 249. https://doi.org/10.3390/atmos9070249
APA StyleChina, S., & Mazzoleni, C. (2018). Preface: Morphology and Internal Mixing of Atmospheric Particles. Atmosphere, 9(7), 249. https://doi.org/10.3390/atmos9070249