A Review of Paleo El Niño-Southern Oscillation
Abstract
:1. Introduction
2. Methods to Study Paleo ENSO
2.1. Reconstructing Paleo ENSO Using Proxies
2.2. Simulating Paleo ENSO Using Climate Models
3. The Last Millennium
3.1. Proxy Records
3.2. Model Simulations and Model-Data Comparison
4. The Holocene
4.1. Proxy Records
4.2. Model Simulations and Model-Data Comparison
4.3. Forcing Mechanisms
5. The Glacial and Deglacial
5.1. Proxy Records
5.2. Model Simulations and Model-Data Comparison
5.3. Forcing Mechanisms
6. Warm Periods beyond the Last Glacial Period
6.1. Proxy Records
6.2. Model Simulations and Model-Data Comparison
7. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bjerknes, J. Atmospheric teleconnections from the equatorial pacific 1. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Cane, M.A.; Zebiak, S.E.; Dolan, S.C. Experimental forecasts of EL Nino. Nature 1986, 321, 827. [Google Scholar] [CrossRef]
- Neelin, J.D.; Battisti, D.S.; Hirst, A.C.; Jin, F.F.; Wakata, Y.; Yamagata, T.; Zebiak, S.E. ENSO theory. J. Geophys. Res. Oceans 1998, 103, 14261–14290. [Google Scholar] [CrossRef]
- Philander, S.G. El Niño, La Niña, and the Southern Oscillation; Academic Press: London, UK, 1990; Volume 46, 289p. [Google Scholar]
- Wyrtki, K. El Nino-the dynamic response of the equatorial Pacific oceanto atmospheric forcing. J. Phys. Oceanogr. 1975, 5, 572–584. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Liu, Z.; Alexander, M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Wang, C.; Deser, C.; Yu, J.-Y.; DiNezio, P.; Clement, A. El Nino and southern oscillation (ENSO): A review. Coral Reefs East. Pac. 2012, 8, 3–19. [Google Scholar]
- L’Heureux, M.L.; Takahashi, K.; Watkins, A.B.; Barnston, A.G.; Becker, E.J.; Di Liberto, T.E.; Gamble, F.; Gottschalck, J.; Halpert, M.S.; Huang, B. Observing and predicting the 2015-16 El Niño. Bull. Am. Meteorol. Soc. 2017, 98, 1363–1382. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA 2016, 113, 2005–2010. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.H.; Kumar, K.K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; Castro, M.D.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate Phenomena and their Relevance for Future Regional Climate Change. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Collins, M.; An, S.-I.; Cai, W.; Ganachaud, A.; Guilyardi, E.; Jin, F.-F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 2010, 3, 391–397. [Google Scholar] [CrossRef]
- Guilyardi, E. El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim. Dyn. 2006, 26, 329–348. [Google Scholar] [CrossRef]
- Latif, M.; Keenlyside, N.S. El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA 2009, 106, 20578–20583. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Van Oldenborgh, G.J.; Philip, S.; Collins, M. El Niño in a changing climate: A multi-model study. Ocean Sci. Discuss. 2005, 2, 267–298. [Google Scholar] [CrossRef]
- Huang, B.; Banzon, V.F.; Freeman, E.; Lawrimore, J.; Liu, W.; Peterson, T.C.; Smith, T.M.; Thorne, P.W.; Woodruff, S.D.; Zhang, H.-M. Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Clim. 2015, 28, 911–930. [Google Scholar] [CrossRef]
- Hayes, S.; Mangum, L.; Picaut, J.; Sumi, A.; Takeuchi, K. TOGA-TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Am. Meteorol. Soc. 1991, 72, 339–347. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Schulz, M.; Abe-Ouchi, A.; Beer, J.; Ganopolski, A.; Rouco, J.F.G.; Jansen, E.; Lambeck, K.; Luterbacher, J.; Naish, T.; et al. Information from Paleoclimate Archives. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Zheng, W.; Braconnot, P.; Guilyardi, E.; Merkel, U.; Yu, Y. ENSO at 6 ka and 21 ka from ocean–atmosphere coupled model simulations. Clim. Dyn. 2008, 30, 745–762. [Google Scholar] [CrossRef]
- Cane, M.A. The evolution of El Niño, past and future. Earth Planet. Sci. Lett. 2005, 230, 227–240. [Google Scholar] [CrossRef]
- Moy, C.M.; Seltzer, G.O.; Rodbell, D.T.; Anderson, D.M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 2002, 420, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Riedinger, M.A.; Steinitz-Kannan, M.; Last, W.M.; Brenner, M. A ~6100 14 C yr record of El Niño activity from the Galápagos Islands. J. Paleolimnol. 2002, 27, 1–7. [Google Scholar] [CrossRef]
- Conroy, J.L.; Overpeck, J.T.; Cole, J.E.; Shanahan, T.M.; Steinitz-Kannan, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 2008, 27, 1166–1180. [Google Scholar] [CrossRef]
- Zhang, Z.; Leduc, G.; Sachs, J.P. El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands. Earth Planet. Sci. Lett. 2014, 404, 420–434. [Google Scholar] [CrossRef]
- Thompson, D.M.; Conroy, J.L.; Collins, A.; Hlohowskyj, S.; Overpeck, J.T.; Riedinger-Whitmore, M.; Cole, J.E.; Bush, M.B.; Whitney, H.; Corley, T.L. Tropical Pacific climate variability over the last 6000 years as recorded in Bainbridge Crater Lake, Galápagos. Paleoceanography 2017. [Google Scholar] [CrossRef]
- Rein, B.; Lückge, A.; Reinhardt, L.; Sirocko, F.; Wolf, A.; Dullo, W.C. El Niño variability off Peru during the last 20,000 years. Paleoceanography 2005, 20. [Google Scholar] [CrossRef] [Green Version]
- Leduc, G.; Vidal, L.; Cartapanis, O.; Bard, E. Modes of eastern equatorial Pacific thermocline variability: Implications for ENSO dynamics over the last glacial period. Paleoceanography 2009, 24. [Google Scholar] [CrossRef]
- Koutavas, A.; Joanides, S. El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 2012, 27. [Google Scholar] [CrossRef]
- Sadekov, A.Y.; Ganeshram, R.; Pichevin, L.; Berdin, R.; McClymont, E.; Elderfield, H.; Tudhope, A.W. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nat. Commun. 2013, 4, 2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, H.L.; Ravelo, A.C.; Polissar, P.J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 2015, 347, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Rustic, G.T.; Koutavas, A.; Marchitto, T.M.; Linsley, B.K. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling. Science 2015, 350, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Emile-Geay, J.; Cobb, K.; Carré, M.; Braconnot, P.; Leloup, J.; Zhou, Y.; Harrison, S.; Corrège, T.; McGregor, H.; Collins, M. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci. 2016, 9, 168–173. [Google Scholar] [CrossRef]
- Chen, S.; Hoffmann, S.S.; Lund, D.C.; Cobb, K.M.; Emile-Geay, J.; Adkins, J.F. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution. Earth Planet. Sci. Lett. 2016, 442, 61–71. [Google Scholar] [CrossRef]
- Watanabe, T.; Suzuki, A.; Minobe, S.; Kawashima, T.; Kameo, K.; Minoshima, K.; Aguilar, Y.M.; Wani, R.; Kawahata, H.; Sowa, K. Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 2011, 471, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, S.-P.; Cook, E.R.; Morales, M.S.; Christie, D.A.; Johnson, N.C.; Chen, F.; D’Arrigo, R.; Fowler, A.M.; Gou, X. El Niño modulations over the past seven centuries. Nat. Clim. Chang. 2013, 3, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cobb, K.M.; Song, H.; Li, Q.; Li, C.-Y.; Nakatsuka, T.; An, Z.; Zhou, W.; Cai, Q.; Li, J. Recent enhancement of central Pacific El Nino variability relative to last eight centuries. Nat. Commun. 2017, 8, 15386. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.; Zagorodnov, V.; Howat, I.; Mikhalenko, V.; Lin, P.-N. Annually resolved ice core records of tropical climate variability over the past~1800 years. Science 2013, 340, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Cobb, K.M.; Charles, C.D.; Cheng, H.; Edwards, R.L. El Nino/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 2003, 424, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Cobb, K.M.; Westphal, N.; Sayani, H.R.; Watson, J.T.; Di Lorenzo, E.; Cheng, H.; Edwards, R.; Charles, C.D. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 2013, 339, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Tudhope, A.W.; Chilcott, C.P.; McCulloch, M.T.; Cook, E.R.; Chappell, J.; Ellam, R.M.; Lea, D.W.; Lough, J.M.; Shimmield, G.B. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 2001, 291, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Carré, M.; Sachs, J.P.; Purca, S.; Schauer, A.J.; Braconnot, P.; Falcón, R.A.; Julien, M.; Lavallée, D. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 2014, 345, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Cobb, K.M.; Charles, C.D.; Cheng, H.; Kastner, M.; Edwards, R.L. U/Th-dating living and young fossil corals from the central tropical Pacific. Earth Planet. Sci. Lett. 2003, 210, 91–103. [Google Scholar] [CrossRef]
- Koutavas, A.; Demenocal, P.B.; Olive, G.C.; Lynch-Stieglitz, J. Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 2006, 34, 993–996. [Google Scholar] [CrossRef]
- Sandweiss, D.H.; Richardson, J.B., III; Reitz, E.J.; Rollins, H.B.; Maasch, K.A. Geoarchaeological evidence from Peru for a 5000 years BP onset of El Nino. Science 1996, 273, 1531–1532. [Google Scholar] [CrossRef]
- Rodbell, D.T.; Seltzer, G.O.; Anderson, D.M.; Abbott, M.B.; Enfield, D.B.; Newman, J.H. An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 1999, 283, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Clement, A.C.; Seager, R.; Cane, M. Orbital controls on the El Nino/Southern Oscillation and the tropical climate. Paleoceanography 1999, 14, 441–456. [Google Scholar] [CrossRef]
- Clement, A.C.; Seager, R.; Cane, M.A. Suppression of El Niño during the Mid-Holocene by changes in the Earth’s orbit. Paleoceanography 2000, 15, 731–737. [Google Scholar] [CrossRef]
- Liu, Z.; Kutzbach, J.; Wu, L. Modeling climate shift of El Nino variability in the Holocene. Geophys. Res. Lett. 2000, 27, 2265–2268. [Google Scholar] [CrossRef]
- Capotondi, A.; Ham, Y.-G.; Wittenberg, A.; Kug, J.-S. Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US CLIVAR Var. 2015, 13, 21–25. [Google Scholar]
- Chen, C.; Cane, M.A.; Wittenberg, A.T.; Chen, D. ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change. J. Clim. 2017, 30, 775–801. [Google Scholar] [CrossRef]
- Kug, J.-S.; Ham, Y.-G.; Lee, J.-Y.; Jin, F.-F. Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett. 2012, 7, 034002. [Google Scholar] [CrossRef]
- Russon, T.; Tudhope, A.; Hegerl, G.; Collins, M.; Tindall, J. Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: Implications for interpreting coral stable oxygen isotope records of ENSO. Clim. Past 2013, 9, 1543–1557. [Google Scholar] [CrossRef] [Green Version]
- Tindall, J.; Valdes, P.; Sime, L.C. Stable water isotopes in HadCM3: Isotopic signature of El Niño–Southern Oscillation and the tropical amount effect. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Liu, Z.; Brady, E.; Otto-Bliesner, B.; Zhang, J.; Noone, D.; Tomas, R.; Nusbaumer, J.; Wong, T.; Jahn, A. Reduced ENSO Variability at the LGM Revealed by an Isotope-enabled Earth System Model. Geophys. Res. Lett. 2017. [Google Scholar] [CrossRef]
- Otto-Bleisner, B.L.; Braconnot, P.; Harrison, S.P.; Lunt, D.J.; Abe-Ouchi, A.; Albani, S.; Bartlein, P.J.; Capron, E.; Carlson, A.E.; Dutton, A. The PMIP4 contribution to CMIP6–Part 2: Two interglacials, scientific objective and experimental design for Holocene and last interglacial simulations. Geosci. Model Dev. Discuss. 2017, 10, 3979–4003. [Google Scholar] [CrossRef]
- Kageyama, M.; Braconnot, P.; Harrison, S.; Haywood, A.; Jungclaus, J.; Otto-Bliesner, B.; Peterschmitt, J.; Abe-Ouchi, A.; Albani, S.; Bartlein, P. PMIP4-CMIP6: The contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6. Geosci. Model Dev. Discuss. 2016. [Google Scholar] [CrossRef]
- Haywood, A.M.; Dowsett, H.J.; Dolan, A.M.; Chandler, M.A.; Hunter, S.J.; Lunt, D.J. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific objectives and experimental design. Clim. Past 2016, 12, 663. [Google Scholar] [CrossRef] [Green Version]
- Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A. Pliocene Model Intercomparison Project (PlioMIP): Experimental design and boundary conditions (experiment 2). Geosci. Model Dev. 2011, 4, 571–577. [Google Scholar]
- Liu, Z.; Lu, Z.; Wen, X.; Otto-Bliesner, B.; Timmermann, A.; Cobb, K. Evolution and forcing mechanisms of El Nino over the past 21,000 years. Nature 2014, 515, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Otto-Bliesner, B.; He, F.; Brady, E.; Tomas, R.; Clark, P.; Carlson, A.; Lynch-Stieglitz, J.; Curry, W.; Brook, E. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Timmermann, A.; Lorenz, S.; An, S.; Clement, A.; Xie, S. The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Clim. 2007, 20, 4147–4159. [Google Scholar] [CrossRef]
- Hope, P.; Henley, B.J.; Gergis, J.; Brown, J.; Ye, H. Time-varying spectral characteristics of ENSO over the Last Millennium. Clim. Dyn. 2017, 49, 1705–1727. [Google Scholar] [CrossRef]
- Lewis, S.; LeGrande, A. Stability of ENSO and its tropical Pacific teleconnections over the Last Millennium. Clim. Past 2015, 11, 1347–1360. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. Climate variability and change since 850 CE: An ensemble approach with the community earth system model. Bull. Am. Meteorol. Soc. 2016, 97, 735–754. [Google Scholar] [CrossRef]
- Stevenson, S.; Capotondi, A.; Fasullo, J.; Otto-Bliesner, B. Forced changes to twentieth century ENSO diversity in a last Millennium context. Clim. Dyn. 2017, 1–16. [Google Scholar] [CrossRef]
- Stevenson, S.; Otto-Bliesner, B.; Fasullo, J.; Brady, E. “El Niño Like” Hydroclimate Responses to Last Millennium Volcanic Eruptions. J. Clim. 2016, 29, 2907–2921. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Timmreck, C. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 545–564. [Google Scholar] [CrossRef]
- Gao, C.; Robock, A.; Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res. Atmos. 2008, 113, D23. [Google Scholar] [CrossRef]
- Fowler, A.M.; Boswijk, G.; Lorrey, A.M.; Gergis, J.; Pirie, M.; McCloskey, S.P.; Palmer, J.G.; Wunder, J. Multi-centennial tree-ring record of ENSO-related activity in New Zealand. Nat. Clim. Chang. 2012, 2, 172–176. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.-P.; Cook, E.R.; Huang, G.; D’arrigo, R.; Liu, F.; Ma, J.; Zheng, X.-T. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Chang. 2011, 1, 114–118. [Google Scholar] [CrossRef]
- Clement, A.C.; Seager, R.; Cane, M.A.; Zebiak, S.E. An ocean dynamical thermostat. J. Clim. 1996, 9, 2190–2196. [Google Scholar] [CrossRef]
- Mann, M.E.; Cane, M.A.; Zebiak, S.E.; Clement, A. Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Clim. 2005, 18, 447–456. [Google Scholar] [CrossRef]
- Emile-Geay, J.; Seager, R.; Cane, M.A.; Cook, E.R.; Haug, G.H. Volcanoes and ENSO over the past millennium. J. Clim. 2008, 21, 3134–3148. [Google Scholar] [CrossRef]
- McGregor, S.; Timmermann, A. The effect of explosive tropical volcanism on ENSO. J. Clim. 2011, 24, 2178–2191. [Google Scholar] [CrossRef]
- Pausata, F.S.; Chafik, L.; Caballero, R.; Battisti, D.S. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. USA 2015, 112, 13784–13788. [Google Scholar] [CrossRef] [PubMed]
- Joos, F.; Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl. Acad. Sci. USA 2008, 105, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Capotondi, A. ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans 2013, 118, 4755–4770. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Loutre, M.-F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Wittenberg, A.T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- McGregor, H.; Fischer, M.J.; Gagan, M.; Fink, D.; Phipps, S.J.; Wong, H.; Woodroffe, C. A weak El Niño/Southern Oscillation with delayed seasonal growth around 4300 years ago. Nat. Geosci. 2013, 6, 949–953. [Google Scholar] [CrossRef]
- Roberts, W.H.; Battisti, D.S.; Tudhope, A.W. ENSO in the Mid-Holocene according to CSM and HadCM3. J. Clim. 2014, 27, 1223–1242. [Google Scholar] [CrossRef]
- Braconnot, P.; Luan, Y.; Brewer, S.; Zheng, W. Impact of Earth’s orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics. Clim. Dyn. 2012, 38, 1081–1092. [Google Scholar] [CrossRef]
- Brown, J.; Collins, M.; Tudhope, A.W.; Toniazzo, T. Modelling mid-Holocene tropical climate and ENSO variability: Towards constraining predictions of future change with palaeo-data. Clim. Dyn. 2008, 30, 19–36. [Google Scholar] [CrossRef]
- Chiang, J.; Fang, Y.; Chang, P. Pacific climate change and ENSO activity in the mid-Holocene. J. Clim. 2009, 22, 923–939. [Google Scholar] [CrossRef]
- Karamperidou, C.; Di Nezio, P.N.; Timmermann, A.; Jin, F.F.; Cobb, K.M. The response of ENSO flavors to mid-Holocene climate: Implications for proxy interpretation. Paleoceanography 2015, 30, 527–547. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Shin, S.I.; Liu, Z.; Shields, C. Modeling El Niño and its tropical teleconnections during the last glacial-interglacial cycle. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Pausata, F.S.; Zhang, Q.; Muschitiello, F.; Lu, Z.; Chafik, L.; Niedermeyer, E.M.; Stager, J.C.; Cobb, K.M.; Liu, Z. Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nat. Commun. 2017, 8, 16020. [Google Scholar] [CrossRef] [PubMed]
- Salau, O.; Schneider, B.; Park, W.; Khon, V.; Latif, M. Modeling the ENSO impact of orbitally induced mean state climate changes. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- An, S.-I.; Choi, J. Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3. Clim. Dyn. 2014, 43, 957–970. [Google Scholar] [CrossRef]
- Tian, Z.; Li, T.; Jiang, D.; Chen, L. Cause of ENSO weakening during the mid-Holocene. J. Clim. 2017. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.J.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Volume 5, pp. 741–866. [Google Scholar]
- Peltier, W. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Peltier, W.; Argus, D.; Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef]
- Liu, Z. A Simple Model Study of ENSO Suppression by External Periodic Forcing. J. Clim. 2002, 15, 1088–1098. [Google Scholar] [CrossRef]
- White, S.M.; Christina Ravelo, A.; Polissar, P.J. Dampened El Niño in the early and mid-Holocene due to insolation-forced warming/deepening of the thermocline. Geophys. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Stommel, H. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA 1979, 76, 3051–3055. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.F.; Kim, S.T.; Bejarano, L. A coupled-stability index for ENSO. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Kim, S.T.; Jin, F.-F. An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim. Dyn. 2011, 36, 1609–1627. [Google Scholar] [CrossRef]
- Kim, S.T.; Jin, F.-F. An ENSO stability analysis. Part I: Results from a hybrid coupled model. Clim. Dyn. 2011, 36, 1593–1607. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, S. Equatorward propagation of coupled air-sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci. 1994, 51, 3807–3822. [Google Scholar] [CrossRef]
- Vimont, D.J.; Battisti, D.S.; Hirst, A.C. Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett. 2001, 28, 3923–3926. [Google Scholar] [CrossRef]
- Vimont, D.J.; Wallace, J.M.; Battisti, D.S. The seasonal footprinting mechanism in the Pacific: Implications for ENSO*. J. Clim. 2003, 16, 2668–2675. [Google Scholar] [CrossRef]
- Chang, P.; Zhang, L.; Saravanan, R.; Vimont, D.J.; Chiang, J.C.; Ji, L.; Seidel, H.; Tippett, M.K. Pacific meridional mode and El Niño—Southern oscillation. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Erb, M.P.; Broccoli, A.J.; Graham, N.T.; Clement, A.C.; Wittenberg, A.T.; Vecchi, G.A. Response of the equatorial Pacific seasonal cycle to orbital forcing. J. Clim. 2015, 28, 9258–9276. [Google Scholar] [CrossRef]
- Dyke, A.S. An outline of North American deglaciation with emphasis on central and northern Canada. Dev. Quat. Sci. 2004, 2, 373–424. [Google Scholar]
- Petit, J.-R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- DiNezio, P.N.; Tierney, J.E. The effect of sea level on glacial Indo-Pacific climate. Nat. Geosci. 2013, 6, 485–491. [Google Scholar] [CrossRef]
- Eisenman, I.; Bitz, C.M.; Tziperman, E. Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography 2009, 24. [Google Scholar] [CrossRef]
- Kutzbach, J.; Wright, H., Jr. Simulation of the climate of 18,000 years BP: Results for the North American/North Atlantic/European sector and comparison with the geologic record of North America. Quat. Sci. Rev. 1985, 4, 147–187. [Google Scholar] [CrossRef]
- Zhang, X.; Lohmann, G.; Knorr, G.; Purcell, C. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 2014, 512, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, Z.; Zhang, X.; Eisenman, I.; Liu, W. Linear Weakening of the AMOC in response to Receding Glacial Ice Sheets in CCSM3. Geophys. Res. Lett. 2014. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chiang, J.C.; Chang, P. Tropical Pacific response to continental ice sheet topography. Clim. Dyn. 2014, 44, 2429–2446. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, Z.; Zhu, J. Abrupt intensification of ENSO forced by deglacial ice-sheet retreat in CCSM3. Clim. Dyn. 2016, 46, 1877–1891. [Google Scholar] [CrossRef]
- Russell, J.M.; Vogel, H.; Konecky, B.L.; Bijaksana, S.; Huang, Y.; Melles, M.; Wattrus, N.; Costa, K.; King, J.W. Glacial forcing of central Indonesian hydroclimate since 60,000 y BP. Proc. Natl. Acad. Sci. USA 2014, 111, 5100–5105. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.E.; Clark, P.U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Driscoll, R.; Elliot, M.; Russon, T.; Welsh, K.; Yokoyama, Y.; Tudhope, A. ENSO reconstructions over the past 60 ka using giant clams (Tridacna sp.) from Papua New Guinea. Geophys. Res. Lett. 2014, 41, 6819–6825. [Google Scholar] [CrossRef]
- Thirumalai, K.; Partin, J.W.; Jackson, C.S.; Quinn, T.M. Statistical constraints on El Niño Southern Oscillation reconstructions using individual foraminifera: A sensitivity analysis. Paleoceanogr. Paleoclimatol. 2013, 28, 401–412. [Google Scholar] [CrossRef]
- Xie, S.-P. On the genesis of the equatorial annual cycle. J. Clim. 1994, 7, 2008–2013. [Google Scholar] [CrossRef]
- Brady, E.C.; Otto-Bliesner, B.L.; Kay, J.E.; Rosenbloom, N. Sensitivity to glacial forcing in the CCSM4. J. Clim. 2013, 26, 1901–1925. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Clauzet, G.; Tomas, R.; Levis, S.; Kothavala, Z. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 2006, 19. [Google Scholar] [CrossRef]
- Timmermann, A.; Okumura, Y.; An, S.-I.; Clement, A.; Dong, B.; Guilyardi, E.; Hu, A.; Jungclaus, J.; Renold, M.; Stocker, T. The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Clim. 2007, 20, 4899–4919. [Google Scholar] [CrossRef]
- Hemleben, C.; Spindler, M.; Anderson, O.R. Modern Planktonic Foraminifera; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Wolff, C.; Haug, G.H.; Timmermann, A.; Damsté, J.S.S.; Brauer, A.; Sigman, D.M.; Cane, M.A.; Verschuren, D. Reduced interannual rainfall variability in East Africa during the last ice age. Science 2011, 333, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Teng, H.; Branstator, G. Future changes of El Niño in two global coupled climate models. Clim. Dyn. 2006, 26, 549–566. [Google Scholar] [CrossRef]
- Timmermann, A.; Jin, F.F.; Collins, M. Intensification of the annual cycle in the tropical Pacific due to greenhouse warming. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Clement, A.C.; Peterson, L.C. Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 2014, 390, 69–79. [Google Scholar] [CrossRef]
- Haywood, A.M.; Dowsett, H.J.; Dolan, A.M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 2016, 7, 10646. [Google Scholar] [CrossRef] [PubMed]
- Ravelo, A.C.; Andreasen, D.H.; Lyle, M.; Lyle, A.O.; Wara, M.W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 2004, 429, 263–267. [Google Scholar] [CrossRef] [PubMed]
- McInerney, F.A.; Wing, S.L. The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 2011, 39, 489–516. [Google Scholar] [CrossRef]
- Caballero, R.; Huber, M. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA 2013, 110, 14162–14167. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Caballero, R. Eocene El Nino: Evidence for robust tropical dynamics in the “hothouse”. Science 2003, 299, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Dekens, P.; McCarthy, M.; Ravelo, A.; Barreiro, M.; Pacanowski, R.; Philander, S. The Pliocene paradox (mechanisms for a permanent El Niño). Science 2006, 312, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Wara, M.W.; Ravelo, A.C.; Delaney, M.L. Permanent El Niño-like conditions during the Pliocene warm period. Science 2005, 309, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Molnar, P.; Cane, M.A. El Niño’s tropical climate and teleconnections as a blueprint for pre-Ice Age climates. Paleoceanography 2002, 17. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Pagani, M.; Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 2014, 344, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Ravelo, A.C.; Lawrence, K.T.; Fedorov, A.; Ford, H.L. Comment on “A 12-million-year temperature history of the tropical Pacific Ocean”. Science 2014, 346, 1467. [Google Scholar] [CrossRef] [PubMed]
- Brierley, C. Interannual climate variability seen in the Pliocene Model Intercomparison Project. Clim. Past 2015, 11, 605–618. [Google Scholar] [CrossRef]
- Galeotti, S.; Von der Heydt, A.; Huber, M.; Bice, D.; Dijkstra, H.; Jilbert, T.; Lanci, L.; Reichart, G.-J. Evidence for active El Niño Southern Oscillation variability in the Late Miocene greenhouse climate. Geology 2010, 38, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Von der Heydt, A.; Nnafie, A.; Dijkstra, H. Cold tongue/Warm pool and ENSO dynamics in the Pliocene. Clim. Past 2011, 7, 903–915. [Google Scholar] [CrossRef] [Green Version]
- Haywood, A.M.; Valdes, P.J.; Peck, V.L. A permanent El Niño–like state during the Pliocene? Paleoceanography 2007, 22. [Google Scholar] [CrossRef]
- Scroxton, N.; Bonham, S.G.; Rickaby, R.E.; Lawrence, S.; Hermoso, M.; Haywood, A.M. Persistent El Niño–Southern Oscillation variation during the Pliocene Epoch. Paleoceanography 2011, 26. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Brierley, C.M.; Emanuel, K. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 2010, 463, 1066–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manucharyan, G.E.; Fedorov, A.V. Robust ENSO across a wide range of climates. J. Clim. 2014, 27, 5836–5850. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Yan, Q.; Su, J.-Z.; Gao, Y.-Q. Has the problem of a permanent El Nino been resolved for the Mid-Pliocene? Atmos. Ocean. Sci. Lett. 2012, 5, 445–448. [Google Scholar]
- Song, Z.; Latif, M.; Park, W.; Krebs-Kanzow, U.; Schneider, B. Influence of seaway changes during the Pliocene on tropical Pacific climate in the Kiel climate model: Mean state, annual cycle, ENSO, and their interactions. Clim. Dyn. 2017, 48, 3725–3740. [Google Scholar] [CrossRef]
- Brierley, C.M.; Fedorov, A.V.; Liu, Z.; Herbert, T.D.; Lawrence, K.T.; LaRiviere, J.P. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 2009, 323, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
References | Type | Range | Location |
---|---|---|---|
Moy et al., 2002 [22] | Lake sediment | 10 ka | Laguna Pallcacocha, Ecuador |
Riedinger et al., 2002 [23] | Lake sediment | 10 ka | Bainbridge Crater Lake, Galápagos Islands |
Conroy et al., 2008 [24] | Lake sediment | 10 ka | El Junco Crater Lake, Galápagos Islands |
Z. Zhang et al., 2014 [25] | Lake sediment | 10 ka | El Junco Crater Lake, Galápagos Islands |
Thompson et al., 2017 [26] | Lake sediment | 10 ka | Bainbridge Crater Lake, Galápagos Islands |
Rein et al., 2005 [27] | Marine sediment | 21 ka | 78° W, 12° S |
Leduc et al., 2009 [28] | Marine sediment | 50 ka | 84° W, 8° N |
Koutavas and Joanides, 2012 [29] | Marine sediment | 21 ka | 90° W, 1° S |
Sadekov et al., 2013 [30] | Marine sediment | 21 ka | 90° W, 2° S |
Ford et al., 2015 [31] | Marine sediment | 21 ka | 159° E, 14° S; 110° W, 14° S |
Rustic et al., 2015 [32] | Marine sediment | 1 ka | 90° W, 1° S |
Emile-Geay et al., 2015 [33] | Coral & Mollusk synthesis | 10 ka | WP, CP and EP clusters |
Chen et al., 2016 [34] | speleothem | 10 ka | Northern Borneo, 4° N, 114° E |
Watanabe et al., 2011 [35] | Coral | Pliocene | Philippines, 124° E, 13° N |
Li et al., 2013 [36] | Tree-ring synthesis | 1 ka | 8 circum-Pacific clusters |
Liu et al., 2017 [37] | Tree-ring isotope | 1 ka | Taiwan, 121° E, 24° N; 151° E, 24° N |
Thompson et al., 2013 [38] | Ice-core | 1 ka | Quelccaya ice cap, 71° W, 14° S |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Liu, Z.; Zhu, J.; Cobb, K.M. A Review of Paleo El Niño-Southern Oscillation. Atmosphere 2018, 9, 130. https://doi.org/10.3390/atmos9040130
Lu Z, Liu Z, Zhu J, Cobb KM. A Review of Paleo El Niño-Southern Oscillation. Atmosphere. 2018; 9(4):130. https://doi.org/10.3390/atmos9040130
Chicago/Turabian StyleLu, Zhengyao, Zhengyu Liu, Jiang Zhu, and Kim M. Cobb. 2018. "A Review of Paleo El Niño-Southern Oscillation" Atmosphere 9, no. 4: 130. https://doi.org/10.3390/atmos9040130
APA StyleLu, Z., Liu, Z., Zhu, J., & Cobb, K. M. (2018). A Review of Paleo El Niño-Southern Oscillation. Atmosphere, 9(4), 130. https://doi.org/10.3390/atmos9040130