Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome
Abstract
:1. Introduction
2. Experimental
2.1. Site Description
2.2. PM2.5 Collection
2.3. Chemical Characterization
2.4. Mass Reconstruction
2.5. Macro-Sources
3. Results and Discussion
3.1. Meteorological Conditions
3.2. Mass Concentration
3.3. Chemical Composition—Winter Campaign
µg/m3 | PM2.5 | Na | Si | S | Cl | K | Ca | Cl− | NO3− | SO42− | Na+ | NH4+ | K+ | Ca2+ | OC | EC | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IAM 1st week (N=5) | Out | M | 49 | 0.13 | 0.30 | 0.69 | 0.15 | 0.81 | 0.32 | 0.13 | 4.2 | 2.5 | 0.10 | 1.4 | 0.71 | 0.48 | 21 | 5.1 |
σ | 5.7 | 0.011 | 0.034 | 0.11 | 0.025 | 0.13 | 0.064 | 0.019 | 0.98 | 0.56 | 0.016 | 0.26 | 0.11 | 0.10 | 4.2 | 1.3 | ||
In | M | 38 | 0.19 | 0.32 | 0.70 | 0.13 | 0.73 | 0.50 | 0.11 | 1.6 | 1.9 | 0.086 | 0.96 | 0.64 | 0.41 | 14 | 5.1 | |
σ | 3.9 | 0.047 | 0.034 | 0.10 | 0.022 | 0.13 | 0.094 | 0.037 | 0.48 | 0.40 | 0.024 | 0.19 | 0.10 | 0.090 | 3.2 | 0.95 | ||
IDR 1st week (N=5) | Out | M | 56 | 0.14 | 0.34 | 0.67 | 0.19 | 0.91 | 0.37 | 0.16 | 3.5 | 2.5 | 0.13 | 1.3 | 0.87 | 0.73 | 25 | 5.5 |
σ | 12.9 | 0.040 | 0.060 | 0.14 | 0.065 | 0.25 | 0.11 | 0.061 | 0.46 | 0.58 | 0.019 | 0.38 | 0.23 | 0.35 | 3.5 | 0.73 | ||
In | M | 47 | 0.23 | 0.47 | 0.69 | 0.27 | 0.85 | 0.65 | 0.18 | 1.4 | 1.8 | 0.093 | 0.75 | 0.73 | 0.35 | 15 | 7.0 | |
σ | 11.8 | 0.050 | 0.050 | 0.10 | 0.030 | 0.21 | 0.050 | 0.037 | 0.33 | 0.50 | 0.024 | 0.18 | 0.21 | 0.038 | 4.2 | 1.2 | ||
IVI 1st week (N=5) | Out | M | 50 | 0.13 | 0.32 | 0.70 | 0.13 | 0.90 | 0.35 | 0.10 | 4.7 | 2.5 | 0.10 | 1.6 | 0.83 | 0.44 | 19 | 4.2 |
σ | 6 | 0.016 | 0.041 | 0.13 | 0.029 | 0.12 | 0.058 | 0.019 | 1.4 | 0.59 | 0.014 | 0.21 | 0.11 | 0.057 | 2.4 | 0.75 | ||
In | M | 43 | 0.18 | 0.29 | 0.63 | 0.19 | 0.85 | 0.40 | 0.17 | 1.8 | 1.9 | 0.081 | 0.99 | 0.71 | 0.26 | 13 | 4.0 | |
σ | 6.8 | 0.032 | 0.025 | 0.30 | 0.034 | 0.085 | 0.069 | 0.045 | 0.65 | 0.55 | 0.011 | 0.29 | 0.11 | 0.063 | 1.8 | 0.65 | ||
IAM 2nd + 3rd week (N=9) | Out | M | 17 | 0.30 | 0.17 | 0.27 | 0.25 | 0.28 | 0.26 | 0.22 | 1.0 | 0.82 | 0.27 | 0.28 | 0.23 | 0.40 | 5.7 | 2.7 |
σ | 7.6 | 0.36 | 0.054 | 0.10 | 0.33 | 0.15 | 0.11 | 0.34 | 0.41 | 0.31 | 0.24 | 0.13 | 0.13 | 0.13 | 3.1 | 1.3 | ||
In | M | 12 | 0.17 | 0.18 | 0.23 | 0.26 | 0.26 | 0.28 | 0.15 | 0.36 | 0.57 | 0.13 | 0.20 | 0.20 | 0.23 | 4.8 | 2.3 | |
σ | 4.4 | 0.13 | 0.038 | 0.11 | 0.19 | 0.11 | 0.066 | 0.14 | 0.078 | 0.29 | 0.10 | 0.095 | 0.10 | 0.072 | 1.8 | 1.1 | ||
IDR 2nd + 3rd week (N=9) | Out | M | 19 | 0.09 | 0.15 | 0.24 | 0.080 | 0.33 | 0.21 | 0.07 | 1.5 | 0.74 | 0.10 | 0.45 | 0.21 | 0.34 | 6.5 | 3.0 |
σ | 7.7 | 0.019 | 0.072 | 0.062 | 0.049 | 0.20 | 0.063 | 0.044 | 0.61 | 0.17 | 0.038 | 0.16 | 0.10 | 0.088 | 2.6 | 1.0 | ||
In | M | 15 | 0.22 | 0.36 | 0.25 | 0.26 | 0.27 | 0.50 | 0.17 | 0.42 | 0.57 | 0.13 | 0.20 | 0.20 | 0.28 | 6.2 | 2.7 | |
σ | 5.6 | 0.094 | 0.064 | 0.10 | 0.14 | 0.13 | 0.060 | 0.095 | 0.17 | 0.27 | 0.096 | 0.067 | 0.11 | 0.071 | 2.2 | 1.8 | ||
IVI 2nd + 3rd week (N=9) | Out | M | 17 | 0.27 | 0.18 | 0.29 | 0.22 | 0.27 | 0.27 | 0.19 | 0.87 | 0.86 | 0.25 | 0.28 | 0.23 | 0.46 | 5.9 | 2.6 |
σ | 8.1 | 0.33 | 0.051 | 0.11 | 0.34 | 0.14 | 0.092 | 0.35 | 0.39 | 0.34 | 0.23 | 0.12 | 0.13 | 0.099 | 2.1 | 1.3 | ||
In | M | 15 | 0.19 | 0.20 | 0.25 | 0.23 | 0.26 | 0.34 | 0.18 | 0.49 | 0.63 | 0.16 | 0.25 | 0.21 | 0.25 | 5.0 | 1.9 | |
σ | 4.9 | 0.12 | 0.040 | 0.11 | 0.19 | 0.11 | 0.054 | 0.14 | 0.19 | 0.29 | 0.12 | 0.078 | 0.095 | 0.047 | 1.3 | 1.1 |
3.4. Chemical Composition—Spring/Summer Campaign
µg/m3 | PM2.5 | Na | Si | S | Cl | K | Ca | Cl− | NO3− | SO42− | Na+ | NH4+ | K+ | Ca2+ | OC | EC | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IAM (N=15) | Out | M | 12 | 0.093 | 0.22 | 0.61 | 0.044 | 0.10 | 0.28 | 0.027 | 0.37 | 1.9 | 0.084 | 0.73 | 0.072 | 0.21 | 3.3 | 1.5 |
σ | 3.1 | 0.081 | 0.078 | 0.40 | 0.010 | 0.033 | 0.12 | 0.011 | 0.24 | 1.2 | 0.051 | 0.54 | 0.024 | 0.075 | 0.89 | 0.53 | ||
In | M | 13 | 0.14 | 0.38 | 0.67 | 0.10 | 0.14 | 0.76 | 0.063 | 0.22 | 1.8 | 0.10 | 0.67 | 0.088 | 0.48 | 3.3 | 1.1 | |
σ | 2.8 | 0.038 | 0.061 | 0.38 | 0.012 | 0.025 | 0.19 | 0.017 | 0.070 | 1.1 | 0.039 | 0.48 | 0.022 | 0.16 | 0.86 | 0.42 | ||
IDR (N=15) | Out | M | 12 | 0.091 | 0.24 | 0.65 | 0.044 | 0.15 | 0.27 | 0.033 | 0.49 | 2.1 | 0.086 | 0.83 | 0.11 | 0.21 | 3.2 | 1.3 |
σ | 4.1 | 0.052 | 0.079 | 0.38 | 0.016 | 0.11 | 0.089 | 0.018 | 0.32 | 1.3 | 0.064 | 0.61 | 0.12 | 0.059 | 0.91 | 0.53 | ||
In | M | 22 | 0.22 | 0.69 | 0.73 | 0.21 | 0.26 | 1.4 | 0.21 | 0.55 | 2.0 | 0.24 | 0.68 | 0.20 | 1.0 | 5.9 | 1.4 | |
σ | 5.9 | 0.12 | 0.36 | 0.43 | 0.11 | 0.11 | 0.83 | 0.15 | 0.24 | 1.3 | 0.13 | 0.44 | 0.094 | 0.55 | 1.2 | 0.4 | ||
IVI (N=15) | Out | M | 12 | 0.085 | 0.18 | 0.69 | 0.033 | 0.10 | 0.23 | 0.019 | 0.43 | 2.2 | 0.082 | 0.91 | 0.069 | 0.20 | 3.6 | 1.9 |
σ | 4.1 | 0.035 | 0.043 | 0.47 | 0.009 | 0.025 | 0.043 | 0.006 | 0.34 | 1.6 | 0.054 | 0.76 | 0.019 | 0.069 | 0.87 | 0.57 | ||
In | M | 16 | 0.17 | 0.42 | 0.73 | 0.11 | 0.16 | 0.74 | 0.067 | 0.38 | 2.0 | 0.13 | 0.71 | 0.10 | 0.67 | 5.3 | 1.1 | |
σ | 5.2 | 0.058 | 0.092 | 0.44 | 0.028 | 0.028 | 0.17 | 0.026 | 0.18 | 1.4 | 0.068 | 0.54 | 0.022 | 0.21 | 1.8 | 0.42 |
4. Conclusions
Acknowledgments
Author Contributions
Appendix
µg/m3 | Medium-Volume | Low-Volume | ||
---|---|---|---|---|
LOD | LOQ | LOD | LOQ | |
Na | 0.02 | 0.07 | 0.09 | 0.28 |
Si | 0.02 | 0.07 | 0.09 | 0.28 |
S | 0.02 | 0.07 | 0.09 | 0.28 |
Cl | 0.02 | 0.07 | 0.09 | 0.28 |
K | 0.01 | 0.04 | 0.05 | 0.14 |
Ca | 0.01 | 0.04 | 0.05 | 0.14 |
Cl- | 0.002 | 0.006 | 0.013 | 0.038 |
NO3− | 0.005 | 0.015 | 0.031 | 0.094 |
SO42− | 0.01 | 0.03 | 0.063 | 0.19 |
Na+ | 0.002 | 0.006 | 0.013 | 0.038 |
NH4+ | 0.002 | 0.006 | 0.013 | 0.038 |
K+ | 0.005 | 0.015 | 0.031 | 0.094 |
Ca2+ | 0.005 | 0.015 | 0.031 | 0.094 |
OC | 0.4 | 1.2 | 1.6 | 4.8 |
EC | 0.1 | 0.3 | 0.4 | 1.2 |
References
- Regional Office for Europe and World Health Organization. Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; World Health Organization: Copenaghen, Denmark, 2006. [Google Scholar]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2013, 380, 2224–2260. [Google Scholar] [CrossRef]
- Bauer, M.; Moebus, S.; Möhlenkamp, S.; Dragano, N.; Nonnemacher, M.; Fuchsluger, M.; Kessler, C.; Jakobs, H.; Memmesheimer, M.; Erbel, R.; et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis: Results from the HNR (Heinz Nixdorf Recall) study. J. Am. Coll. Cardiol. 2010, 56, 1803–1808. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Salam, M.T.; Eckel, S.P.; Breton, C.V.; Gilliland, F.D. Chronic effects of air pollution on respiratory health in Southern California children: Findings from the Southern California children’s health study. J. Thorac. Dis. 2015, 7, 46–58. [Google Scholar] [PubMed]
- Bui, D.S.; Burgess, J.A.; Matheson, M.C.; Erbas, B.; Perret, J.; Morrison, S.; Giles, G.G.; Hopper, J.L.; Thomas, P.S.; Markos, J.; et al. Ambient wood smoke, traffic pollution and adult asthma prevalence and severity. Respirology 2013, 18, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Schikowski, T.; Mills, I.C.; Anderson, H.R.; Cohen, A.; Hansell, A.; Kauffmann, F.; Krämer, U.; Marcon, A.; Perez, L.; Sunyer, J.; et al. Ambient air pollution: A cause for COPD? Eur. Respir. J. 2014, 43, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Eze, I.C.; Hemkens, L.G.; Bucher, H.C.; Hoffmann, B.; Schindler, C.; Künzli, N.; Schikowski, T.; Probst-Hensch, N.M. Association between ambient air pollution and diabetes mellitus in Europe and North America: Systematic review and meta-analysis. Environ. Health Persp. 2015, 123, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Berhane, K.; Zhang, Y.; Linn, W.S.; Rappaport, E.B.; Bastain, T.M.; Salam, M.T.; Islam, T.; Lurmann, F.; Gilliland, F.D. The effect of ambient air pollution on exhaled nitric oxide in the children’s health study. Eur. Respir. J. 2011, 37, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Eckel, S.P.; Berhane, K.; Salam, M.T.; Rappaport, E.B.; Linn, W.S.; Bastain, T.M.; Zhang, Y.; Lurmann, F.; Avol, E.L.; Gilliland, F.D. Residential traffic related pollution exposures and exhaled nitric oxide in the children’s health study. Environ. Health Persp. 2011, 119, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III. Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk? Environ. Health Persp. 2000, 108, 713–723. [Google Scholar] [CrossRef]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.; Kunzli, N. Indoor time-microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Schools Indoor Pollution and Health: Observatory Network in Europe (SINPHONIE Project). Available online: http://www.webcitation.org/6aNhsDNde (accessed on 29 July 2015).
- Simoni, M.; Annesi-Maesano, I.; Sigsgaard, T.; Norback, D.; Wieslander, G.; Nystad, W.; Canciani, M.; Sestini, P.; Viegi, G. School air quality related to dry cough, rhinitis, and nasal patency in children. Eur. Respir. J. 2010, 35, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Zauli, S.S.; Colaiacomo, E.; de Maio, F.; Lauriola, P.; Sinisi, L. School environment and children respiratory health: The SEARCH project. Epidemiol. Prev. 2009, 33, 239–241. [Google Scholar]
- GARD-Italy Progetto n°1 (Programma di prevenzione per le scuole dei rischi indoor per malattie respiratorie e allergiche). Available online: http://www.webcitation.org/6aNiRfXZY (accessed on 29 July 2015).
- Progetto CCM Indoor School (Esposizione ad inquinanti indoor: linee guida per la valutazione dei fattori di rischio in ambiente scolastico e definizione delle misure per la tutela della salute respiratoria degli scolari e degli adolescenti). Available online: http://www.webcitation.org/6aNiYEaK7 (accessed on 29 July 2015).
- Linee di indirizzo per la prevenzione nelle scuole dei fattori di rischio indoor per allergie ed asma. Available online: http://www.webcitation.org/6aNihXX2s (accessed on 29 July 2015).
- Lazaridis, M.; Aleksandropoulou, V.; Hanssen, J.E.; Dye, C.; Eleftheriadis, K.; Katsivela, E. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway. J. Air Waste Manage 2012, 58, 346–356. [Google Scholar] [CrossRef]
- Perrino, C.; Catrambone, M.; Dalla Torre, S.; Rantica, E.; Sargolini, T.; Canepari, S. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part I: macro-components and mass closure. Environ. Sci. Pollut. Res. 2014, 21, 3999–4009. [Google Scholar] [CrossRef] [PubMed]
- Perrino, C.; Tofful, L.; Canepari, S. Chemical characterization of indoor and outdoor fine particulate matter in an occupied apartment in Rome, Italy. Indoor Air 2015. [Google Scholar] [CrossRef]
- Population Exposure to PAH (EXPAH project). Available online: https://ricercascientifica.inail.it/expah/ (accessed on 20 July 2015).
- Regional Office for Europe and World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Copenaghen, Denmark, 2010. [Google Scholar]
- Technical Report on Activities Carried Out by CNR-IIA and INAIL - ex ISPESL in the Frame of the EXPAH Project (Actions 3.2 and 3.3). Available online: https://ricercascientifica.inail.it/expah/pblTechRep.asp (accessed on 20 July 2015).
- Viana, M.; Chi, X.; Maenhaut, W.; Cafmeyer, J.; Querol, X.; Alastuey, A.; Mikuška, P.; Večeřa, Z. Influence of sampling artefacts on measured PM, OC, and EC levels in carbonaceous aerosols in an urban area. Aerosol Sci. Tech. 2006, 40, 107–117. [Google Scholar] [CrossRef]
- European Standard EN 14907. Ambient Air Quality-Standard Gravimetric Measurement Method for the Determination of the PM2.5 Mass Fraction of Suspended Particulate Matter. Available online: http://standards.cen.eu/dyn/www/f?p=CENWEB:110:0::::FSP_PROJECT:20497&cs=15F8D99DB6F7D293AEB4A640619A17FB5 (accessed on 20 July 2015).
- Canepari, S.; Perrino, C.; Astolfi, M.L.; Catrambone, M.; Perret, D. Determination of soluble ions and elements in suspended particulate matter: inter-technique comparison of XRF, IC and ICP for sample-by-sample quality control. Talanta 2009, 77, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Turpin, B.J.; Lim, H.J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Tech. 2001, 35, 602–610. [Google Scholar] [CrossRef]
- Theodosi, C.; Grivas, G.; Zarmpas, P.; Chaloulakou, A.; Mihalopoulos, N. Mass and chemical composition of size-segregated aerosols (PM1, PM2.5, PM10) over Athens, Greece: Local versus regional sources. Atmos. Chem. Phys. 2011, 11, 11895–11911. [Google Scholar]
- Castro, L.M.; Pio, C.A.; Harrison, R.M.; Smith, D.J.T. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Air Resources Laboratory (ARL)—Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Available online: https://ready.arl.noaa.gov/HYSPLIT.php (accessed on 20 July 2015).
- Amato, F.; Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Reche, C.; Querol, X. Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci. Total Environ. 2014, 490, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Liu, Z.R.; Zhang, J.K.; Hu, B.; Ji, D.S.; Yu, Y.C.; Wang, Y.S. Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing. Atmos. Chem. Phys. 2015, 15, 3205–3215. [Google Scholar] [CrossRef]
- Xu, H.; Guinot, B.; Shen, Z.; Ho, K.F.; Niu, X.; Xiao, S.; Huang, R.; Cao, J. Characteristics of organic and elemental carbon in PM2.5 and PM0.25 in indoor and outdoor environments of a middle school: Secondary formation of organic carbon and sources identification. Atmosphere 2015, 6, 361–379. [Google Scholar] [CrossRef]
- Pio, C.A.; Legrand, M.; Alves, C.A.; Oliveira, T.; Afonso, J.; Caseiro, A.; Puxbaum, H.; Sanchez-Ochoa, A.; Gelencsér, A. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos. Environ. 2008, 42, 7530–7543. [Google Scholar] [CrossRef]
- Perrino, C.; Catrambone, M.; Pietrodangelo, A. Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: A case study in Rome, Italy. Environ. Int. 2008, 34, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Morawska, L.; He, C.R.; Zhang, Y.L.; Ayoko, G.; Cao, M. Characterization of particle number concentrations and PM2.5 in a school: Influence of outdoor air pollution on indoor air. Environ. Sci. Pollut. Res. Int. 2010, 17, 1268–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dockery, D.W.; Spengler, J.D. Indoor-outdoor relationships of respirable sulfates and particles. Atmos. Environ. 1981, 15, 335–343. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Particulate matter in rural and urban nursery schools in Portugal. Environ. Pollut. 2015, 202, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmos. Environ. 2014, 84, 133–143. [Google Scholar] [CrossRef]
- Lunden, M.M.; Revzan, K.L.; Fischer, M.L.; Thatcher, T.L.; Littlejohn, D.; Hering, S.V.; Brown, N.J. The transformation of outdoor ammonium nitrate aerosols in the indoor environment. Atmos. Environ. 2003, 37, 5633–5644. [Google Scholar] [CrossRef]
- Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Pandolfi, M.; Alvarez-Pedrerol, M.; Forns, J.; Alastuey, A.; Sunyer, J.; Querol, X. Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmos. Environ. 2015, 106, 129–138. [Google Scholar] [CrossRef]
- Tran, D.T.; Alleman, L.Y.; Coddeville, P.; Galloo, J.C. Elemental characterization and source identification of size resolved atmospheric particles in French classrooms. Atmos. Environ. 2012, 54, 250–259. [Google Scholar] [CrossRef]
- Almeida, S.M.; Canha, N.; Silva, A.; do Carmo Freitas, M.; Pegas, P.; Alves, C.; Pio, C.A. Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmos. Environ. 2011, 45, 7594–7599. [Google Scholar] [CrossRef]
- Eatough, D.J.; Caka, F.M.; Farber, R.J. The conversion of SO2 to sulfate in the atmosphere. Isr. J. Chem. 1994, 34, 301–314. [Google Scholar] [CrossRef]
- Castillo, S.; de la Rosa, J.D.; Sánchez de la Campa, A.M.; González-Castanedo, Y.; Fernández-Caliani, J.C.; Gonzalez, I.; Romero, A. Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci. Total Environ. 2013, 449, 363–372. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofful, L.; Perrino, C. Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome. Atmosphere 2015, 6, 1422-1443. https://doi.org/10.3390/atmos6101422
Tofful L, Perrino C. Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome. Atmosphere. 2015; 6(10):1422-1443. https://doi.org/10.3390/atmos6101422
Chicago/Turabian StyleTofful, Luca, and Cinzia Perrino. 2015. "Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome" Atmosphere 6, no. 10: 1422-1443. https://doi.org/10.3390/atmos6101422
APA StyleTofful, L., & Perrino, C. (2015). Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome. Atmosphere, 6(10), 1422-1443. https://doi.org/10.3390/atmos6101422