Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia
Abstract
:1. Introduction
2. Model and Data Descriptions
2.1. Model Description
2.2. Observations
3. Model Results
3.1. Comparison with Surface Nitrate Observations
3.1.1. Comparison with EANET Data
3.1.2. Comparison with Observations across China
3.2. Nitrate Distribution in East Asia
3.3. Direct Radiative Forcing Due to Nitrate
3.3.1. The Distribution of Seasonal Mean DRF Due to Nitrate
3.3.2. Seasonal Variation of Domain-Averaged DRF Due to Nitrate
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Zhang, X.C.; Gong, S.L.; Zhang, Y.M.; Sun, J.Y. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef]
- Van Pinxteren, D.; Brüggemann, D.; Gnauk, T.; Iinuma, Y.; Müller, K.; Nowak, A.; Achter, P.; Wiedensohler, A.; Herrmann, H. Size- and time-resolved chemical particle characterization during CAREBeijing-2006: Different pollution regimes and diurnal profiles. J. Geophys. Res. 2009, 114, D00G09. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.-C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhu, B.; Shen, L.J.; Xu, H.H.; An, J.L.; Xue, G.Q.; Cao, J.F. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources. Atmos. Res. 2015, 123, 370–379. [Google Scholar] [CrossRef]
- Zhao, M.F.; Huang, Z.S.; Qiao, T.; Zhang, Y.K.; Xiu, G.L.; Yu, J.Z. Chemical characterization, the transport pathways and potential sources of PM2.5 in Shanghai: Seasonal variations. Atmos. Res. 2015, 158–159, 66–78. [Google Scholar] [CrossRef]
- Xie, Z.X.; Han, Z.W. Investigation of interannual variations in anthropogenic emission in China based on several emission inventories. J. Univ. Chin. Acad. Sci. 2014, 31, 289–296. (In Chinese) [Google Scholar]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.; Reddy, S.; Fu, J.S.; et al. Asian emission in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Zhang, Q.; Guan, D.B.; Davis, S.J.; Liu, Z.; Huo, H.; Lin, J.T.; Liu, W.D.; He, K.B. Assessment of China’s virtual air pollution transport embodied in trade by using a consumption-based emission inventory. Atmos. Chem. Phys. 2015, 15, 5443–5456. [Google Scholar]
- Liao, H.; Seinfeld, J.H. Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. J. Geophys. Res. 2005, 110, D18208. [Google Scholar] [CrossRef]
- Liao, H.; Seinfeld, J.H.; Adams, P.J.; Mickley, L.J. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J. Geophys. Res. 2004, 109, D16207. [Google Scholar] [CrossRef]
- Bauer, S.E.; Koch, D.; Unger, N.; Metzger, S.M.; Shindell, D.T.; Streets, D.G. Nitrate aerosols today and in 2030: A global simulation including aerosols and tropospheric ozone. Atmos. Chem. Phys. 2007, 7, 5043–5059. [Google Scholar] [CrossRef]
- Li, J.D.; Wang, W.C.; Liao, H.; Chang, W.Y. Past and future direct radiative forcing of nitrate aerosol in East Asia. Theor. Appl. Climatol. 2015, 131, 445–458. [Google Scholar] [CrossRef]
- Bellouin, N.; Rae, J.; Jones, A.; Johnson, C.; Haywood, J.; Boucher, O. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res. 2011, 116, D20206. [Google Scholar] [CrossRef]
- Xia, X.; Che, H.; Zhu, J.; Chen, H.; Cong, Z.; Deng, X.; Fan, X.; Fu, Y.; Goloub, P.; Jiang, H.; et al. Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization. Atmos. Environ. 2016, 124, 243–251. [Google Scholar] [CrossRef]
- Alam, K.; Sahar, N.; Iqbal, Y. Aerosol characteristics and radiative forcing during pre-monsoon and post-monsoon seasons in an urban environment. Aerosol Air Qual. Res. 2014, 14, 99–107. [Google Scholar] [CrossRef]
- Han, Z.W.; Ueda, H.; Sakurai, T. Model study on acidifying wet deposition in East Asia during wintertime. Atmos. Environ. 2006, 40, 2360–2373. [Google Scholar] [CrossRef]
- Zhang, M.G.; Gao, L.J.; Ge, C.; Xu, Y.P. Simulation of nitrate aerosol concentrations over East Asia with the model system RAMS-CMAQ. Tellus B 2007, 59, 372–380. [Google Scholar] [CrossRef]
- Hayami, H.; Sakurai, T.; Han, Z.W.; Ueda, H.; Carmichael, G.R.; Streets, D.; Holloway, T.; Wang, Z.; Thongboonchoo, N.; Engardt, M.; et al. MICS-Asia II: Model intercomparison and evaluation of particulate sulfate, nitrate and ammonium. Atmos. Environ. 2008, 42, 3510–3527. [Google Scholar] [CrossRef]
- Li, J.W.; Han, Z.W. A modeling study of seasonal variation of atmospheric aerosols over East Asia. Adv. Atmos. Sci. 2012, 29, 101–117. [Google Scholar] [CrossRef]
- Wang, T.; Li, S.; Shen, Y.; Deng, J.; Xie, M. Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J. Geophys. Res. 2010, 115, D00K26. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Z.; Wei, X.; Zhang, M.; Li, Z. Comparison of optical properties of nitrate and sulfate aerosol and the direct radiative forcing due to nitrate in China. Atmos. Res. 2012, 113, 113–125. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.J.; Zhuang, B.L.; Han, Y. Indirect Radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv. Atmos. Sci. 2009, 26, 543–552. [Google Scholar] [CrossRef]
- Han, Z. Direct radiative effect of aerosols over East Asia with a regional coupled climate/chemistry model. Meteorol. Z. 2010, 19, 287–298. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Technical Note, NCAR/TN-398tSTR; National Center for Atmospheric Research: Boulder, CO, USA, 1995. [Google Scholar]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as coupled to NCAR Community Climate Model; NCAR Technical Note, NCAR/TN-387+STR; National Center for Atmospheric Research: Boulder, CO, USA, 1993. [Google Scholar]
- Hong, S.H.; Pan, H.L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Keihl, J.T.; Hack, J.J.; Bonan, G.B.; Boville, B.A.; Briegleb, B.P.; Williamson, D.L.; Rasch, P.J. Description of the NCAR Community Climate Model (CCM3); NCAR Technical Note, NCAR/TN-420+STR; National Center for Atmospheric Research: Boulder, CO, USA, 1996. [Google Scholar]
- Xiong, Z.; Fu, C.B.; Yan, X.D. Regional Integrated environmental model system and its simulation of East Asia summer monsoon. Chin. Sci. Bull. 2009, 54, 4253–4261. [Google Scholar] [CrossRef]
- Zhao, D.M. Performance of Regional Integrated Environment Modeling System (RIEMS) in precipitation simulations over East Asia. Clim. Dyn. 2013, 40, 1767–1787. [Google Scholar] [CrossRef]
- Wang, S.Y.; Fu, C.B.; Wei, H.L.; Qian, Y.; Xiong, Z.; Feng, J.M.; Zhao, D.M.; Dan, L.; Han, Z.W.; Su, B.K.; et al. Regional integrated environmental modeling system: Development and application. Clim. Chang. 2015, 129, 499–510. [Google Scholar] [CrossRef]
- Fu, C.B.; Wang, S.Y.; Xiong, Z.; Gutowski, W.J.; Lee, D.; Mcgregor, J.L.; Sato, Y.; Kato, H.; Kim, J.; Suh, M. Regional climate model intercomparison project for Asia. Bull. Am. Meteorol. Soc. 2005, 86, 257–266. [Google Scholar] [CrossRef]
- Gery, M.W.; Whitten, G.Z.; Killus, J.P.; Dodge, M.C. A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 1989, 94, 12925–12956. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Chang, J.S.; Brost, R.A.; Isaksen, I.S.A.; Madronich, S.; Middleton, P.; Stockwell, W.R.; Walcek, C.J. A three-dimensional Eulerian acid deposition model: physical concepts and formulation. J. Geophys. Res. 1987, 92, 14681–14700. [Google Scholar] [CrossRef]
- Jacob, D.J. Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 2000, 34, 2131–2159. [Google Scholar] [CrossRef]
- Li, J.W.; Han, Z.W. A modeling study of the impact of heterogeneous reactions on mineral aerosol surfaces on tropospheric chemistry over East Asia. Particuology 2010, 8, 433–441. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schuit, I. Optical properties of aerosols and clouds: the software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Han, Z.W.; Ueda, H.; Matsuda, K.; Zhang, R.J.; Arao, K.; Kanai, Y.; Hasome, H. Model study on particle size segregation and deposition during Asian dust events in March 2002. J. Geophys. Res. 2004, 109, D19205. [Google Scholar] [CrossRef]
- Walmsley, J.L.; Wesely, M.L. Modification of coded parameterizations of surface resistances to gaseous dry deposition. Atmos. Environ. 1996, 30, 1181–1188. [Google Scholar] [CrossRef]
- Ghan, S.; Zaveri, R.A. Parameterization of optical properties for hydrated internally mixed aerosol. J. Geophys. Res. 2007, 112, D10201. [Google Scholar] [CrossRef]
- Kreidenweis, S.M.; Koehler, K.; DeMott, P.J.; Prenni, A.J.; Carrico, C.; Ervens, B. Water activity and activation diameters from hygroscopicity data—Part I: Theory and application to inorganic salts. Atmos. Chem. Phys. 2005, 5, 1357–1370. [Google Scholar] [CrossRef]
- Rissler, J.; Vestin, A.; Swietlicki, E.; Fisch, G.; Zhou, J.; Artaxo, P.; Andreae, M.O. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys. 2006, 6, 471–491. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Riemer, N.; West, M.; Zaveri, R.; Easter, R. Estimating black carbon aging time-scales with a particle-resolved aerosol model. J. Aerosol Sci. 2010, 41, 143–158. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.G.; Han, Z.W.; Xin, J.Y.; Liu, X.H. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia. Atmos. Environ. 2011, 45, 6576–6592. [Google Scholar] [CrossRef]
- Li, J.W.; Han, Z.W.; Zhang, R.J. Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia. Atmos. Res. 2014, 140–141, 14–27. [Google Scholar] [CrossRef]
- Han, Z.W.; Li, J.W.; Xia, X.A.; Zhang, R.J. Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model. Atmos. Environ. 2012, 54, 688–699. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.-H.; He, K.B.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects. Atmos. Chem. Phys. Discuss. 2015, 15, 34813–34869. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Six Hourly NCEP (National Centers for Environmental Prediction) Final Reanalysis Data. Available online: http://rda.ucar.edu/datasets/ds083.2/ (accessed on 29 July 2016).
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, G.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Acid Deposition Monitoring Network in East Asia. Available online: http://www.eanet.asia/jpn/index.html (accessed on 29 July 2016).
- Zhao, P.S.; Dong, F.; He, D.; Zhao, X.J.; Zhang, X.L.; Zhang, W.Z.; Yao, Q.; Liu, H.Y. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 2013, 13, 4632–4644. [Google Scholar] [CrossRef]
- Wang, H.L.; An, J.L.; Cheng, M.T.; Shen, L.J.; Zhu, B.; Li, Y.; Wang, Y.S.; Duan, Q.; Sullivan, A.; Xia, L. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere 2006, 148, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, Z.W.; Cheng, H.R.; Lv, X.P.; Gong, W.; Wang, X.M.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518–519, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Zhang, L.M.; Ho, K.F.; Zhang, R.J.; Lin, Z.J.; Zhang, Z.S.; Lin, M.; Cao, J.J.; Liu, S.X.; Wang, G.H. Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou—The largest magecity in south China. Atmos. Res. 2014, 135–136, 48–58. [Google Scholar] [CrossRef]
- Shen, Z.X.; Cao, J.J.; Arimoto, R.; Han, Y.M.; Zhu, C.S.; Tian, J.; Liu, S.X. Chemical characteristics of fine particles (PM1) from Xi’an, China. Aerosol Sci. Technol. 2010, 44, 461–472. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
Sites | Longitude (°E) | Latitude (°N) | Type | Obs | Sim | R | MBE | NMB |
---|---|---|---|---|---|---|---|---|
Hongwen | 118.13 | 24.47 | Urban | 11.0 | 11.1 | 0.87 | 0.13 | 1.2 |
Kanghwa | 126.28 | 37.70 | Rural | 3.0 | 3.7 | 0.63 | 0.65 | 21.8 |
Imsil | 127.18 | 35.60 | Rural | 3.7 | 4.1 | 0.81 | 0.39 | 10.4 |
Cheju | 126.17 | 33.30 | Remote | 0.7 | 1.4 | 0.22 | 0.66 | 90.0 |
Rishiri | 141.23 | 45.12 | Remote | 0.8 | 1.1 | 0.50 | 0.31 | 40.3 |
Tappi | 140.35 | 41.25 | Remote | 1.4 | 1.6 | 0.64 | 0.22 | 16.6 |
Oki | 133.18 | 36.28 | Remote | 1.5 | 1.5 | 0.67 | −0.05 | −3.1 |
Banryu | 131.80 | 34.68 | Urban | 1.5 | 1.6 | 0.58 | 0.12 | 8.4 |
Tokyo | 139.76 | 35.69 | Urban | 3.8 | 3.8 | 0.56 | 0.02 | 0.6 |
Hedo | 128.25 | 26.87 | Remote | 1.1 | 1.1 | 0.78 | −0.03 | −28.0 |
Average | 2.7 | 2.9 | 0.92 | 0.25 | 9.1 |
Site * | Longitude (°E) | Latitude (°N) | Sampling Period | Source | Annual | Spring | Summer | Autumn | Winter | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Shangdianzi | 117.12 | 40.65 | April/July/October 2009 and January 2010 | Obs | 12.2 | 16.5 | 12.4 | 11.2 | 8.8 | [56] |
Sim | 11.2 | 11.6 | 18.4 | 11.2 | 4.7 | |||||
Beijing | 116.40 | 40.00 | As above | Obs | 20.5 | 20.4 | 22.8 | 21.5 | 17.1 | [56] |
Sim | 15.3 | 13.8 | 26.1 | 16.2 | 6.5 | |||||
Tianjin | 117.30 | 39.10 | As above | Obs | 18.8 | 18.8 | 21.1 | 20.1 | 15.5 | [56] |
Sim | 14.4 | 14.7 | 18.6 | 17.3 | 9.2 | |||||
Shijiazhuang | 114.50 | 38.03 | As above | Obs | 30.4 | 26.5 | 24.9 | 46.0 | 25.3 | [56] |
Sim | 17.1 | 15.7 | 25.2 | 19.6 | 10.8 | |||||
Chengde | 117.93 | 40.97 | As above | Obs | 5.8 | 11.0 | 4.6 | 2.6 | 5.2 | [56] |
Sim | 9.0 | 10.3 | 13.5 | 9.2 | 4.1 | |||||
Nanjing | 118.72 | 32.21 | October 2013–November 2014 | Obs | 18.9 | 17.8 | 11.7 | 15.3 | 32.9 | [57] |
Sim | 13.0 | 14.1 | 7.7 | 15.8 | 16.9 | |||||
Wuhan | 114.35 | 30.5 | August 2012–July 2013 | Obs | 14.6 | 14.5 | 2.0 | 13.0 | 29.0 | [58] |
Sim | 12.0 | 13.2 | 4.0 | 15.1 | 20.4 | |||||
Guangzhou | 113.35 | 23.12 | April/July/October 2009 and January 2010 | Obs | 7.8 | 9.9 | 2.0 | 6.4 | 13.0 | [59] |
Sim | 10.7 | 10.3 | 2.6 | 10.0 | 19.9 | |||||
Xi’an | 108.88 | 34.23 | December 2007–November 2008 | Obs | 11.3 | 12.4 | 4.4 | 12.1 | 16.2 | [60] |
Sim | 8.1 | 8.4 | 4.9 | 11.0 | 11.4 | |||||
Average | Obs | 15.6 | 16.4 | 11.8 | 16.5 | 18.1 | ||||
Sim | 12.3 | 12.5 | 13.4 | 13.9 | 11.5 |
Domain * | Annual | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
Surface nitrate concentration (μg·m−3) | |||||
East Asia | 2.9 | 2.9 | 1.6 | 3.2 | 4.2 |
East China | 8.5 | 8.5 | 4.5 | 10.0 | 12.9 |
Column nitrate concentration (mg·m−2) | |||||
East Asia | 8.0 | 9.0 | 6.3 | 9.3 | 8.3 |
East China | 18.6 | 20.7 | 12.9 | 22.7 | 21.1 |
DRF due to nitrate at TOA (all-sky) (W·m−2) | |||||
East Asia | −1.7 | −1.8 | −1.6 | −1.9 | −1.7 |
East China | −3.7 | −3.6 | −3.1 | −4.1 | −4.1 |
DRF due to nitrate at TOA (clear-sky) (W·m−2) | |||||
East Asia | −3.8 | −4.3 | −3.2 | −4.0 | −4.0 |
East China | −9.0 | −10.3 | −6.2 | −9.8 | −10.5 |
DRF due to nitrate at the surface (all-sky) (W·m−2) | |||||
East Asia | −1.7 | −1.8 | −1.6 | −1.8 | −1.7 |
East China | −3.7 | −3.7 | −3.2 | −4.2 | −4.3 |
DRF due to nitrate at the surface (clear-sky) (W·m−2) | |||||
East Asia | −3.9 | −4.5 | −3.3 | −4.1 | −4.0 |
East China | −9.4 | −11.0 | −6.5 | −10.3 | −10.6 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Han, Z. Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia. Atmosphere 2016, 7, 105. https://doi.org/10.3390/atmos7080105
Li J, Han Z. Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia. Atmosphere. 2016; 7(8):105. https://doi.org/10.3390/atmos7080105
Chicago/Turabian StyleLi, Jiawei, and Zhiwei Han. 2016. "Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia" Atmosphere 7, no. 8: 105. https://doi.org/10.3390/atmos7080105
APA StyleLi, J., & Han, Z. (2016). Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia. Atmosphere, 7(8), 105. https://doi.org/10.3390/atmos7080105