Macro- and Microphysical Characteristics of Precipitating and Non-Precipitating Stratocumulus Clouds over Eastern China
Abstract
:1. Introduction
2. Data
3. Stratocumulus Macroscopic Characteristics
4. Stratocumulus Microphysical Characteristics
4.1. Probability Density Function of Stratocumulus Microphysical Characteristics
4.2. Spatial Distributions of the Microphysical Characteristics of Stratocumulus Clouds
4.3. Vertical Structures of the Microphysical Characteristics of Stratocumulus Clouds
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hahn, C.J.; Warren, S.G. A Gridded Climatology of Clouds over Land (1971–96) and Ocean (1954–97) from Surface Observations Worldwide; Numeric Data Product NDP-026E, Carbon Dioxide Information Analysis Center; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2007. [CrossRef]
- Klein, S.A.; Hartmann, D.L. The seasonal cycle of low stratiform clouds. J. Clim. 1993, 6, 1587–1606. [Google Scholar] [CrossRef]
- Yu, R.C.; Yu, Y.Q.; Zhang, M.H. Comparing cloud radiative properties between the Eastern China and the Indian monsoon region. Adv. Atmos. Sci. 2001, 18, 1090–1102. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gu, H. Relationship between middle stratiform clouds and large scale circulation over eastern China. Geophys. Res. Lett. 2006, 330, 881. [Google Scholar] [CrossRef]
- Ghate, V.P.; Albrecht, B.A.; Kollias, P. Vertical velocity structure of nonprecipitating continental boundary layer stratocumulus clouds. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.D.; Lebsock, M.; Ecuyer, T.L. Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat. Environ. Res. Lett. 2013, 8, 014027. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Beljaars, A.; Bordoni, S.; Holloway, C.; Köhler, M.; Krueger, S.; Savic-Jovcic, V.; Zhang, Y. On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Weather Rev. 2007, 135, 985–1005. [Google Scholar] [CrossRef]
- Wood, R.; Mechoso, C.R.; Bretherton, C.S.; Weller, R.A.; Huebert, B.; Straneo, F.; Albrecht, B.A.; Coe, H.; Allen, G.; Vaughan, G.; et al. The VAMOS ocean-cloud-atmosphere-land study regional experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys. 2011, 11, 627–654. [Google Scholar] [CrossRef]
- Leon, D.C.; Wang, Z.; Liu, D. Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.Y.; Suzuki, K.; Stephens, G.L. Droplet growth in warm water clouds observed by the A-Train. Part II: A multisensor view. J. Atmos. Sci. 2010, 67, 1897–1907. [Google Scholar] [CrossRef]
- Suzuki, K.; Stephens, G.; Bodassalcedo, A.; Wang, M.; Golaz, J.E.; Yokohata, T.; Koshiro, T. Evaluation of the warm rain formation process in global models with satellite observations. J. Atmos. Sci. 2015, 72, 3996–4014. [Google Scholar] [CrossRef]
- Magaritzronen, L.; Pinsky, M.; Khain, A. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing. Atmos. Chem. Phys. 2015, 15, 24131–24177. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus Clouds. Am. Meteorol. Soc. 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Wang, M.Y.; Gu, J.X.; Yang, R.Z.; Zeng, L.; Wang, S. Comparison of cloud type and frequency over China from surface, FY-2E, and CloudSat observations. Proc. SPIE 2014, 9259, 13–27. [Google Scholar] [CrossRef]
- Li, Y.Y.; Yu, R.C.; Xu, Y.P.; Zhang, X.H. Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations. J. Meteorol. Soc. Jpn. 2004, 82, 761–773. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.M.; Yu, R.C. Simulations of stratus clouds over Eastern China in CAM5: Sensitivity to horizontal resolution. J. Clim. 2014, 27, 7033–7052. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J. Shortwave cloud radiative forcing on major stratus cloud regions in AMIP-type simulations of CMIP3 and CMIP5 models. Adv. Atmos. Sci. 2013, 30, 884–907. [Google Scholar] [CrossRef]
- Bony, S.; Dufresne, J.L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 2005, 32, L20806. [Google Scholar] [CrossRef]
- Lin, Y.; Colle, B.A. A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Weather Rev. 2009, 139, 1013–1035. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Rajeevan, M.; Rohini, P.; Kumar, K.N.; Srinivasan, J.; Unnikrishnan, C.K. A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim. Dyn. 2013, 40, 637–650. [Google Scholar] [CrossRef]
- Jiang, X.; Waliser, D.E.; Li, J.L.; Srinivasan, J.; Unnikrishnan, C.K. Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis. Clim. Dyn. 2011, 36, 2219–2232. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.M.; Yu, R.C. Vertical structures and physical properties of the cold-season stratus clouds downstream of the Tibetan Plateau: Differences between daytime and nighttime. J. Clim. 2014, 27, 6857–6876. [Google Scholar] [CrossRef]
- Kiran, V.R.; Rajeevan, M.; Gadhavi, H.S.; Rao, V.B.; Jayaraman, A. Role of vertical structure of cloud microphysical properties on cloud radiative forcing over the Asian monsoon region. Clim. Dyn. 2015, 45, 3331–3345. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z. Level 2 Cloud scenario classification product process description and interface control document. Version 2007, 5, 50. [Google Scholar]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.G.; Austin, R. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. 2009, 113, 2036–2044. [Google Scholar] [CrossRef]
- Yuan, J.; Houze, R.A.J.; Heymsfield, A.J. Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci. 2011, 68, 1653–1674. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, M.H. Cumulus over the Tibetan Plateau in the summer based on CloudSat-CALIPSO data. J. Clim. 2016, 29, 1219–1230. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.E. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett. 2008, 35, L04805. [Google Scholar] [CrossRef]
- Hudak, D.; Rodriguez, P.; Donaldson, N. Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. J. Geophys. Res. 2008, 113, D00A07. [Google Scholar] [CrossRef]
- Mace, G. Level 2 GEOPROF Product Process Description and Interface Control Document; Nasa Jet Propulsion Laboratory: Pasadena, CA, USA, 2001.
- Wood, N. Level 2B Radar-Visible Optical Depth Cloud Water Content (2B-CWC-RVOD) Process Description Document. Version 2008, 5, 1–26. [Google Scholar]
- Barker, H.W.; Korolev, A.V.; Hudak, D.R.; Strapp, J.W.; Strawbridge, K.B.; Wolde, M. A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project. J. Geophys. Res. Atmos. 2008, 113, D00A16. [Google Scholar] [CrossRef]
- Lee, S.; Kahn, B.H.; Teixeira, J. Characterization of cloud liquid water content distributions from CloudSat. J. Geophys. Res. 2010, 115, D20203. [Google Scholar] [CrossRef]
- Christensen, M.W.; Stephens, G.L.; Lebsock, M.D. Exposing biases in retrieved low-cloud properties from cloudsat: A guide for evaluating observations and climate data. J. Geophys. Res. Atmos. 2013, 118, 120–131. [Google Scholar] [CrossRef]
- Quante, M. The role of clouds in the climate system. J. Phys. IV 2004, 121, 1–26. [Google Scholar] [CrossRef]
- Warren, S.G.; Hahn, C.J.; London, J. Simultaneous occurrence of different cloud types. J. Appl. Meteorol. 1985, 24, 658–668. [Google Scholar] [CrossRef]
- Rossow, W.B.; Walker, A.W.; Garder, L.C. Comparison of ISCCP and other cloud amounts. J. Clim. 1993, 6, 2394–2418. [Google Scholar] [CrossRef]
- Biggerstaff, M.I.; Listemaa, S.A. An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteorol. 2000, 39, 2129–2150. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakajima, T.Y.; Stephens, G.L. Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci. 2010, 67, 3019–3032. [Google Scholar] [CrossRef]
- Wallace, M.J.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Elsevier: New York City, NY, USA, 2006; p. 488. [Google Scholar]
- Takahashi, H.; Suzuki, K.; Stephens, G. Land-ocean differences in the warm-rain formation process in satellite and ground-based observations and model simulations. Q. J. R. Meteorol. Soc. 2017, 143, 1804–1815. [Google Scholar] [CrossRef]
- Pawlowska, H.; Brenguier, J. An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res. Atmos. 2003, 108, 8630. [Google Scholar] [CrossRef]
- Nicholls, S.; Leighton, J. An observational study of the structure of stratiform cloud sheets: Part I. Structure. Q. J. R. Meteorol. Soc. 1986, 112, 431–460. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Weather Rev. 1995, 123, 1921–1940. [Google Scholar] [CrossRef]
Liquid Water Content | Liquid Number Concentration | Liquid Effective Radius | |
---|---|---|---|
Non-precipitating Sc clouds | 26% | 31% | 6% |
Precipitating Sc clouds | 25% | 28% | 5% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, Y.; Sun, G.; Lu, Z. Macro- and Microphysical Characteristics of Precipitating and Non-Precipitating Stratocumulus Clouds over Eastern China. Atmosphere 2018, 9, 237. https://doi.org/10.3390/atmos9070237
Li S, Li Y, Sun G, Lu Z. Macro- and Microphysical Characteristics of Precipitating and Non-Precipitating Stratocumulus Clouds over Eastern China. Atmosphere. 2018; 9(7):237. https://doi.org/10.3390/atmos9070237
Chicago/Turabian StyleLi, Sicong, Yunying Li, Guorong Sun, and Zhixian Lu. 2018. "Macro- and Microphysical Characteristics of Precipitating and Non-Precipitating Stratocumulus Clouds over Eastern China" Atmosphere 9, no. 7: 237. https://doi.org/10.3390/atmos9070237
APA StyleLi, S., Li, Y., Sun, G., & Lu, Z. (2018). Macro- and Microphysical Characteristics of Precipitating and Non-Precipitating Stratocumulus Clouds over Eastern China. Atmosphere, 9(7), 237. https://doi.org/10.3390/atmos9070237