Submicron Particle-Bound Mercury in University Teaching Rooms: A Summer Study from Two Polish Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. PM1 Sampling
2.3. Hg Analysis
3. Results and Discussion
3.1. Outdoor Concentrations of PM1 and Hgp—A Comparison with Earlier Studies
3.2. Indoor–Outdoor PM1 Concentration
3.3. Indoor-Outdoor Hgp Concentration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lin, C.C.; Peng, C.K. Characterization of indoor PM10, PM2.5, and ultrafine particles in elementary school classrooms: A review. Environ. Eng. Sci. 2010, 27, 915–922. [Google Scholar] [CrossRef]
- Morawska, L.; Afshari, A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.H.; Hänninen, O.; Hofmann, W.; Isaxon, C.; Jayaratne, E.R.; Salthammer, T.; et al. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 2013, 23, 462–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.; Duarte, M.; Ferreira, M.; Alves, A.; Almeida, A.; Cunha, Â. Air quality in a school with dampness and mould problems. Air Qua. Atmos. Health 2016, 9, 107–115. [Google Scholar] [CrossRef]
- Wangchuk, T.; He, C.; Dudzinska, M.R.; Morawska, L. Seasonal variations of outdoor air pollution and factors driving them in the school environment in rural Bhutan. Atmos. Environ. 2015, 113, 151–158. [Google Scholar] [CrossRef]
- Romagnoli, P.; Balducci, C.; Perilli, M.; Vichi, F.; Imperiali, A.; Cecinato, A. Indoor air quality at life and work environments in Rome, Italy. Environ. Sci. Pollut. Res. 2016, 23, 3503–3516. [Google Scholar] [CrossRef] [PubMed]
- Dumała, S.M.; Dudzińska, M.R. Microbiological indoor air quality in Polish schools. Rocz. Ochr. Sr. 2013, 15, 231–244. [Google Scholar]
- Polednik, B. Particulate matter and student exposure in school classrooms in Lublin, Poland. Environ. Res. 2013, 120, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Polednik, B. Variations in particle concentrations and indoor air parameters in classrooms in the heating and summer season. Arch. Environ. Prot. 2013, 39, 15–28. [Google Scholar] [CrossRef]
- Zwoździak, A.; Sówka, I.; Fortuna, M. Influence of PM1, PM2.5, PM10 Concentrations in indoor school environment on spirometric parameters in schoolchildren. Rocz. Ochr. Sr. 2013, 15, 2022–2038. [Google Scholar]
- Zwoździak, A.; Sówka, I.; Krupińska, B.; Zwoździak, J.; Nych, A. Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wroclaw, Poland? Build. Environ. 2013, 66, 173–180. [Google Scholar] [CrossRef]
- Mainka, A.; Zajusz-Zubek, E.; Kaczmarek, K. PM2.5 in urban and rural nursery schools in Upper Silesia, Poland: Trace elements analysis. Int. J. Environ. Res. Public Health 2015, 12, 7990–8008. [Google Scholar] [CrossRef] [PubMed]
- Mainka, A.; Zajusz-Zubek, E. Indoor air quality in urban and rural preschools in Upper Silesia, Poland: Particulate matter and carbon dioxide. Int. J. Environ. Res. Public Health 2015, 12, 7697–7711. [Google Scholar] [CrossRef] [PubMed]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S. Bacterial aerosols in an urban nursery school in Gliwice, Poland: A case study. Aerobiologia 2015. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Paw, U.K.T.; Kabała-Dzik, A.; Kohyama, N.; Sokal, J.A. Respirable airborne fibers in the home environment in Upper Silesia, Poland, compared with Davis, California. J. Aerosol Sci. 2000, 31, 484–485. [Google Scholar] [CrossRef]
- Colbeck, I.; Nasir, Z.A.; Ali, Z. Characteristics of indoor/outdoor particulate pollution in urban and rural residential environment of Pakistan. Indoor Air 2010, 20, 40–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wichmann, J.; Lind, T.; Nilsson, M.A.M.; Bellander, T. PM2.5, soot and NO2 indoor–outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos. Environ. 2010, 44, 4536–4544. [Google Scholar] [CrossRef]
- Worobiec, A.; Samek, L.; Krata, A.; Van Meel, K.; Krupinska, B.; Stefaniak, E.A.; Karaszkiewicz, P.; Grieken, R.V; Van Grieken, R. Transport and deposition of airborne pollutants in exhibition areas located in historical buildings–study in Wawel Castle Museum in Cracow, Poland. J. Cult. Herit. 2010, 11, 354–359. [Google Scholar] [CrossRef]
- Hänninen, O.; Hoek, G.; Mallone, S.; Chellini, E.; Katsouyanni, K.; Gariazzo, C.; Cattani, G.; Marconi, A.; Molnar, P.; Bellander, T.; et al. Seasonal patterns of outdoor PM infiltration into indoor environments: Review and meta-analysis of available studies from different climatological zones in Europe. Air Qual. Atmos. Health 2011, 4, 221–233. [Google Scholar]
- Goyal, R.; Kumar, P. Indoor–outdoor concentrations of particulate matter in nine microenvironments of a mix-use commercial building in megacity Delhi. Air Qual. Atmos. Health 2013, 6, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Che, W.W.; Frey, H.C.; Lau, A.K. Comparison of sources of variability in school age children exposure to ambient PM2.5. Environ. Sci. Technol. 2015, 49, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Latif, M.T.; Mohamed, A.F. The PM10 compositions, sources and health risks assessment in mechanically ventilated office buildings in an urban environment. Air Qual. Atmos. Health 2016, 9, 597–612. [Google Scholar] [CrossRef]
- Rogula-Kopiec, P.; Pastuszka, J.S.; Rogula-Kozłowska, W.; Majewski, G. Particulate matter in indoor spaces: Known facts and the knowledge gaps. Ann. Warsaw Univ. Life Sci. – SGGW, Land Reclam. 2015, 47, 43–54. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Paw, U.K.T.; Lis, D.O.; Wlazło, A.; Ulfig, K. Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmos. Environ. 2000, 34, 3833–3842. [Google Scholar] [CrossRef]
- Lippman, M. Environmental Toxicants: Human Exposures and Their Health Effects; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Spellman, F.R. The Science of Air Concepts and Applications; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Rogula-Kopiec, P.; Rogula-Kozłowska, W.; Kozielska, B.; Sówka, I. PAH concentrations inside a wood processing plant and the indoor effects of outdoor industrial emissions. Pol. J. Environ. Stud. 2015, 24, 11–17. [Google Scholar] [CrossRef]
- Rogula-Kopiec, P.; Pastuszka, J.S.; Rogula-Kozłowska, W.; Czechowski, P.O.; Majewski, G. Suspended dust in office and laboratory-the effects of selected factors on the concentrations and the respirable fractions content. In Air Protection in Theory and Practice; Konieczyński, J., Ed.; Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk: Zabrze, Poland, 2014; pp. 231–242. [Google Scholar]
- Mainka, A.; Brągoszewska, E.; Kozielska, B.; Pastuszka, J.S.; Zajusz-Zubek, E. Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmos. Pollut. Res. 2015, 6, 1098–1104. [Google Scholar] [CrossRef]
- Lindberg, S.E.; Stratton, W.J. Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Environ. Sci. Technol. 1998, 32, 49–57. [Google Scholar] [CrossRef]
- Pyta, H.; Rosik-Dulewska, C.; Czaplicka, M. Speciation of ambient mercury in the Upper Silesia region, Poland. Water Air Soil Soil. Pollut. 2009, 197, 233–240. [Google Scholar] [CrossRef]
- Hladikova, V.; Petrik, J.; Jursa, S.; Ursinyova, M.; Koèan, J. Atmospheric mercury levels in the Slovak Republic. Chemosphere 2001, 45, 801–806. [Google Scholar] [CrossRef]
- Pyta, H. Ambient air pollution by mercury species at the urban station in Zabrze, Southern Poland; EDP Sciences: Roma, Italy, 2013. [Google Scholar]
- Schleicher, N.J.; Schäfer, J.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S. Atmospheric particulate mercury in the megacity Beijing: Spatio-temporal variations and source apportionment. Atmos. Environ. 2015, 109, 251–261. [Google Scholar] [CrossRef]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Telmer, K. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Siudek, P.; Frankowski, M.; Siepak, J. Atmospheric particulate mercury at the urban and forest sites in central Poland. Environ. Sci. Pollut. Res. 2016, 23, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Bełdowska, M.; Saniewska, D.; Falkowska, L.; Lewandowska, A. Mercury in particulate matter over Polish zone of the southern Baltic Sea. Atmos. Environ. 2012, 46, 397–404. [Google Scholar] [CrossRef]
- Forlano, L.; Hedgecock, I.M.; Pirrone, N. Elemental gas phase atmospheric mercury as it interacts with the ambient aerosol and its subsequent speciation and deposition. Sci. Total Environ. 2000, 259, 211–222. [Google Scholar] [CrossRef]
- Malcolm, E.G.; Keeler, G.J. Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere. Atmos. Environ. 2007, 41, 3352–3359. [Google Scholar] [CrossRef]
- Xiu, G.L.; Jin, Q.; Hang, D.; Shi, S.; Huang, X.; Zghang, W.; Bao, L.; Gao, P.; Chen, B. Characterization of size fractionated particulate mercury in Shanghai ambient air. Atmos. Environ. 2005, 39, 419–427. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 149–175. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T.W. The three modern faces of mercury. Environ. Health Perspect. 2002, 110, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Pastuszka, J.S.; Wawroś, A.; Talik, E.; Paw, U.K.T. Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland. Sci. Total. Environ. 2003, 309, 237–251. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Rogula-Kozłowska, W.; Zajusz-Zubek, E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ. Monit. Assess. 2010, 168, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Majewski, G.; Czechowski, P.O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Majewski, G.; Rogula-Kozłowska, W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: First results from the short-term winter campaign. Theor. Appl. Climatol. 2016, 125, 79–92. [Google Scholar] [CrossRef]
- Majewski, G.; Rogula-Kozłowska, W.; Czechowski, P.O.; Badyda, A.; Brandyk, A. The impact of selected parameters on visibility: First results from a long-term campaign in Warsaw, Poland. Atmosphere 2015, 6, 1154–1174. [Google Scholar] [CrossRef]
- Badyda, A.J.; Dabrowiecki, P.; Lubinski, W.; Czechowski, P.O.; Majewski, G. Exposure to traffic-related air pollutants as a risk of airway obstruction. Adv. Exp. Med. Biol. 2013, 755, 35–45. [Google Scholar] [PubMed]
- Pyta, H.; Rogula-Kozłowska, W. Determination of mercury in size-segregated ambient particulate matter using CVAAS. Microchem. J. 2016, 124, 76–81. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K. Submicrometer aerosol in rural and urban backgrounds in southern Poland: Primary and secondary components of PM1. Bull. Environ. Contam. Tox. 2013, 90, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Kozielska, B.; Rogula-Kozłowska, W.; Klejnowski, K. Seasonal variations in health hazards from polycyclic aromatic hydrocarbons bound to submicrometer particles at three characteristic sites in the heavily polluted Polish region. Atmosphere 2014, 6, 1–20. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Huang, H.; Cao, J.J.; Lee, S.C.; Zou, C.W.; Chen, X.G.; Fan, S.J. Spatial variation and relationship of indoor/outdoor PM2.5 at residential homes in Guangzhou city, China. Aerosol Air Qual. Res. 2007, 7, 518–580. [Google Scholar]
- Cao, J.J.; Huang, H.; Lee, S.C.; Chow, J.C.; Zou, C.W.; Ho, K.F.; Watson, J.G. Indoor/outdoor relationships for organic and elemental carbon in PM2.5 at residential homes in Guangzhou, China. Aerosol Air Qual. Res. 2012, 12, 902–910. [Google Scholar] [CrossRef]
- Rozbicka, K.; Majewski, G.; Rozbicki, T. Seasonal variation of air pollution in Warsaw conurbation. Meteorol. Z. 2014, 23, 175–179. [Google Scholar]
- Majewski, G.; Czechowski, P.O.; Badyda, A.J.; Rogula-Kozłowska, W. The estimation of total gaseous mercury concentration (TGM) using exploratory and stochastic methods. Pol. J. Environ. Stud. 2013, 22, 759–771. [Google Scholar]
- Majewski, G.; Czechowski, P.O.; Badyda, A.; Kleniewska, M.; Brandyk, A. Ocena stężenia całkowitej rtęci gazowej (TGM) na terenie stacji tła regionalnego Granica-KPN (województwo mazowieckie, Polska) w latach 2010–2011. Rocz. Ochr. Środ. 2013, 15, 1302–1317. [Google Scholar]
Parameter | No. of Valid Measurements | Mean Value | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|
Gliwice | |||||
Wind speed, m·s−1 | 25 | 1.2 | 0.7 | 3.6 | 0.7 |
Atmospheric pressure, hPa | 986.1 | 974.6 | 996.7 | 4.7 | |
Air temperature, °C | 13.5 | 6.9 | 19.7 | 3.5 | |
Relative air humidity, % | 73.0 | 42.3 | 92.6 | 12.7 | |
Indoor PM1 concentration, µg·m−3 | 14.5 | 7.7 | 26.4 | 3.6 | |
Outdoor PM1 concentration, µg·m−3 | 19.3 | 9.9 | 50.1 | 7.4 | |
Indoor Hgp concentration, pg·m−3 | 6.1 | 2.4 | 27.4 | 5.1 | |
Outdoor Hgp concentration, pg·m−3 | 3.0 | 1.1 | 6.1 | 1.4 | |
Indoor Hgp content of PM1, ppm | 0.4 | 0.2 | 1.8 | 0.3 | |
Outdoor Hgp content of PM1, ppm | 0.2 | 0.1 | 0.3 | 0.1 | |
Warsaw | |||||
Wind speed, m·s−1 | 25 | 3.1 | 1.9 | 5.1 | 1.0 |
Atmospheric pressure, hPa | 1004.2 | 997.3 | 1 014.3 | 5.2 | |
Air temperature, °C | 14.9 | 7.5 | 23.3 | 4.1 | |
Relative air humidity, % | 57.6 | 39.6 | 84.1 | 12.7 | |
Indoor PM1 concentration, µg·m−3 | 9.5 | 4.0 | 24.8 | 5.1 | |
Outdoor PM1 concentration, µg·m−3 | 13.2 | 5.7 | 37.8 | 6.6 | |
Indoor Hgp concentration, pg·m−3 | 1.4 | 0.9 | 4.1 | 0.7 | |
Outdoor Hgp concentration, pg·m−3 | 1.4 | 0.7 | 2.3 | 0.5 | |
Indoor Hgp content of PM1, ppm | 0.2 | 0.1 | 0.3 | 0.1 | |
Outdoor Hgp content of PM1, ppm | 0.1 | 0.03 | 0.2 | 0.04 |
Warsaw | Indoor PM1 Concentration | Outdoor PM1 Concentration | Indoor Hgp Concentration | Outdoor Hgp Concentration | Indoor Hgp in PM1 | Outdoor Hgp in PM1 |
Indoor PM1 concentration | 1.00 | 0.69 * | 0.51 | 0.12 | −0.56 | −0.63 |
Outdoor PM1 concentration | 0.69 | 1.00 | 0.24 | 0.29 | −0.50 | −0.66 |
Indoor Hgp concentration | 0.51 | 0.24 | 1.00 | 0.48 | 0.26 | −0.07 |
Outdoor Hgp concentration | 0.12 | 0.29 | 0.48 | 1.00 | 0.07 | 0.31 |
Indoor Hgp in PM1 | −0.56 | −0.50 | 0.26 | 0.07 | 1.00 | 0.59 |
Outdoor Hgp in PM1 | −0.63 | −0.66 | −0.07 | 0.31 | 0.59 | 1.00 |
Gliwice | Indoor PM1 Concentration | Outdoor PM1 Concentration | Indoor Hgp Concentration | Outdoor Hgp Concentration | Indoor Hgp in PM1 | Outdoor Hgp in PM1 |
Indoor PM1 concentration | 1.00 | 0.90 | 0.25 | 0.22 | 0.00 | −0.37 |
Outdoor PM1 concentration | 0.90 | 1.00 | 0.24 | 0.35 | 0.02 | −0.27 |
Indoor Hgp concentration | 0.25 | 0.24 | 1.00 | 0.15 | 0.96 | −0.03 |
Outdoor Hgp concentration | 0.22 | 0.35 | 0.15 | 1.00 | 0.14 | 0.78 |
Indoor Hgp in PM1 | 0.00 | 0.02 | 0.96 | 0.14 | 1.00 | 0.10 |
Outdoor Hgp in PM1 | −0.37 | −0.27 | −0.03 | 0.78 | 0.10 | 1.00 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majewski, G.; Kociszewska, K.; Rogula-Kozłowska, W.; Pyta, H.; Rogula-Kopiec, P.; Mucha, W.; Pastuszka, J.S. Submicron Particle-Bound Mercury in University Teaching Rooms: A Summer Study from Two Polish Cities. Atmosphere 2016, 7, 117. https://doi.org/10.3390/atmos7090117
Majewski G, Kociszewska K, Rogula-Kozłowska W, Pyta H, Rogula-Kopiec P, Mucha W, Pastuszka JS. Submicron Particle-Bound Mercury in University Teaching Rooms: A Summer Study from Two Polish Cities. Atmosphere. 2016; 7(9):117. https://doi.org/10.3390/atmos7090117
Chicago/Turabian StyleMajewski, Grzegorz, Karolina Kociszewska, Wioletta Rogula-Kozłowska, Halina Pyta, Patrycja Rogula-Kopiec, Walter Mucha, and Józef S. Pastuszka. 2016. "Submicron Particle-Bound Mercury in University Teaching Rooms: A Summer Study from Two Polish Cities" Atmosphere 7, no. 9: 117. https://doi.org/10.3390/atmos7090117
APA StyleMajewski, G., Kociszewska, K., Rogula-Kozłowska, W., Pyta, H., Rogula-Kopiec, P., Mucha, W., & Pastuszka, J. S. (2016). Submicron Particle-Bound Mercury in University Teaching Rooms: A Summer Study from Two Polish Cities. Atmosphere, 7(9), 117. https://doi.org/10.3390/atmos7090117