Temporal Patterns and Vertical Temperature Gradients in Micro-Scale Drainage Flow Observed Using Thermal Imaging
Abstract
:1. Introduction and Research Questions
- How do drainage flow patterns develop after sunset?
- How pronounced is the vertical separation of flow layers, i.e. which vertical temperature profile characteristics can be found in the pulsing flow oscillation patterns over time?
- Do vertical temperature profile characteristics change over the life cycle of a cold-air pulse flowing downslope?
- What are the characteristics of the vertical temperature profile in the transition zone between the near-surface very stable inversion layer and the less stable, warmer air above?
2. Approach
2.1. Data Collection
2.2. Thermal Imaging Analyses
3. Results and Discussion
3.1. Measurement Period Overview
3.2. Cold-Air Pulse Analyses
3.2.1. Cold-Air Pulse Identification
3.2.2. Cold-Air Pulse Characterization
- (i)
- wind speed (sonic) with vertical surface temperature difference of TIR profile 1 (ΔTTIRprofile1): testing the relation, if low wind speed results in strong cold-air stratification and thus in a high ΔTTIRprofile1,
- (ii)
- wind speed (sonic) with standard deviation of vertical surface temperature difference of TIR profile 1 (σΔT_TIRprofile1): testing the relation, if higher wind speed results in a more turbulent flow and thus in a higher variance of the vertical temperature,
- (iii)
- wind speed (sonic) with PS surface temperature minimum at TIR_low (TminTIR_low): testing the relation, if lower wind speed results in stronger cold-air stratification, restricting the identification of stratification rate to TminTIR_low,
- (iv)
- PS surface temperatures at TIR_low (TTIR_low) with TIR_high (TTIR_high): checking the consistence of the near-surface inversion and testing the similarity of temperature increases and decreases at these two PS heights.
3.2.3. Cold-Air Pulse Temperature Profiles while Passing the PS
3.2.4. Cold-Air Pulse Transition Zone
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novick, K.A.; Oishi, A.C.; Miniat, C.F. Cold air drainage flows subsidize montane valley ecosystem productivity. Glob. Chang. Biol. 2016, 22, 4014–4027. [Google Scholar] [CrossRef] [PubMed]
- Chemel, C.; Burns, P. Pollutant dispersion in a developing valley cold-air pool. Bound. Layer Meteorol. 2015, 154, 391–408. [Google Scholar] [CrossRef]
- Chemel, C.; Arduini, G.; Staquet, C.; Largeron, Y.; Legain, D.; Tzanos, D.; Paci, A. Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos. Environ. 2016, 128, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. In Wind Climate in Cities; Cermak, J.E., Davenport, A.G., Plate, E.J., Viegas, D.X., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 81–107. [Google Scholar]
- Fernando, H.J.S.; Zajic, D.; Di Sabatino, S.; Dimitrova, R.; Hedquist, B.; Dallman, A. Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys. Fluids 2010, 22. [Google Scholar] [CrossRef]
- Defant, F. Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteorol. Geophys. Bioklim. A 1949, 1, 421–450. [Google Scholar] [CrossRef]
- Mahrt, L. The near-calm stable boundary layer. Bound. Layer Meteorol. 2011, 140, 343–360. [Google Scholar] [CrossRef]
- Wagner, A. Theorie und Beobachtung der periodischen Gebirgswinde. In Gerlands Beiträge zur Geophysik; Akademische Verlagsgesellschaft: Leipzig, Germany, 1938; pp. 408–449. [Google Scholar]
- Whiteman, C.D. Mountain Meteorology. Fundamentals and Applications; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Mahrt, L. Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 2014, 46, 23–45. [Google Scholar] [CrossRef]
- Monti, P.; Fernando, H.J.S.; Princevac, M.; Chan, W.C.; Kowalewski, T.A.; Pardyjak, E.R. Observations of flow and turbulence in the nocturnal Boundary Layer over a slope. J. Atmos. Sci. 2002, 59, 2513–2534. [Google Scholar] [CrossRef]
- Franke, J.; Tetzlaff, G. Zum Auftreten Interner Schwerewellen im Kaltluftfluss. In Meteorologische Rundschau; Deutsche Meteorologische Gesellschaft: Berlin, Germany, 1987; pp. 118–126. [Google Scholar]
- Aichele, H. Kaltluftpulsationen. In Meteorologische Rundschau; Deutsche Meteorologische Gesellschaft: Berlin, Germany, 1953; pp. 53–54. [Google Scholar]
- Lareau, N.P.; Horel, J.D. Dynamically induced displacements of a persistent cold-air pool. Bound. Layer Meteorol. 2015, 154, 291–316. [Google Scholar] [CrossRef]
- Foster, C.S.; Crosman, E.T.; Horel, J.D. Simulations of a Cold-Air Pool in Utah’s Salt Lake Valley: Sensitivity to Land Use and Snow Cover. Bound. Layer Meteorol. 2017, 164, 63–87. [Google Scholar] [CrossRef]
- Smedman, A.-S. Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound. Layer Meteorol. 1988, 44, 231–253. [Google Scholar] [CrossRef]
- Mahrt, L.; Vickers, D.; Nakamura, R.; Soler, M.R.; Sun, J.; Burns, S.; Lenschow, D.H. Shallow Drainage Flows. Bound. Layer Meteorol. 2001, 101, 243–260. [Google Scholar] [CrossRef]
- Soler, M.R.; Infante, C.; Buenestado, P.; Mahrt, L. Observations of nocturnal drainage flow in a shallow gully. Bound. Layer Meteorol. 2002, 105, 253–273. [Google Scholar] [CrossRef]
- Nauta, L. Shallow Drainage Flows over Light Sloping Terrain during BLLAST 2011: Two Case Studies. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2013. [Google Scholar]
- Zeeman, M.J.; Selker, J.S.; Thomas, C.K. Near-Surface Motion in the Nocturnal, Stable Boundary Layer Observed with Fibre-Optic Distributed Temperature Sensing. Bound. Layer Meteorol. 2015, 154, 189–205. [Google Scholar] [CrossRef]
- Pfister, L. Novel Insights into the Dynamics of Cold-Air Drainage and Pooling on a Gentle Slope from Fiber-Optic Distributed Temperature Sensing. Available online: http://www.bayceer.uni-bayreuth.de/meteo/en/top/diss/138327/MSc_thesis_Lena_Pfister.pdf (accessed on 24 August 2017).
- Grudzielanek, A.M.; Cermak, J. Capturing cold-air flow using thermal imaging. Bound. Layer Meteorol. 2015, 157, 321–332. [Google Scholar] [CrossRef]
- Geoportal NRW. DOP20. In Web Map Service; Für den Abdruck Gilt Die Datenlizenz Deutschland–Version 2.0; Geoportal NRW: Köln, Germany, 2017. [Google Scholar]
- Mahrt, L. Common microfronts and other solitary events in the nocturnal boundary layer. Q. J. R. Meteorol. Soc. 2010, 136, 1712–1722. [Google Scholar] [CrossRef] [Green Version]
P1 | P2 | P3 | P4 | P5 | P6 | P7 | |
---|---|---|---|---|---|---|---|
Time (LT) | 2150–2208 | 2209–2224 | 2225–2239 | 2259–2328 | 2329–2339 | 2340–2349 | 2350–2400 |
nTIRdata | 1138 | 959 | 899 | 1799 | 659 | 599 | 459 |
ΔTTIRprofile1 | 2.88 | 2.42 | 2.34 | 2.40 | 2.28 | 2.27 | 2.11 |
σΔT TIRprofile1 | 0.92 | 0.76 | 0.76 | 0.76 | 0.71 | 0.70 | 0.66 |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | |
---|---|---|---|---|---|---|---|
Local time (LT) | 2150–2208 | 2209–2224 | 2225–2239 | 2259–2328 | 2329–2339 | 2340–2349 | 2350–2400 |
nTIR data | 1138 | 959 | 899 | 1799 | 659 | 599 | 459 |
r of Wind speed (sonic) with ΔTTIRprofile1 | −0.04 | −0.10 | −0.09 | 0.06 | 0.08 | 0.13 | −0.02 |
r of Wind speed (sonic) with σΔT_TIRprofile1 | −0.10 | −0.10 | −0.05 | 0.05 | 0.10 | 0.05 | −0.09 |
r of Wind speed (sonic) with TminTIR_low | 0.43 * | −0.28 | −0.18 | 0.03 | −0.34 | −0.41 | −0.13 |
r of TTIR_low with TTIR_high | 0.35 * | 0.54 * | 0.54 * | 0.77 * | 0.76 * | 0.32 * | 0.96 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grudzielanek, A.M.; Cermak, J. Temporal Patterns and Vertical Temperature Gradients in Micro-Scale Drainage Flow Observed Using Thermal Imaging. Atmosphere 2018, 9, 498. https://doi.org/10.3390/atmos9120498
Grudzielanek AM, Cermak J. Temporal Patterns and Vertical Temperature Gradients in Micro-Scale Drainage Flow Observed Using Thermal Imaging. Atmosphere. 2018; 9(12):498. https://doi.org/10.3390/atmos9120498
Chicago/Turabian StyleGrudzielanek, Anja Martina, and Jan Cermak. 2018. "Temporal Patterns and Vertical Temperature Gradients in Micro-Scale Drainage Flow Observed Using Thermal Imaging" Atmosphere 9, no. 12: 498. https://doi.org/10.3390/atmos9120498
APA StyleGrudzielanek, A. M., & Cermak, J. (2018). Temporal Patterns and Vertical Temperature Gradients in Micro-Scale Drainage Flow Observed Using Thermal Imaging. Atmosphere, 9(12), 498. https://doi.org/10.3390/atmos9120498