Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review
Abstract
:1. Introduction
2. Methods & Review Structure
2.1. Application of Köppen Geiger Classification System
2.2. Measure Review Framework Construction
3. Examining Thermal Indices and Adaptation Dynamics
Critical Outlook
4. Green Measure Review Framework
4.1. Introduction of Projects
4.2. Scientific Oriented Projects
4.2.1. IS Effect Studies
- Tsilini, Papantoniou, et al. [134] identified that the hours revealing the greatest variations as a result of vegetation were between 12:00 and 15:00; (ii) Martins, Adolphe, et al. [135], who also identified low reductions of Tamb, presented noteworthy thermo-physiological reductions (e.g., a PET decrease of 7 °C); (iii) similarly, and by combining with other PSD measures, Wang, Berardi, et al. [136] also identified similar PET reductions of 3.3 °C and 4.6 °C even when reductions of Tamb did not surpass that of 1.0 °C
- Abreu-Harbich and Labaki [137] identified that the most predominant influence on thermal comfort was the tree structure, regardless of the utilised thermal index (i.e., PMV and PET); (ii) in a later study, Abreu-Harbich, Labaki, et al. [138] again identified both the importance of tree species and the use of thermo-physiological indices such as PET for evaluating thermal comfort; beyond considering Tamb, they also considers factors such as solar radiation dynamics
- Through satellite imagery, Jonsson [139] discovered that at a larger scale, urban Tamb varied between 2 °C and 4 °C as a result of the presence of vegetation; (ii) in the study conducted by Perini and Magliocco [140], it was also identified that at ground level and as a result of foliation, Tamb, MRT, and PMV values were also considerably lower (≈−3.5 °C in Tamb and −20.0 °C in MRT) in comparison to those identified in the rest of the city; and, finally, (iii) in an effort to determine influences of urban vegetation on local conditions within high density settings, Kong, Lau, et al. [141] identified maximum reductions of 1.6 °C in Tamb, 5.1 °C in MRT, and 2.9 °C in PET.
4.2.2. PCI Effect Studies
4.3. Design-Oriented Projects
4.4. Critical Outlook
5. Sun Measure Review Framework
5.1. Introduction of Projects
5.2. ETCS Projects
5.2.1. Permanent Solution Projects
5.2.2. Critical Outlook
6. Surface Measure Review Framework
6.1. Introduction of Projects
6.2. Critical Outlook
7. Blue Measure Review Framework
7.1. Introduction of Projects
7.2. Design Oriented Approach
7.3. Engineering Oriented Approach
7.4. Critical Outlook
8. Conclusions & Critical Research Outlook
- There is still an over dependence on singular climatic variables that do not effectively assess local thermal comfort implications, both within top-down and bottom-up perspectives. More urgently, and with regards to bottom-up approaches, there still needs to be a better integration of thermo-physiological indices to help guide more wholesome bioclimatic evaluations of the public realm. Such a requisite is particularly pertinent in design projects that exclusively depend on variables such as Tamb to assess the current and prospective conditions as a result of PSD interventions.
- The existing divergence between qualitative and quantitative evaluations of thermal comfort conditions needs to be addressed further. Although thermal indices have incontestably proven their importance in approaching pedestrian thermo-physiological stress, it has also been proven that socio-psychological factors can also influence pedestrian interpretations of thermal stress. In other words, while human-biometeorological thresholds have been well documented (and in numerous ways), there is now the opportunity to further explore how simulations can potentially account for human qualitative criteria as well.
- It has been well documented that (i) tree characteristics and planting layout have a dramatic effect on thermal comfort levels; and (ii) thermal attenuations, as a result of ‘green spaces’, are higher than those obtained from IS individual trees. Yet, different methodologies have been utilised to identify these influences of vegetation on the urban microclimate. These approaches can be divided into two categories: those that consider non-temperature variables such as solar radiation and those that focus on modifications of Tamb. Although each have presented important results, it was found that studies that considered reductions in radiation fluxes were more beneficial for wholesome thermal comfort assessments.
- Unlike with vegetation, there has been very little work with regard to the influence of shelter canopies on thermal comfort levels. Although widely used, its bioclimatic application needs to be examined further. Thus far, there have been few studies that have examined the influences of ephemeral measures such as nylon/acrylic canopies. Yet, more permanent solutions (which also paradoxically present a higher need for such studies) have yet to be implicitly explored. On the other hand, and with regard to the synergetic relationship between urban canyons and solar radiation, extensive studies have been undertaken to examine influences on local thermo-physiological thresholds. Yet, with such a robust scientific foundation, and although studies are emerging, further investigation should be conducted on how different PSD measures can influence such local thresholds, including through the use of shelter canopies.
- With regard to the approach to surface elements such as pavements, although considerable work has already been undertaken, more investigation is needed. Such a task ultimately relays the requirement to consider (1) their symbiotic relationship with aspect ratios, and other PSD measures, especially in terms of susceptibility to global radiation (both continuous and episodic); and (2) further assessments into the actual thermal performance and reactions of such materials under set circumstances. Again, it is here that non-temperature variables shall continue to prove imperative when considering the direct, and indirect, influences that elements such as pavements can have on pedestrian thermal comfort thresholds.
- Lastly, and with regard to the application of water/misting systems within outdoor urban spaces for addressing thermal comfort thresholds, the link between design and engineering needs to be explored further. Moreover, it is suggested by this review study that enough is already known amongst the two approaches to launch initial investigations into how engineering approaches can be interlinked with design concepts, even if still based on basic rules of thumb that can be explored further in future thermal sensitive PSD studies.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
#KX (in MRFs) | Temperature difference of X variable (°C) |
‘Af’ | Tropical rainforest climate (-) |
‘Aw’ | Tropical savannah with dry winter climate (-) |
‘Bwh’ | Desert climate (-) |
‘Cfa’ | Humid subtropical climate (-) |
‘Cfb’ | Temperate oceanic climate (-) |
‘Csa’ | Hot-Mediterranean climate (-) |
a | Albedo (-) |
AR | Aspect-Ratio (-) |
B | Beginning of Month (-) |
CFD | Computational Fluid Dynamic (-) |
cPETL | cumulative PETL (°C) |
E | End of Month (-) |
ETCS | Ephemeral Thermal Comfort Solution (-) |
FP | Functioning Period (min) |
GP | Group Plantation (-) |
Grad | Global Radiation (W/m2) |
H/W | Height-to-Width (-) |
IS | In-Situ (-) |
ITS | Index of Thermal Stress (-) |
KG | Köppen Geiger (-) |
LP | Linear Plantation (-) |
M | Middle of Month (-) |
MEMI | Munich Energy-balance Model for Individuals (-) |
MOCI | Mediterranean Outdoor Comfort Index (-) |
mPET | modified PET (°C) |
MRF | Measure Review Framework (-) |
MRT | Mean Radiant Temperature (°C) |
NA | Not Applicable (-) |
ND | Not Disclosed (-) |
NDI | No Detailed Information (-) |
NH | Nozzle Height (m) |
OUT_SET* | Outdoor SET* (°C) |
PCI | Park Cooling Island (-) |
Perm. | Permanent Measure (-) |
PET | Physiologically Equivalent Temperature (°C) |
PETL | PET Load (°C) |
PG | Pergola (-) |
PHS | Predicted Heat Strain (-) |
PMV | Predicted Mean Vote (-) |
PP | Pump Pressure (MPa) |
PPD | Predicted Percentage of Dissatisfied (-) |
PPS | Project for Public Spaces (-) |
PS | Physiological Stress (-) |
PSD | Public Space Design (-) |
Psdry | Precipitation of driest month in summer (mm) |
PT | Perceived Temperature (°C) |
Pwwet | Precipitation of wettest month in winter (mm) |
Q* | Net of all-wave radiation (W/m2) |
QE | Flux of latent heat (W/m2) |
QF | Anthropogenic heat flux (W/m2) |
QH | Flux of sensible heat (W/m2) |
RH | Relative Humidity (%) |
SET* | Standard Effective Temperature (°C) |
SMD | Sauter Mean Diameter (μm) |
SP | Surface Plantation (-) |
ST | Solar Transmissivity (%) |
SVF | Sky View Factor (-) |
SW | Surface Wetting (-) |
Tamb | Ambient temperature (°C) |
Tcold | Tamb of coldest month (°C) |
Thot | Tamb of hottest month (°C) |
Tmon10 | # of months where Tamb is above 10 °C (-) |
Tsurf | Surface Temperature (°C) |
UHI | Urban Heat Island (-) |
UTCI | Universal Thermal Climate Index (°C) |
UV | Ultra Violet (nm) |
V | Wind Speed (m/s) |
WBGT | Wet Bulb Globe Temperature (°C) |
ΔQA | Net heat advection (W/m2) |
ΔQS | Heat storage within urban fabric (W/m2) |
- | Tree acronyms not included |
References
- Brown, R.; Vanos, J.; Kenny, N.; Lenzholzer, S. Designing urban parks that ameliorate the effects of climate change. Landsc. Urban Plan. 2015, 138, 118–131. [Google Scholar] [CrossRef]
- Wilbanks, T.J.; Kates, R.W. Global Change in Local Places: How Scale Matters. In Climatic Change; Springer: Dordrecht, The Netherlands, 1999; pp. 601–628. [Google Scholar]
- Costa, J.P.; Nouri, A.S.; Fernandes, A. An overall perspective on the climate change adaptation agenda. In Climate Change Adaptation in Urbanised Estuaries, Contributes to the Lisbon Case; Costa, J.P., Sousa, J.F., Eds.; CIAUD-FCT: Lisbon, Portugal, 2013. [Google Scholar]
- Matzarakis, A.; Amelung, B. Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. In Seasonal Forecasts, Climatic Change and Human Health; Advances in Global Research 30; Thomson, M.C., Garcia-Herrera, R., Beniston, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 161–172. [Google Scholar]
- Katzschner, L. Microclimatic Thermal Comfort Analysis in Cities for Urban Planning and Open Space Design; Network for Comfort and Energy Use in Buildings NCUB: London, UK, 2006. [Google Scholar]
- Whyte, W.H. The Social Life of Small Urban Spaces; Project for Public Spaces Inc.: New York, NY, USA, 1980. [Google Scholar]
- Olgyay, V.; Olgyay, A. Design with Climate: Bioclimatic Approach to Architectural Regionalism; Princeton University Press: Princeton, NJ, USA, 1963. [Google Scholar]
- Givoni, B. Man, Climate and Architecture; Applied Science Publishers: London, UK, 1976. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 1978. [Google Scholar]
- Höppe, P. The Energy Balance in Humans; (Original Title—Die Energiebilanz des Menschen); Wissenschaftliche Mitteilungen, Universitat Munchen, Meteorologisches Institut: Munich, Germany, 1984. [Google Scholar]
- Gehl, J. Life between Buildings: Using Public Space; Island Press: New York, NY, USA, 1987. [Google Scholar]
- Oke, T. Steet Design and Urban Canopy Layer Climate. J. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Brown, R.; Gillespie, T. Estimating radiation received by a person under different species of shade trees. J. Aboriculture 1990, 16, 158–161. [Google Scholar]
- Carmona, M.; Tiesdell, S.; Heath, T.; Oc, T. Public Places, Urban Spaces: The Dimensions of Urban Design, 1st ed.; Architectural Press: Oxford, UK, 2003. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Oke, T. The urban energy balance. J. Prog. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Nouri, A.S.; Lopes, A.; Costa, J.P.; Matzarakis, A. Confronting potential future augmentations of the physiologically equivalent temperature through public space design: The case of Rossio, Lisbon. Sustain. Cities Soc. 2018, 37, 7–25. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the buildings—Past, present and future. Energy Build. 2016, 128, 617–638. [Google Scholar] [CrossRef]
- Gaitani, N.; Spanou, A.; Saliari, M.; Vassilakopoulou, K.; Papadopoulou, K.; Pavlou, K.; Santamouris, M.; Lagoudaki, A. Improving the microclimate in urban areas: A case study in the centre of Athens. Build. Serv. Eng. Res. Technol. 2011, 32, 53–71. [Google Scholar] [CrossRef]
- Lopes, A. The influcence of the growth of Lisbon on summer wind fields and its environmental implications. In Proceedings of the Tyndall/CIB International Conference on Climate Change and the Built Environment, Manchester, UK, 8–9 April 2002. [Google Scholar]
- Matos Silva, M. Public Space Design for Flooding: Facing Challenges Presented by Climate Change Adaptation. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2016. [Google Scholar]
- Matos Silva, M.; Costa, J.P. Flood adaptation measures applicable in the design of urban public spaces: Proposal for a conceptual framework. Water 2016, 8, 284. [Google Scholar] [CrossRef]
- Costa, J.P.; de Sousa, J.F.; Silva, M.M.; Nouri, A.S. Climate change adaptation and urbanism: A developing agenda for Lisbon within the twenty-first century. Urban Des. Int. 2013, 19, 77–91. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variationa and change: An example for 1901–2010. J. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Yang, S.; Matzarakis, A. Implementation of human thermal comfort information in Köppen-Geiger climate classification—The example of China. Int. J. Biometeorol. 2016, 60, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. J. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef]
- Peel, M.; Finlayson, B.; McMahon, T. Updated world map of the Koppen-Geiger climate classification. J. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Nouri, A.S. A Framework of Thermal Sensitive Urban Design Benchmarks: Potentiating the Longevity of Auckland’s Public Realm. Buildings 2015, 5, 252–281. [Google Scholar] [CrossRef]
- Brugger, K.; Rubel, F. Characterizing the species composition of European Culicoides vectors by means of the Köppen-Geiger climate classification. J. Parasites Vectors 2013, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Djamila, H.; Yong, T. A study of Köppen-Geiger system for comfort temperature prediction in Melbourne city. Sustain. Cities Soc. 2016, 27, 42–48. [Google Scholar] [CrossRef]
- Wong, S.L.; Wan, K.; Yang, L.; Lam, J. Changes in bioclimates in different climates around the world and implications for the built environment. J. Build. Environ. 2012, 57, 214–222. [Google Scholar] [CrossRef]
- Tong, S.; Wong, N.; Tan, C.; Jusuf, S.; Ignatius, M.; Tan, E. Impact of urban morphology on microclimate and thermal comfort in northern China. Sol. Energy 2017, 155, 212–223. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Proietti, R.; Vollaro, A. Implications of climate and outdoor thermal comfort on tourim: The case of Italy. Int. J. Biometeorol. 2017, 61, 2229–2244. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A. Chapter 14—Climate change and adaptation at regional and local scale. In Tourism and the Implications of Climate Change: Issues and Actions; Bridging Tourism Theory and Practice; Schott, C., Jafari, J., Cai, L., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2010; Volume 3, pp. 237–259. [Google Scholar]
- Nouri, A.S. A bottom-up perspective upon climate change—Approaches towards the local scale and microclimatic assessment. In Green Design, Materials and Manufacturing Processes; Bártolo, H., Ed.; Taylor & Francis: Lisbon, Portugal, 2013; pp. 119–124. [Google Scholar]
- Nouri, A.S.; Costa, J.P.; Matzarakis, A. Examining default urban-aspect-ratios and sky-view-factors to identify priorities for thermal-sesnsitive public space design in hot-summer Mediterranean climates: The Lisbon case. Build. Environ. 2017, 126, 442–456. [Google Scholar] [CrossRef]
- Alcoforado, M.-J.; Andrade, H.; Lopes, A.; Vasconcelos, J. Application of climatic guidelines to urban planning—The example of Lisbon (Portugal). Landsc. Urban Plan. 2009, 90, 56–65. [Google Scholar] [CrossRef]
- Alcoforado, M.J.; Vieira, H. Urban climate in Portuguese management plans. Soc. Territ. 2004, 37, 101–116, (In Portuguese with abstract in English). [Google Scholar]
- Cohen, P.; Potcher, O.; Matzarakis, A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Tsiros, I. Assessment and energy implications of street air temperature cooling by shade trees in Athens (Greece) under extremely hot weather conditions. J. Renew. Energy 2010, 35, 1866–1869. [Google Scholar] [CrossRef]
- Bourdin, A. O Urbanismo Depois da Crise; Livros Horizonte: Lisbon, Portugal, 2010. [Google Scholar]
- Costa, J.P. ‘Climate Proof Cities’. Urbanismo e a Adaptação às Alterações Climáticas. As frentes de água. In Lição de Agregação em Urbanismo Apresentada na FA-UTL; Universidade Técnica de Lisboa: Lisboa, Portugal, 2011; p. 218. [Google Scholar]
- Matos Silva, M.; Nouri, A.S. Adaptation measures on riverfronts, an overview. In Climate Change Adaptation in Urbanised Estuaries, Contributes to the Lisbon Case; Costa, J.P., Sousa, J.F., Eds.; CIAUD-FCT: Lisbon, Portugal, 2013. [Google Scholar]
- Costa, J.P. Urbanismo e Adaptação às Alterações Climáticas—As Frentes de Água; Livros Horizonte: Lisbon, Portugal, 2013; p. 183. [Google Scholar]
- Hebbert, M.; Webb, B. Towards a Liveable Urban Climate: Lessons from Stuttgart. In Liveable Cities: Urbanising World; Isocarp 07; Routledge: Manchester, UK, 2007. [Google Scholar]
- Ahmed, K.S. Approaches to Bioclimatic Urban Design for the Tropics with Special Reference to Dhaka, Bangladesh. In Environment & Energy Studies Programme; Architectural Association Graduate School: London, UK, 1996. [Google Scholar]
- Nikolopoulou, M. Designing Open Spaces in the Urban Environment: A Biocliamtic Approach. In Rediscovering the Urban Realm and Open Spaces; Centre for Renewable Energy Sources: Pikermi Attiki, Greece, 2004. [Google Scholar]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate—Designing the Spaces between Buildings; Earthscan: London, UK, 2011. [Google Scholar]
- Ahmed, K. Comfort in urban spaces: Defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy Build. 2003, 31, 103–110. [Google Scholar] [CrossRef]
- Hwang, L.; Lin, T. Thermal comfort requirements for occupants of semi-outdoor and outdoor environments in hot-humid regions. J. Archit. Sci. Rev. 2007, 50, 60–67. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Nakano, J.; Tanabe, S. Thermal comfort and adaptation in semi-outdoor environments. ASHRAE Trans. 2004, 110, 543–553. [Google Scholar]
- Oliveira, S.; Andrade, H. An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int. J. Biometeorol. 2007, 52, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.S.; Costa, J.P. Addressing thermophysiological thresholds and psychological aspects during hot and dry mediterranean summers through public space design: The case of Rossio. Build. Environ. 2017, 118, 67–90. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Tsiros, I.; Chronopoulou-Sereli, A.; Matzarakis, A. Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosyst. 2013, 16, 217–233. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Tsiros, I.; Chronopoulou-Sereli, A.; Matzarakis, A. A methodology for the evaluation of the human-biolcimatic performance of open spaces. Theor. Appl. Climatol. 2016, 128, 811–820. [Google Scholar] [CrossRef]
- Algeciras, J.A.R.; Matzarakis, A. Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona, Spain. Int. J. Biometeorol. 2015, 8, 1261–1270. [Google Scholar]
- Matzarakis, A.; Mayer, H. Heat Stress in Greece. Int. J. Biometeorol. 1997, 41, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney, Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- VDI. Part I: Environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: Climate. In VDI/DIN-Handbuch Reinhaltung der Luft; VDI 3797; Verein Deutscher Ingenieure: Düsseldorf, Germany, 1998; p. 29. [Google Scholar]
- Gagge, A.; Fobelets, P.; Bergland, L. A standard predictive index of human responce to thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- De Dear, R.; Pickup, R. An outdoor thermal comfort index (OUT_SET*)—Part I—The model and its assumptions. In Proceedings of the International Conference on Urban Climatology, Sydney, Australia, 8–9 November 1999. [Google Scholar]
- Tinz, B.; Jendrizky, G. Europa- und Weltkarten der gefühlten Temperatur; Chmielewski, F., Foken, T., Eds.; Beiträge zur Klima- und Meeresforschung: Berlin und Bayreuth, Germany, 2003; pp. 111–123. [Google Scholar]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill Book Company: New York, NY, USA, 1972; p. 244. [Google Scholar]
- Alfano, F.R.A.; Olesen, B.; Palella, B. Polv Ole Fanger’s impact ten years later. Energy Build. 2017, 152, 243–249. [Google Scholar] [CrossRef]
- Kenny, A.; Warland, S.; Brown, R. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Jendritzky, G.; Maarouf, A.; Fiala, D.; Staiger, H. An update on the development of a Universal Thermal Climate Index. In Proceedings of the 15th Conference on Biometeorology Aerobiology and 16th ICB02, Kansas City, MO, USA, 27 October–1 November 2002; AMS: New York, NY, USA, 2002. [Google Scholar]
- Jendritzky, G.; de-Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaglou, C.; Minard, D. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- Alfano, F.; Malchaire, J.; Palella, B.; Riccio, G. WBGT index revisited after 60 years of use. Ann. Occup. Hyg. 2014, 58, 955–970. [Google Scholar]
- Malchaire, J.; Piette, A.; Kampmann, B.; Mehnerts, P.; Gebhardt, H.; Havenith, G.; Hartog, E.; Holmer, I.; Parsons, K.; Alfanoss, G.; et al. Development and Validation of the Predicted Heat Strain Model. Ann. Occup. Hyg. 2001, 45, 123–135. [Google Scholar] [CrossRef]
- Gagge, A.P. A new physiological variable associated with sensible and insensible perspiration. Am. J. Physiol. 1937, 120, 277–287. [Google Scholar] [CrossRef]
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Empirical calibtation of thermal indices in an urban outdoor Mediterranean environment. J. Build. Environ. 2014, 80, 283–292. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Matzarakis, A. Modified physiologically equivalent temperature—Basics and applications for western European climate. Theor. Appl. Climatol. 2017, 1–15. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, G.M. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 42, 76–84. [Google Scholar] [CrossRef]
- Nouri, A.S.; Fröhlich, D.; Silva, M.M.; Matzarakis, A. The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere 2018, 9, 2–28. [Google Scholar]
- Lai, D.; Guo, D.; Hou, Y.; Lin, C.; Chen, Q. Studies of outdoor thermal comfort in northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar] [CrossRef]
- Lin, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Lin, T.-P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2010, 46, 863–870. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, R. Outdoor thermal comofrt in the Mediterranean area. A transversal study in Rome, Italy. J. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Pantavou, K.; Theoharatos, G.; Mavrakis, A.; Santamouris, M. Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. J. Build. Environ. 2011, 46, 339–344. [Google Scholar] [CrossRef]
- Tseliou, A.; Tsiros, I.; Lykoudis, S.; Nikolopoulou, M. An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Build. Environ. 2010, 45, 1346–1352. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor human and thermal stress: A comprehensive review on models and standars. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- De Dear, R.; Foldvary, V.; Zhang, H.; Arens, E.; Luo, M.; Parkison, T.; Du, X.; Zhang, W.; Chun, C.; Liu, S. Comfort is in the mind of the beholder: A review of progress in adaptative thermal comfort research over the past two decades. In Proceedings of the 5th International Conference on Human-Environmental System (ICHES), Nagoya, Japan, 29 October–2 November 2016. [Google Scholar]
- Kim, J.; de Dear, R. Thermal comfort expectations and adaptative behavioural characteristics of primary and secondary school students. Build. Environ. 2017, 127, 13–22. [Google Scholar] [CrossRef]
- De Dear, R.; Kim, J.; Candido, C.; Deuble, M. Adaptive thermal comfort in Australian school classrooms. Build. Res. Inf. 2015, 43, 383–398. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A Review of research in the past decade. Cities 2012, 19, 118–125. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal Comfort in Outdoor Urban Spaces: Understanding the Human Parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindqvist, M.; Lindqvist, S. Thermal bioclimatic conditions and patterns of behaviour in an urbn park in Göteborg, Sweden. Int. J. Biometeorol. 2004, 48, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Katzschner, L. Behaviour of people in open spaces in dependence of thermal comfort conditions. In Proceedings of the 23rd Conference on Passive and Low Energy Architecture (PLEA), Geneva, Switzerland, 6–8 September 2006. [Google Scholar]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in urban spaces: Different forms of adaptation. In Proceedings of the REBUILD International Conference: The Cities of Tomorrow, Barcelona, Spain, 4–6 October 1999. [Google Scholar]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. J. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Nouri, A.S.; Costa, J.P. Placemaking and climate change adaptation: New qualitative and quantitative considerations for the “Place Diagram”. J. Urban. Int. Res. Placemaking Urban Sustain. 2017, 10, 1–27. [Google Scholar]
- PPS. “What Makes a Successful Place?”. 2003. Available online: http://www.pps.org/reference/grplacefeat/ (accessed on 27 June 2013).
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Cohen, P.; Potcher, O.; Schnell, I. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environ. Pollut. 2014, 195, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Janhall, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. J. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Givoni, B. Impact of planted areas on urban environmental quality: A review. J. Atmos. Environ. 1991, 25, 289–299. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Qiu, G.-Y.; Li, H.-Y.; Zhang, Q.-T.; Chen, W.; Liang, X.-J.; Li, X.-Z. Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the built environment—Analysis and assessment of the cooling potential of mitigation technologies using performance data form 220 large scale projects. Sol. Energy 2016, 154, 14–33. [Google Scholar] [CrossRef]
- Bartholomei, C.; Labaki, L. How much does the change of species of trees affect their solar radiation attenuation? In Proceedings of the Fifth International Conference on Urban Climate, Lodtz, Poland, 1–5 September 2003. [Google Scholar]
- Shashua-Bar, L.; Potchter, O.; Bitan, A.; Boltansky, D.; Yaakov, Y. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. Int. J. Clim. 2010, 30, 44–57. [Google Scholar] [CrossRef]
- De Abreu-Harbich, L.V.; Labaki, L.; Matzarakis, A. Reduction of mean radiant temperature by cluster of trees in urban and architectural planning in tropical climate. In Proceedings of the PLEA2012—28th Conference: Opportunities, Limits & Needs towards an Environmentally Responsible Architecture (PLEA), Lima, Perú, 7–9 November 2012. [Google Scholar]
- De Abreu-Harbich, L.V.; Labaki, L.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Almeida, A.L.B. O Valor das Árvores: Árvores e Floresta Urbana de Lisboa; Instituto Superior de Agronomia: Lisbon, Portugal, 2006; p. 342. [Google Scholar]
- Torre, J. Vegetation as an instrument for microclimatic control. In Department of Architectural Technology I; Universitat Politècnica de Catalunya: Barcelona, Spain, 1999. [Google Scholar]
- Fahmy, M.; Sharples, S. Urban form, thermal comfort and building CO2 emissions—A numerical analysis in Cairo. Build. Serv. Eng. Res. Technol. 2011, 32, 73–84. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S. On the development of an urban passive passive thermal comfort system in Cairo, Egypt. Build. Environ. 2009, 44, 1907–1916. [Google Scholar] [CrossRef]
- McPherson, E. Planting design for solar control. In Energy-Conserving Site Design; McPherson, E., Ed.; American Soceity of Landscape Architects: Washington, DC, USA, 1984; pp. 141–164. [Google Scholar]
- Berry, R.; Livesley, S.; Aye, L. Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Build. Environ. 2013, 69, 91–100. [Google Scholar] [CrossRef]
- Viñas, F.; Solanich, J.; Vilardaga, X.; Montilo, L. El Árbol en Jardinería y Paisajismo—Guía de Aplicación Para España y Países de Clima Mediterráneo y Templado, 2nd ed.; Ediciones Omega: Barcelona, Spain, 1995. [Google Scholar]
- Brown, R.; Gillespie, T. Microclimatic Landscape Design: Creating Thermal Comfort and Energy Efficiency; John Wiley and Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Givoni, B. Comparing Temperature and Humidty Conditions in an Urban Garden and in Its Surrounding Areas; Interim Report No. 2; National Building Research Institiute, Technion: Haifa, Israel, 1972. [Google Scholar]
- Jauregui, E. Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy Build. 1990, 15, 457–463. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ. 2012, 51, 285–295. [Google Scholar] [CrossRef]
- Honjo, T.; Takakura, T. Simulation of thermal effects of urban green areas on their surrounding areas. Energy Build. 1991, 15, 457–463. [Google Scholar] [CrossRef]
- Saito, I.; Ishihara, O.; Katayama, T. Study of the effect of green areas on the thermal environment in an urban area. Energy Build. 1991, 15, 2624–2631. [Google Scholar] [CrossRef]
- Gao, W. Thermal effects of open space with a green area on urban environment. J. Archit. Plan. Environ. Eng. 1993, 448, 151–160. [Google Scholar]
- Ca, T.; Asaeda, T.; Abu, M. Reductions in air conditioning energy caused by a nearby park. Energy Build. 1998, 29, 83–92. [Google Scholar] [CrossRef]
- Potchter, O.; Shashua-Bar, L. Urban Greenery as a tool for city cooling: The Israeli experience in a variety of climatic zones. In Proceedings of the PLEA 2017—Design to Thrive, Edinburgh, UK, 3–5 July 2017. [Google Scholar]
- Alcoforado, M.J. Comparasion des ambiances bioclimatiques estivales d’espaces verts de Lisbonne. J. Assoc. Int. Climatol. 1996, 9, 273–290. [Google Scholar]
- Picot, X. Thermal comfort in urban spaces: Impact of vegetation growth. Case study: Piazza della Scienza, Milan, Italy. Energy Build. 2004, 36, 329–334. [Google Scholar] [CrossRef]
- Taha, H.; Akbari, H.; Rosenfeld, A. Vegetation Canopy Micro-Climate: A Field Project in Davis, California; Laboratory Report-24593; Lawrence Berkeley Laboratory, University of California: Berkley, CA, USA, 1988. [Google Scholar]
- Shashua-Bar, L.; Tsiros, I.X.; Hoffman, M. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 2012, 57, 110–119. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levemore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulatingsurface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-Met Bulletin Board: To Compare Simulated and Measured Results Validty. 2006. Available online: http://envi-met.de/phpbb/viewtopic.php?t=142&sid=2ed1f9cd4fa247ae86e268436b441d31 (accessed on 20 June 2011).
- Tsilini, V.; Papantoniou, S.; Kolokotsa, D.; Aria, E.M. Urban gardens as a solution to energy poverty and urban heat island. Sustain. Cities Soc. 2014, 14, 323–333. [Google Scholar] [CrossRef]
- Martins, T.; Adolphe, L.; Bonhomme, M.; Faraut, S.; Ginestet, S.; Michel, C.; Guyard, W. Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Solutions for a new district of Toulouse, France. Sustain. Cities Soc. 2016, 26, 2–26. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- De Abreu-Harbich, L.V.; Labaki, L.C. Thermal comfort offered by certain tree species: Evaluation of the radius of influence through different comfort indices. Ambient. Constr. 2010, 10, 103–117. [Google Scholar]
- De Abreu-Harbich, L.V.; Labaki, L.C.; Bueno-Bartholomei, C.L. How much does the shade provided by different trees collaborate to control the urban heat island in tropical climates?—A study in Campinas, Brazil. In Proceedings of the Conference: IC2UHI—Third International Conference on Countermeasures to Urban Heat Islands, Venice, Italy, 13–15 October 2014. [Google Scholar]
- Jonsson, P. Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. Int. J. Climatol. 2004, 24, 1307–1322. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Kong, L.; Lau, K.; Yuan, C.; Chen, Y.; Xu, Y.; Ren, C.; Ng, E. Regulation of outdoor thermal comfort by trees in Hong Kong. Sustain. Cities Soc. 2017, 31, 12–25. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M. Vegetation as a climatic component in the design of an urban street; An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Bitan, A. Climatic behaviour of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 2006, 26, 1695–1711. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemi, N. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landsc. Urban Plan. 2014, 123, 73–86. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- TVK. Place de la Republique. In TVK/Press Kit—Place de la Republique; Trevelo & Viger-Kohler Architectes Urbanistes: Paris, France, 2013; p. 21. [Google Scholar]
- Knuijt, M. One Step Beyond. Open Space. Topos 2013, 85, 60–67. [Google Scholar]
- UFEI. SelecTree Database. 2012. Available online: http://ufei.calpoly.edu/ (accessed on 22 October 2016).
- Little, E. National Audubon Society: Field Guide to North American Trees, 20th ed.; KNOPF: New York, NY, USA, 2005. [Google Scholar]
- Lanzara, P.; Pizzetti, M. Simon & Schuster’s Guide to Trees; Schuler, S., Ed.; Simon & Schuster: New York, NY, USA, 1977. [Google Scholar]
- IFAS. Landscape Plants. 2015. Available online: http://hort.ifas.ufl.edu/woody/details-specs.shtml (accessed on 21 October 2016).
- RHS. Royal Horticultural Society, Plants; Royal Horticultural Society: London, UK, 2016. [Google Scholar]
- EUCLID. Eucalypts of Australia; Centre for Australian National Biodiversity Research: Acton, Australia, 2006.
- Hammond, J.; Zanetto, J.; Adams, C. Planning Solar Neighbourhoods; California Energy Commission: Sacramento, CA, USA, 1980.
- Heisler, G. Effects individual trees on the solar radiation climate of small buildings. J. Urban Ecol. 1986, 9, 337–359. [Google Scholar] [CrossRef]
- Schiller, G. Factors Involved in Natural Regeneration of Aleppo Pine; Pamphlet No.201; Department of Fisheries Agricultural Research Organization, Ed.; Volcani Centre: Bet Dagon, Israel, 1979.
- Westergaard, C. The Relative Ability of Various Shade Trees to Block or Filter Direct Solar Radiation in the Winter; Cornell University: Ithaca, NY, USA, 1982. [Google Scholar]
- Jennings, J. Winter Shading from Deciduous Trees. In Eugene Springfield Solar Report; Oregon Appropriate Technology: Eugene, OR, USA, 1982. [Google Scholar]
- Jaffe, M.; Erley, D. Protecting Solar Access for Residential Development: A Guidebook for Planning Officials; Department of Housing and Urban Development, U.S Government: Washington, DC, USA, 1979.
- Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar] [CrossRef]
- Andreou, E. Thermal comfort in outdoor spaces and urban canyon microclimate. Renew. Energy 2013, 55, 182–188. [Google Scholar] [CrossRef]
- Chatzidmitriou, A.; Yannas, S. Street canyon design and improvement potential for urban spaces; the influences of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustain. Cities Soc. 2017, 33, 85–101. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Build. Environ. 2007, 48, 2396–2409. [Google Scholar] [CrossRef]
- Norton, B.; Coutts, A.; Livesley, S.; Harris, R.; Hunter, A.; Williams, N. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. J. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- De Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theor. Appl. Climatol. 2013, 115, 333–340. [Google Scholar] [CrossRef]
- Ndetto, E.L.; Matzarakis, A. Effects of urban configuration on human thermal conditions in a typical tropical African coastal city. Adv. Meteorol. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Herrmann, J.; Matzarakis, A. Mean radiant temperature in idealised urban canyons—Examples from Freiburg, Germany. Int. J. Biometeorol. 2012, 56, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Ketterer, C.; Matzarakis, A. Human-biometeorlogical assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landsc. Urban Plan. 2014, 122, 78–88. [Google Scholar] [CrossRef]
- Qaid, A.; Ossen, D. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int. J. Biometeorol. 2015, 59, 657–677. [Google Scholar] [CrossRef] [PubMed]
- Algeciras, J.A.R.; Consuegra, L.G.; Matzarakis, A. Spatial-temporal study on the effect of urban street configurations on human thermal comfort in the world heritage city of Camagüey-Cuba. Build. Environ. 2016, 101, 85–101. [Google Scholar] [CrossRef]
- Algeciras, J.A.R.; Tablada, A.; Matzarakis, A. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba. Theor. Appl. Climatol. 2017, 1–17. [Google Scholar] [CrossRef]
- Kántor, N.; Unger, J. The most problematic variable in the course of human-biometeorological comfort assessment—The mean readiant temperature. Cent. Eur. J. Geosci. 2011, 3, 90–100. [Google Scholar]
- Kántor, N.; Chen, L.; Gal, C.V. Human-biometeorological significance of shading in urban public spaces—Summertime measurements in Pécs, Hungary. Landsc. Urban Plan. 2018, 170, 241–255. [Google Scholar] [CrossRef]
- Santamouris, M.; Gaitani, N.; Spanou, A.; Salirai, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using cool paving materials to improve microclimate of urban areas—Design realization and results of the flisvos project. J. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat islands—A review of the actual developments. J. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Santamouris, M.; Xirafi, F.; Gaitani, N.; Saliari, M.; Vassilakopoulou, K. Improving the microclimate in a dense urban area using experimental and theoretical techniques—The case of Marousi, Athens. Int. J. Vent. 2012, 11, 1–16. [Google Scholar] [CrossRef]
- Fintikakis, N.; Gaitani, N.; Santamouris, M.; Assimakopoulos, M.; Assimakopoulos, D.; Fintikaki, M.; Albanis, G.; Papadimitriou, K.; Chryssochoides, E.; Katopodi, K.; et al. Bioclimatic design of open public spaces in the historic centre of Tirana, Albania. Sustain. Cities Soc. 2011, 1, 54–62. [Google Scholar] [CrossRef]
- GBER. Group Building Environmental Research—Bioclimatic Studies on the Application of Mitigation Technologies in the Built Environment (Available through the Authors); Santamouris, M., Ed.; University of Athens: Athens, Greece, 2016. [Google Scholar]
- Kyriakodis, G.; Mastrapostoli, E.; Santamouris, M. Experimental and numerical assessment of bioclimatic rehabilitation of a large urban area in Western Athens using reflective and photocatalytic materials. In Proceedings of the 4th International Conference on Countermeasures to UHI, Singapore, 30 May–1 June 2016. [Google Scholar]
- Tumini, I. The Urban Microclimate in Open Space. Case Studies in Madrid; Escuela Técnica Superior de Arquitectura de Madrid: Madrid, Spain, 2014. [Google Scholar]
- Yang, J.; Wang, Z.; Kaloush, K. Unintended Consequences—A Research Synthesis Examining the Use of Reflective Pavements to Mitigate the Urban Heat Island Effect; Arizona State University National Center for Excellence for SMART Innovations: Tempe, AZ, USA, 2013. [Google Scholar]
- Nunes, J.; Zolio, I.; Jacinto, N.; Nunes, A.; Campos, T.; Pacheco, M.; Fonseca, D. Misting-Cooling Systems for Microclimatic Control in Public Space; Nunes, J., Ed.; PROAP Landscape Architects: Lisbon, Portugal, 2013; pp. 1–16. [Google Scholar]
- Alvarez, S.; Rodriguez, E.; Martin, R. Direct air cooling from water drop evaporation. In Proceedings of the PLEA 91—Passive and Low Energy Architecture 1991, Seville, Spain, 24–27 September 1991. [Google Scholar]
- Velazquez, R.; Alvarez, S.; Guerra, J. Climatic Control of the Open Spaces in Expo 1992; College of Industrial Engineering of Seville: Seville, Spain, 1992. [Google Scholar]
- Ishii, T.; Tsujimoto, M.; Yamanishi, A. The experiment at the platform of dry-mist atomization. In Proceedings of the Summaries of Technical Papers of the Annual Meeting of the Architectural Institute of Japan, Kanto, Japan, 30 September–2 October 2008. [Google Scholar]
- Ishii, T.; Tsujimoto, M.; Yoon, G.; Okumiya, M. Cooling system with water mist sprayers for mitigation of heat-island. In Proceedings of the Seventh International Conference on Urban Climate (ICUC), Yokohama, Japan, 29 June–3 July 2009. [Google Scholar]
- Yamada, H.; Yoon, G.; Okumiya, M.; Okuyama, H. Study of cooling system with water mist sprayers: Fundemental examination of particle size distribution and cooling effects. J. Build. Simul. 2008, 1, 214–222. [Google Scholar] [CrossRef]
- Yoon, G.; Yamada, H.; Okumiya, M. Study on a cooling system using water mist sprayers; System control considering outdoor environment. In Proceedings of the Korea-Japan Joint Symposium on Human-Environment Systems, Cheju, Korea, 29–30 November 2008. [Google Scholar]
- Farnham, C.; Nakao, M.; Nishioka, M.; Nabeshima, M.; Mizuno, T. Study of mist-cooling for semi-enclosed spaces in Osaka, Japan. Urban Environ. Pollut. 2011, 4, 228–238. [Google Scholar] [CrossRef]
KG | Common Designation | Criteria ** | ||
---|---|---|---|---|
Broad Climate Type | PR and Aridity | Temperature Class | ||
‘Cfa’ | Humid subtropical climate | Thot > 10 & 0 < Tcold < 18 | No dry season | (Hot summer) Thot ≥ 22 |
‘Cfb’ | Temperate oceanic climate | Thot > 10 & 0 < Tcold < 18 | No dry season | (Warm summer) Thot < 22 & Tmon10 ≥ 4 |
‘Csa’ | Hot-summer Med. climate | Thot > 10 & 0 < Tcold < 18 | Psdry < 40 & Psdry < Pwwet/3 | (Hot summer) Thot ≥ 22 |
PET | Thermal Perception | Physiological Stress |
---|---|---|
<4 °C | Very Cold | Extreme Cold Stress |
4~8 | Cold | Strong Cold Stress |
8~13 | Cool | Moderate Cold Stress |
13~18 | Slightly Cool | Slight Cold Stress |
18~23 | Comfortable | No Thermal Stress |
23~29 | Slightly Warm | Slight Heat Stress |
29~35 | Warm | Moderate Heat Stress |
35~41 | Hot | Strong Heat Stress |
>41 | Very Hot | Extreme Heat Stress |
(No.) | Source | Selected Study Outcomes | |
---|---|---|---|
#i | [88] (Review Article) | Analysed eight outdoor thermal comfort studies that combined thermal indices with behavioural aspects and concluded that the perception of thermal comfort should be approached through four interconnected levels: (i) physical, (ii) physiological, (iii) psychological, and (iv) social/behavioural | |
#ii | [89] | Identified that although the presence of comfort conditions generally led to a higher amount of pedestrians, only 35% of the interviewees were located within theoretical comfort conditions | |
#iii | [90] | Identified that transitory exposure and thermal expectation can present a major influence on pedestrian subjective assessments and thermal contentment, and that ‘steady-state’ models such as PMV were revealed to be inappropriate for the assessment of short-term outdoor thermal comfort | |
#iv | [91] | In line with the European Union project RUROS [ 92], it was identified that the behaviour of pedestrians was dependant both on the outdoor thermal conditions and individual expectations. Such a result was exemplified when people left air conditioned/indoor contexts for direct sunshine, even if such an exposure implied PET values that would exceed comfort ranges | |
#v | [79] | Within the study’s field survey, it was identified that 90% of pedestrians chose to stay under shade trees or shelters. As a result, this both indicated the importance of shading availability, but more importantly, the capability of decision makers and designers to adequately ensure such an availability of choice for thermal adaptability |
(No.) | Source | No. of Studies * | Main Review Article Outcomes | |
---|---|---|---|---|
#1i | [102] | ±16 |
| |
#1ii | [103] | ±50 |
| |
#1iii | [104] | 13 |
| |
#1iv | [105] | 50 |
|
Green Measure Review Framework | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(No.) | Source | KG | Thermal Results (Max) | H/W (≈) | |||||||||||
Species Acronym | Planting Layout | Veg. Cover. (%) | Crown Spread (m) | Overall Height (m) | Growth Speed (cm/year) | Solar Trans. through Crown (%) | Foliation Periods (Leaves Only) | ||||||||
Sum. | Win. | Fol. | Defol. | ||||||||||||
IS Effect Studies | |||||||||||||||
#1.1 | [127] | ‘Cfa’ | Increase in comfort levels *1 | 0.28 | |Tc| | LP | - | 6–12 (1) | 21 (2) | 30–60 (1) | 7 (7), 13 (8), 17 (9) | 46 (7), 70 (9), 62 (10) | B5 (7), M/E5 (14) | B12 (7), B10-M11 (14) | |
|Ls| | ≥12 (1) | 18–30 (2) | 60–91 (1) | 18 (7) | 70 (7), 84 (11) | Deciduous (NDI) | |||||||||
|Tp| | - | 35 (3) | - | - | - | B5 (13) | B12 (13) | ||||||||
#1.2 | [40] | ‘Csa’ | −2.2 Kamb | 0.90 | |Ma| | LP | 48 | ≥12 (1) | 12 (2) | ≥91 (1) | - | - | M4 (13) | B12 (13) | |
#1.3 | [128] | ‘Csa’ | −1.5 Kamb | NA | ND | GP | - | - | - | - | - | - | - | - | |
#1.4 | [115] | ‘Cfb’ | −1.0 Kamb | NA | |Fe| | LP | - | 18–27 (4) | 10 (3) 2.9 (16) *2 | - | 14 (7), 15 (12) | 59 (7) | E4 (7), M5 (12) | B10-M11 (7), E11 (12) | |
|Af| | - | 30 (6) 3.8 (16) *2 | - | - | - | Deciduous (NDI) | |||||||||
#1.5 | [129] | ‘Csa’ | −1.8 Kamb | 0.42 | |Fc| | LP | 50 | 6–12 (1) | 5–8 (2) | 91 (1) | - | - | M4 (13) | E12 (13) | |
−8.3 KPET | |||||||||||||||
#1.6 | [130] | ‘Cfa’ | −1.5 Kamb | (SVF: 0.8) | |Fm| | GP | - | 10–12 (1) | 18 *2 | 60 (1) | - | 93 *2 | Evergreen | ||
−27.0 KMRT | |||||||||||||||
#1.7 | [131] | ‘Cfb’ | −1.0 Kamb | ND | |Ac| | GP | - | 7.6–10 (1) | >20 *2 | 30 (1) | - | - | - | - | |
|Ap| | - | 10–12 (1) | >20 *2 | 91 (1) | 14 (7) | 65 (7) | B4 (7) | M11 (7) | |||||||
|Ap2| | - | 12–18 (1) | >20 *2 | 60 (1) | - | - | - | - | |||||||
PCI Effect Studies | |||||||||||||||
#1.8 | [142] | ‘Csa’ | −4.0 Kamb | 0.45 | |Fc| | LP | 61 | 6–12 (1) | 5–8 (2) | 91 (1) | - | - | M4 (13) | E12 (13) | |
#1.9 | [107] | ‘Csa’ | −3.4 Kamb | 0.59 | |Fc| | LP | - | 6–12 (1) | 5–8 (2) | 91 (1) | - | - | M4 (13) | E12 (13) | |
|Tt| | 7–15 (1) | 7–15 (1) | 60–91 (1) | - | - | B5 (13) | M3 (13) | ||||||||
|Pd| | 6 (15) | 30 (3) | 30–91 (1) | - | - | Evergreen | |||||||||
#1.10 | [143] | ‘Csa’ | −3.5 Kamb | NA | |Fm| | GP | 95 | 10–12 (1) | 12 (1) | 60 (1) | - | - | Evergreen | ||
#1.11 | [144] | ‘Csa’ | −3.3 Kamb | NA | |Oe| | GP | - | 7.6–9.1 (1) | 7.6–9.1 (1) | 30–60 (1) | - | - | Evergreen | ||
|Ak| | 9.1 (1) | 12–18 (1) | ≥91 (1) | - | - | Evergreen | |||||||||
|Cc| | 15–30 (1) | 15–40 (1) | ≥91 (1) | - | - | Evergreen | |||||||||
#1.12 | [145] | ‘Csa’ | −6.9 Kamb | 0.30 | |Ca2| | GP | 21 (1) | 25 (3) | 60–91 (1) | - | - | M4 (13), M4 (7) | E12 (13), M/E11 (7) | ||
−24.6 KPET | |Cl| | 96.5 | 1.5–4.5 (1) | 6–12 (1) | 30 (1) | - | - | Evergreen | |||||||
−39.2 KMRT | |Me| | 9–10 (1) | 9–10 (1) | 60 (1) | - | - | Evergreen | ||||||||
#1.13 | [146] | ‘Cfb’ | ND | 0.10 | |Pa| | LP + GP | - | ≥12 (1) | 21 (2) | 91 (1) | 17 (7), 14 (8), | 64 (7), 46 (8) | B4 (7), M5 (12) | M11 (7), B12 (12) | |
|Gt| | - | 5.5 (1) | 24 (2) | 91 (1) | 32 (7), 30 (12) | 48 (7), 85 (15) | M4 (13), M3 (7) | M10 (13), B10–M11 (7), | |||||||
#1.14 | [147] | ‘Csa’ | −3.0 Kamb | 0.15 | |Pa| | LP + GP | - | ≥12 (1) | 21 (2) | 91 (1) | 17 (7), 14 (8), | 64 (7), 46 (8) | B4 (7), M5 (12) | M11 (7), B12 (12) | |
|Rp| | ≥12 (1) | 12–24 (2) | 91 (1) | - | - | Deciduous (NDI) | |||||||||
|Jm| | 22 (1) | 10 (3) | 60 (1) | - | - | B5 (13) | E2 (13) | ||||||||
|Pp| | ≥12 (1) | 25 (3) | 60–91 (1) | - | - | Evergreen | |||||||||
|Cs| | ≤6 (1) | 20–30 (3) | 91 (1) | - | - | Evergreen | |||||||||
|Aj| | 6 (1) | 10 (3) | 91 (1) | - | - | Deciduous (NDI) | |||||||||
|Ma| | ≥12 (1) | 12 (2) | ≥91 (1) | - | - | Deciduous (NDI) | |||||||||
|Cs2| | ≥8 (5) | 15 (3) | - | - | - | Deciduous (NDI) | |||||||||
|Kp| | 17 (1) | 15 (3) | 30–60 (1) | 25 (7), 13 (12) | 42 (7) | M4 (7), M4 (12), | M11 (7), M11 (12) | ||||||||
|Ca| | 10 (1) | 9 (2) | 60 (1) | - | - | Evergreen | |||||||||
#1.15 | [-] | ‘Csa’ | ND | 0.12 | |Pa2| | LP + GP | - | 6–12 (1) | 24 (2) | 91 (1) | - | - | M3 (13) | B12 (13) | |
|Ca2| | 21 (1) | 25 (3) | 60–91 (1) | 8 (7) | 53 (7) | M4 (13), M4 (7) | E12 (13), M/E11 (7) | ||||||||
#1.16 | [-] | ‘Csa’ | ND | −0.01 | |Pp2| | LP + GP + SP + PG | - | ≥8 (5) | ≥12 (5) | - | - | - | Evergreen | ||
|Pp3| | ≥12 (1) | 25 (3) | 60–91 (1) | - | - | Evergreen | |||||||||
|Qi| | 28 (1) | 25 (3) | 60 (1) | - | - | Evergreen | |||||||||
|Ca2| | 21 (1) | 25 (3) | 60–91 (1) | - | - | M4 (13), M4 (7) | E12 (13), M/E11 (7) | ||||||||
|Ag| | - | 20–30 (3) | - | - | - | Deciduous (NDI) | |||||||||
|Fa| | ≥8 (5) | ≥12 (5) | - | - | - | Deciduous (NDI) | |||||||||
|Tc| | 6–12 (1) | 21 (2) | 30–60 (1) | 7 (7), 13 (8), 17 (9) | 46 (7), 70 (9), 62 (10) | B5 (7), M/E5 (14) | B12 (7), M11 (13), B10-M11 (14) | ||||||||
|Pa2| | 6–12 (1) | 24 (2) | 91 (1) | - | - | M3 (13) | B12 (13) | ||||||||
|Sa| | - | 15–24 (2) | - | - | - | Deciduous (NDI) | |||||||||
|Ph2| | ≥8 (5) | 21 (2) | - | - | - | B4 (13) | E12 (13) | ||||||||
|Tt| | 7–15 (1) | 7–15 (1) | 60–91 (1) | - | - | B5 (13) | M3 (13) | ||||||||
|Ma| | 6–12 (1) | 12 (2) | 91 (1) | - | - | M4 (13) | M11 (13) | ||||||||
|Sm| | 22 (1) | 10–15 (3) | 91 (1) | - | - | Deciduous (NDI) | |||||||||
|Jm| | 22 (1) | 10 (3) | 60 (1) | - | - | B5 (13) | E2 (13) | ||||||||
Key | |||||||||||||||
Source: (1) [148] (2) [149] (3) [150] (4) [151] (5) [152] (6) [153] (7) [154] (8) [155] (9) [156] (10) [157] (11) [158] (12) [114] (13) [116] (14) [159] (15) [107] (16) [115] | Tree Acronyms: |Tc| » Tilia cordata |Ls| » Liquidambar styraciflua |Tp| » Tilia platyphillos |Ma| » Morus alba |Fe| » Fraxinus excelsior |Af| » Angophora floribunda |Fc| » Ficus carica |Gt| Gleditsia triacanthos |Pd| » Phoenix dactylifera |Pa| » Platanus acerifolia |Rp| Robinia pseudoacacia |Jm| » Jacaranda mimisfolia |Pp| » Pinus pinea |Cs| Cupressus sempervirens |Aj| » Albizia julibrissin |Cs2| » Cercis siliquastrum |Kp| » Koelreuferia paniculata |Ca| » Citrus auruntium |Pa2| » Populus alba |Ca2| » Celtis australis |Pp2| » Pinus pinsaster |Ph| » Pinus halpensis |Pp3| » Pinus pinea |Qi| » Quercus ilex |Ag| » Alnus glutinosa |Fa| » Fraxinus angustifolia |Um| » Ulmus minor |Pn| » Populus nigra |Sa| » Salix alba |Ph2| » Platanus hispanica |Pc| » Phoenix canariensis |Wf| » Washingtonia filifera |Tt| » Tipuna tipu |Lp| » Lagunaria patersonii |Ma| » Melia azedarach |Sm| » Schinus molle |Fm| » Ficus microcarpa |Ac| » Acer campestre |Ap| » Acer platanoides |Ap2| Acer pseudoplatanus |Cl| » Corynocarpus laevigatus |Me| » Metrosideros excelsa |Oe| » Olea europaea |Ak| » Acacia koa |Cc| » Corymbia calophylla | Foliation & Layout: B: Beginning of Month M: Middle of Month E: End of Month 1–12: Month # (January–December) Planting layout Acronyms found in Figure 3 | General: ND: Not disclosed by project NDI: No Detailed Information NA: Not Applicable -: No information | ||||||||||||
Notes: *1—Resultant of a decreased energy budget due to reduced solar radiation *2—Values obtained from study/project |
(A) | (B) | ||||
---|---|---|---|---|---|
(No.) | Source | KG | Sel. Species (Ind) | Max Red. (≈) | |
#1v | [110] | ‘Csa’ | Tilia (spp.) | −9.0 KPET | |
Jacaranda mimosifolia | −6.8 KPET | ||||
#1vi | [108] | ‘Cwa’ | Tipuana tipu | −12.1 KPET | |
Caesalpinia peltophoroides | −9.5 KPET | ||||
#1vii | [109] | ‘Cwa’ | Caesalpinia pluviosa | −16.0 KPET | |
Hand. chrysotrichus | −14.2 KPET | ||||
Tipuana tipu | −12.8 KPET | ||||
#1viii | [54] | ‘Csa’ | Jacaranda mimosifolia | −10.5 KPET | |
Tipuana tipu | −13.9 KPET | ||||
#1ix | [77] | ‘Csa’ | Tipuana tipu | −15.6 KPET | |
Tipuana tipu | −11.6 KmPET |
(No.) | Source | KG | Canyon Config. | Aspect Ratios | Selected H/W Thermal Study Outcomes | |
---|---|---|---|---|---|---|
#2i | [167] | ‘Bwh’ | Symmetrical | 0.50 1.00 2.00 4.00 |
| |
#2ii | [168] | ‘Cfb’ | Symmetrical | (0.38 to 3.00) (0.13 to 2.67) |
| |
#2iii | [169] | ‘Cfa’ | Symmetrical | 0.50 1.00 1.50 2.00 2.50 3.00 3.50 |
| |
#2iv | [170] | ‘Af’ | A/symmetrical | (0.80 to 2.00) |
| |
#2v | [171] | ‘Aw’ | Symmetrical | 0.50 1.00 1.50 2.00 3.00 4.00 5.00 |
| |
#2vi | [172] | ‘Aw’ | A/symmetrical | 0.50 1.50 2.00 3.00 5.00 |
| |
#2vii | [36] | ‘Csa’ | Symmetrical | 0.17 0.25 0.50 1.00 2.00 |
|
Sun Measure Review Framework | |||||||||
---|---|---|---|---|---|---|---|---|---|
(No.) | Name/Status | Loc. | KG | H/W (≈) | Area of Canopy (s) | Choice | Material | Temporal Scope | Icon |
#2.1 | ‘Umbrella Sky Project’/Constructed (2011) | Águeda | ‘Csa’ | 1.30 | 80% | Local | Nylon | ETCS | |
Project Plan View | |||||||||
#2.2 | Shopping street ‘Calle del Arenal’/Constructed (-) | Madrid | ‘Csa’ | 1.10 | 70% | Local | Nylon | ETCS | |
Project Plan View | |||||||||
#2.3 | ‘This is not an Umbrella’/Conceptual (2008) | Madrid | ‘Csa’ | 0.12 | 28% | Local | Nylon | ETCS | |
Project Plan View | |||||||||
#2.4 | ‘Canopy’/Constructed (2004) | New York | ‘Cfa’ | NA | 26% | Local | Bamboo | ETCS | |
Project Plan View | |||||||||
#2.5 | ‘Urban Umbrella’/Under Construction (2015) | Lisbon | ‘Csa’ | 0.32 | 9%* | Micro | Aluminium + Acrylic | ETCS | |
Project Plan View | |||||||||
#2.6 | ‘Bioclimatic Urban Strategy’/Under Construction | Madrid | ‘Csa’ | 0.24 | 24%* | Micro | Aluminium + Acrylic + Flora | Perm. | |
Project Plan View | |||||||||
#1.14 | ‘One Step Beyond’/Conceptual (2013) | Athens | ‘Csa’ | 0.15 | 10% | Local | Timber | Perm. | |
Project Plan View | |||||||||
#2.7 | ‘Bioclimatic Trees’/Conceptual (2013) | Athens | ‘Csa’ | 0.15 | 24% | Local | Timber | Perm. | |
Project Plan View | |||||||||
#2.8 | ‘Metropol Parasol’/Constructed (2013) | Seville | ‘Csa’ | 0.22 | 39% | Local | Timber | Perm. | |
Project Plan View | |||||||||
#2.9 | ‘Urban forest of Shadows’/Constructed (2010) | Cordoba | ‘Csa’ | NA | NA | Local | Aluminium + Acrylic | Perm. | |
Project Plan View | |||||||||
(No.) | Source | KG | H/W (≈) | Measure | Thermal Result (Max) | Icon & Plan Project View (Icons and Plan Adapted from Sources) | ||
---|---|---|---|---|---|---|---|---|
#2viii | [17,54] | ‘Csa’ | 0.21 | ETCS Sun Sails (Nylon) (1) | −20.0 KMRT | |||
−9.9 KPET | ||||||||
Permanent Shelter (Aluminium, Acrylic) (2) | −22.0 KMRT | |||||||
−12.3 KPET | ||||||||
#2ix | [174] | ‘Cfb’ | 0.22 *1 | ETCS Sun Sails (Nylon) *1 | −11.0 KMRT | *1 Icon/Plan not included, please refer to source | ||
−5.0 KPET | ||||||||
1.66 | ETCS Sun Sails (Nylon) | −27.0 KMRT | ||||||
−13.0 KPET |
Surface Measure Review Framework | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(No.) | Source | KG | H/W (≈) | Existing Surface | New Surface | Thermal Results | Icon | |||
Material | Albedo | Material | Element | Albedo | ||||||
#3.1 | [177] | ‘Csa’ | 0.66–0.12 | Black asphalt | 0.40α≤ | Cool Asphalt | Road | 0.35α | −2.0 Kamb | |
Concrete | Marble | Pavement | 0.70α | Reduction of peak temp. | ||||||
Concrete + (IRCP) | Pavement | 0.78α | ||||||||
#3.2 | [178] | ‘Csa’ | NA | Black asphalt | 0.20α≤ | Concrete + (IRCP) | Pavement | 0.65α–0.75α | −3.0 Kamb | |
Dark concrete | Reduction of peak temp. | |||||||||
Dark stone | ||||||||||
#3.3 | [19] | ‘Csa’ | 0.30 | Black asphalt | 0.45α≤ | Asphalt + (PC) | Road | ND | −2.0 Kamb | |
Concrete | Concrete + (IRCP) | Pavement | 0.68α | −4.5 Ksurf | ||||||
#3.4 | [175] | ‘Csa’ | NA | Asphalt | 0.20α–0.45α | Concrete + (IRCP) | Pavement | 0.60α | −1.9 Kamb | |
Concrete | −11.0 Ksurf | |||||||||
#1.13 | [146] | ‘Cfb’ | 0.10 | Asphalt | 0.05α–0.20α (1) | Light concrete slabs | Pavement | ND | ND | |
Concrete | 0.10α–0.35α (1) | Dark concrete slabs *1 | ||||||||
#1.14 | [147] | ‘Csa’ | 0.15 *2 | Asphalt | 0.05α–0.20α (1) | Permeable pavements | Pavement | ND | −2.0 Kamb | |
Concrete | 0.10α–0.35α (1) | Concrete + (IRCP) | Pavement | |||||||
Asphalt + (PC) | Road | |||||||||
Key | ||||||||||
Source: (1) [48] | Acronyms: IRCP: Infrared Reflective Cool Paint, PC: Photocatalytic Compound, α: Albedo, ND: Not disclosed by study, NA: Not Applicable | Notes: *1—Situated in shaded areas *2—Ratio specifically in one of the public spaces enclosed in the overall project (Omonia Square) |
Blue Measure Review Framework | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Design Projects (Constructed or Conceptual) | ||||||||||||||
(No.) | Source | KG | Thermal Results | H/W | Water Area | SW | SW Method | Temporal Scope | ICON | |||||
#1.13 | [146] | ‘Cfb’ | ND | 0.11 | 270 m2 | Yes | Thin layer of water is released then is left to evaporate | Perm. | ||||||
#1.14 | [147] | ‘Csa’ | −3 Kamb | 0.20 | 792 m2 | Yes | Water features such as misting systems are intended to wet surfaces and induce evaporative cooling | Perm. | ||||||
#4.1 | [183] | ‘Csa’ | ND | 0.42 | 795 m2 | No | - | Perm. | ||||||
#4.2 | [184,185] | ‘Csa’ | ND | NA | NA | No | - | Perm. *1 | ||||||
#4.3 | [-] | ‘Cfb’ | ND | NA | 2500 m2 | Yes | Surfaces are wet for a specified period and then re-absorbed into ground slabs | Perm. | ||||||
#4.4 | [-] | ‘Cfa’ | ND | NA | NA | Yes | Thin layer of water is released, then is left to evaporate during summer | ETCS | ||||||
Scientific Projects | ||||||||||||||
(No.) | KG | Thermal Results | SW | Limitation Method | SMD | PP | FP | NH (m) | Project Type | ICON | ||||
Avg. | Max | |||||||||||||
#4.5 | [186] | ‘Cfa’ | −2 Kamb | - | No | Mechanism activation when: RH = 70% Tamb = 28≥ | - | 6.0 MPa | - | - | Field | |||
#4.6 | [187] | ‘Cfa’ | −2 Kamb | −6 Kamb *2 | No | Temporal intervals | - | 6.0 MPa | 2 min with 3 min interval | 1.5 | Field | |||
#4.7 | [188] | ‘Cfa’ | −1.5 Kamb | - | No | - | 16.9 μm | 6.0 MPa | - | 1.5 | CFDs | |||
20.8 μm | ||||||||||||||
32.6 μm | ||||||||||||||
#4.8 | [189] | ‘Cfa’ | - | −2.5 Kamb | No | 30 °C|80% RH | - | 6.0 MPa | - | 1.5 | CFDs | |||
−1.8 Kamb | 30 °C|60% RH | |||||||||||||
−1.8 Kamb | 34 °C|60% RH | |||||||||||||
#4.9 | [190] | ‘Cfa’ | - | −0.8 Kamb | No | - | 41 μm −45 μm | 5.5 MPa | 5 min | 25 (max) | Field + CFDs | |||
Key | ||||||||||||||
PP: Pump Pressure FP: Functioning Period NH: Nozzle Height | Field: Study carried out on site CFD: Study conducted in controlled environment using Computational Fluid Dynamics SMD: Sauter Mean Diameter | *1: Although permanent, designed specifically for the Expo of 1992 *2: Value obtained if presented FP was extended |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Nouri, A.; Costa, J.P.; Santamouris, M.; Matzarakis, A. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere 2018, 9, 108. https://doi.org/10.3390/atmos9030108
Santos Nouri A, Costa JP, Santamouris M, Matzarakis A. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere. 2018; 9(3):108. https://doi.org/10.3390/atmos9030108
Chicago/Turabian StyleSantos Nouri, Andre, João Pedro Costa, Mattheos Santamouris, and Andreas Matzarakis. 2018. "Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review" Atmosphere 9, no. 3: 108. https://doi.org/10.3390/atmos9030108
APA StyleSantos Nouri, A., Costa, J. P., Santamouris, M., & Matzarakis, A. (2018). Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere, 9(3), 108. https://doi.org/10.3390/atmos9030108