Characteristics and Sources of Metals in TSP and PM2.5 in an Urban Forest Park at Guangzhou
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seasonal PM Comparison
Season | PM | Values | PM2.5/TSP | ||||||
---|---|---|---|---|---|---|---|---|---|
Max. | Min. | Mean | SD | CV | SD | CV | Mean | ||
Rainy season | TSP | 246.71 | 59.85 | 101.32 | 43.29 | 0.43 | 0.44 | 1.12 | 0.40 |
PM2.5 | 105.69 | 18.27 | 40.18 | 19.11 | 0.48 | PM2.5 = 0.98TSP + 12.82 (r = 0.62) | |||
Dry season | TSP | 387.23 | 48.96 | 152.65 | 82.87 | 0.55 | 0.34 | 0.69 | 0.49 |
PM2.5 | 140.72 | 26.37 | 73.58 | 28.32 | 0.38 | PM2.5 = 1.27TSP + 23.04 (r = 0.79) | |||
Annual | TSP | 347.23 | 48.96 | 137.41 | 66.34 | 0.46 | 0.51 | 1.17 | 0.43 |
PM2.5 | 140.72 | 18.27 | 62.52 | 33.58 | 0.54 | PM2.5 = 1.05TSP + 16.57 (r = 0.68) |
2.2. Concentration of Metals in TSP and PM2.5
Metals | Rainy Season | Dry Season | p-PM2.5 | p-TSP | ||||
---|---|---|---|---|---|---|---|---|
TSP | PM2.5 | PM2.5/TSP (%) | TSP | PM2.5 | PM2.5/TSP (%) | |||
Al | 983.64 ± 154.48 | 708.17 ± 201.65 | 72.02 | 1121.07 ± 268.94 | 860.46 ± 188.35 | 76.71 | 0.034 | 0.018 |
Zn | 685.14 ± 92.37 | 575.46 ± 61.59 | 83.94 | 732.70 ± 120.48 | 636.41 ± 104.33 | 86.89 | 0.026 | 0.031 |
Pb | 77.93 ± 36.49 | 71.99 ± 33.18 | 92.31 | 124.85 ± 41.27 | 117.58 ± 37.89 | 94.18 | 0.018 | 0.011 |
Cu | 27.24 ± 12.56 | 21.28 ± 10.59 | 78.12 | 62.71 ± 17.63 | 57.89 ± 16.37 | 92.31 | 0.007 | 0.009 |
Mn | 21.61 ± 16.34 | 15.22 ± 16.35 | 70.43 | 46.76 ± 28.49 | 38.13 ± 24.08 | 81.54 | 0.015 | 0.036 |
Cr | 18.34 ± 6.67 | 17.38 ± 6.24 | 94.77 | 14.39 ± 5.81 | 12.47 ± 4.67 | 86.66 | 0.042 | 0.025 |
Ni | 12.17 ± 6.06 | 10.65 ± 2.49 | 87.51 | 7.62 ± 3.84 | 6.33 ± 1.82 | 83.07 | 0.031 | 0.013 |
Se | 4.68 ± 1.64 | 4.02 ± 1.26 | 85.90 | 5.56 ± 1.52 | 4.31 ± 1.81 | 77.52 | 0.082 | 0.261 |
Mo | 2.52 ± 1.75 | 1.87 ± 1.13 | 74.21 | 4.74 ± 2.98 | 3.85 ± 1.91 | 81.21 | 0.017 | 0.008 |
Cd | 3.09 ± 0.58 | 2.52 ± 0.69 | 81.55 | 3.43 ± 0.72 | 3.06 ± 1.04 | 89.23 | 0.044 | 0.047 |
Co | 0.99 ± 0.42 | 0.72 ± 0.27 | 72.73 | 0.82 ± 0.35 | 0.55 ± 0.23 | 67.07 | 0.013 | 0.029 |
Hg | 0.02 ± 0.02 | 0.01 ± 0.02 | 50.00 | 0.03 ± 0.02 | 0.02 ± 0.01 | 66.67 | 1.588 | 2.863 |
2.3. Enrichment Factors Analysis
2.4. Sources Identification Using PCA
Variable | PM2.5 | TSP | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
Al | 0.86 | 0.79 | −0.48 | |||
Cd | 0.74 | 0.53 | −0.32 | 0.75 | 0.45 | |
Co | 0.94 | −0.34 | 0.86 | |||
Cr | 0.58 | 0.78 | −0.35 | |||
Cu | 0.86 | −0.38 | 0.65 | 0.51 | ||
Hg | 0.88 | 0.77 | −0.46 | |||
Mn | 0.46 | 0.63 | 0.96 | |||
Mo | 0.89 | 0.79 | −0.37 | |||
Ni | 0.86 | 0.30 | 0.77 | |||
Pb | 0.58 | 0.71 | 0.56 | 0.74 | ||
Se | 0.77 | 0.54 | 0.81 | 0.43 | ||
Zn | 0.75 | −0.41 | 0.72 | 0.53 | 0.41 | |
% of variance | 65.3 | 12.8 | 7.4 | 58.3 | 14.5 | 10.6 |
Cumulative | 65.3 | 78.1 | 85.5 | 58.3 | 72.8 | 83.4 |
Main sources | Industry& Traffic | Traffic | Soil dust | Industry& Soil dust | Traffic | Industry |
3. Materials and Methods
3.1. Sampling Site
Season | Precipitation (mm) | Diurnal Relative Humidity (%) | Diurnal Air Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | Min. | |
Rainy season | 1383.4 | 1516.8 | 1296.2 | 88.3 | 98.8 | 40.6 | 25.1 | 35.3 | 11.6 |
Dry season | 315.3 | 370.4 | 281.7 | 61.2 | 95.6 | 18.3 | 17.4 | 28.1 | 1.8 |
3.2. Sample Collection
3.3. Chemical Analyses
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Espinosa, A.J.F.; Rodríguez, M.T.; Barragán de la Rosa, F.J.; Jiménez Sánchez, J.C. Size distribution of metals in urban aerosols in Seville (Spain). Atmos. Environ. 2001, 35, 2595–2601. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Contini, D.; Cesari, D.; Donateo, A.; Chirizzi, D.; Belosi, F. Characterization of PM10 and PM2.5 and their metals content in different typologies of sites in South-Eastern Italy. Atmosphere 2014, 5, 435–453. [Google Scholar] [CrossRef]
- Duan, J.C.; Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Tao, J.; Ho, K.F.; Chen, L.G.; Zhu, L.H.; Han, J.L.; Xu, Z.C. Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology 2009, 7, 68–75. [Google Scholar] [CrossRef]
- Gralton, J.; Tovey, E.R.; McLaws, M.L.; Rawlinson, W.D. Respiratory virus RNA is detectable in airborne and droplet particles. J. Med. Virol. 2013, 85, 2151–2159. [Google Scholar] [PubMed]
- He, K.M.; Wang, S.Q.; Zhang, J.L. Blood lead levels of children and its trend in China. Sci. Total Environ. 2009, 407, 3986–3993. [Google Scholar] [CrossRef] [PubMed]
- Bollati, V.; Marinelli, B.; Apostoli, P.; Bonzini, M.; Nordio, F.; Hoxha, M.; Pegoraro, V.; Motta, V.; Tarantini, L.; Cantone, L.; et al. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 2010, 118, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, J.; Ogulei, D.; Hopke, P.K.; Lee, J.H.; Hwang, I.; Querol, X.; Alastuey, A.S.; SantamarÃa, J.S. Concentration and sources of PM10 and its constituents in Alsasua, Spain. Water Air Soil Pollut. 2006, 174, 385–404. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.S.; Wang, Q.C.; Liang, Z.Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, northeast of China. Sci. Total. Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.Z.; Wang, Y.; Xue, Z.G.; Cheng, K.; Qu, Y.P.; Chai, F.H. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos. Chem. Phys. 2010, 10, 11905–11919. [Google Scholar] [CrossRef] [Green Version]
- El-Fadel, M.; Hashisho, Z. Vehicular emissions in roadway tunnels: A critical review. Crit. Rev. Environ. Sci. Technol. 2001, 31, 125–174. [Google Scholar] [CrossRef]
- Kothai, P.; Saradhi, I.V.; Prathibha, P.; Hopke, P.K.; Pandit, G.G.; Puranik, V.D. Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol. Air Qual. Res. 2008, 8, 423–436. [Google Scholar]
- Chang, S.H.; Wang, K.S.; Chang, H.F.; Ni, W.W.; Wu, B.J.; Wong, R.H.; Lee, H.S. Comparison of source identification of metals in road-dust and soil. Soil Sediment Contam. 2009, 18, 669–683. [Google Scholar] [CrossRef]
- Fang, G.C.; Chang, C.N.; Wu, Y.S.; Wang, V.; Fu, P.P.C.; Yang, D.G.; Chen, S.C.; Chu, C.C. The study of fine and coarse particles, and metallic elements for the daytime and night-time in a suburban area of central Taiwan, Taichung. Chemosphere 2000, 41, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.C.; Wu, Y.S.; Chang, S.Y.; Huang, S.H.; Rau, J.Y. Size Distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait. Atmos. Res. 2006, 81, 320–333. [Google Scholar] [CrossRef]
- Duan, J.C.; Tan, J.H.; Cheng, D.X.; Bi, X.H.; Deng, W.J.; Sheng, G.Y.; Fu, J.M.; Wong, M.H. Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China. Atmos. Environ. 2007, 41, 2895–2903. [Google Scholar] [CrossRef]
- Wang, X.H.; Bi, X.H.; Sheng, G.Y.; Fu, J.M. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Sci. Total. Environ. 2006, 366, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Niu, L.L.; Ye, H.J.; Xu, C.; Yao, Y.J.; Liu, W.P. Highly time- and size-resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere 2015, 119, 112–121. [Google Scholar] [CrossRef]
- Zhao, P.S.; Dong, F.; He, D.; Zhao, X.J.; Zhang, X.L.; Zhang, W.Z.; Yao, Q.; Liu, H.Y. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 2013, 13, 4631–4644. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Feng, J.; Zhang, D.; Li, H.; Gu, Z.P.; Wang, B.J.; Sheng, G.Y.; Fu, J.M. Composition, source, mass closure of PM2.5 aerosols for four forests in eastern China. J. Environ. Sci. 2010, 22, 405–412. [Google Scholar] [CrossRef]
- Li, S.N.; Lu, S.W.; Pan, Q.H.; Zhang, Y.P.; Chen, B.; Yang, X.Y. Research on the eco-purification function of urban forests in Beijing. J. Food Agric. Environ. 2013, 11, 1247–1254. [Google Scholar]
- Sun, F.B.; Yin, Z.; Lun, X.X.; Zhao, Y.; Li, R.N.; Shi, F.T.; Yu, X.X. Deposition velocity of PM2.5 in the winter and spring above deciduous and coniferous forests in Beijing, China. PLoS One 2014. [Google Scholar] [CrossRef]
- Statistical Bureau of Guangdong Province. Guangdong Year Book (1950–2012); Guangdong Publishing House: Guangzhou, China, 2013. (In Chinese)
- Xiao, Y.H.; Chen, B.F.; Su, J.; Yu, R.; Pan, Y.J.; Shi, X.; Chen, J. Variations of air pollutant concentrations and their evaluation in Dafushan forest park, a case in Guangzhou. J. Chin. Urban For. 2010, 8, 43–45. (In Chinese) [Google Scholar]
- Ministry of Environmental Protection. Ambient Air Quality Standards (GB 3095-1996). 2012. Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120302359392037286.pdf (accessed on 29 August 2014). (In Chinese) [Google Scholar]
- Huang, H.; Lee, S.C.; Cao, J.J.; Zou, C.W.; Chen, X.G.; Fan, S.J. Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou city, China. J. Environ. Sci. 2007, 19, 35–43. [Google Scholar] [CrossRef]
- Maenhaut, W.; Raes, N.; Chi, X.G.; Cafmeyer, J.; Wang, W. Chemical composition and mass closure for PM2.5 and PM10 aerosols at K-puszta, Hungary, in summer 2006. X-ray Spectrom. 2008, 37, 193–197. [Google Scholar] [CrossRef]
- Hock, N.; Schneider, J.; Borrmann, S.; Rompp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002). Atmos. Chem. Phys. 2008, 8, 603–623. [Google Scholar] [CrossRef]
- Edney, E.O.; Kleindienst, T.E.; Conver, T.S.; McIver, C.D.; Corse, E.W.; Weathers, W.S. Polar organic oxygenates in PM2.5 at a southeastern site in the United States. Atmos. Environ. 2003, 37, 3947–3965. [Google Scholar] [CrossRef]
- Pillai, P.S.; Babu, S.S.; Krishna, M.K. A Study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmos. Res. 2002, 61, 149–167. [Google Scholar] [CrossRef]
- Glavas, S.D.; Nikolakis, P.; Ambatzoglou, D.; Mihalopoulos, N. Factors affecting the seasonal variation of mass and ionic composition of PM2.5 at a central Mediterranean coastal site. Atmos. Environ. 2008, 42, 5365–5373. [Google Scholar] [CrossRef]
- Lee, C.S.L.; Li, X.D.; Zhang, G.; Li, J.; Ding, A.J.; Wang, T. Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, south China—Evidence of the long-range transport of air contaminants. Atmos. Environ. 2007, 41, 432–447. [Google Scholar] [CrossRef]
- Cesari, D.; Contini, D.; Genga, A.; Siciliano, M.; Elefante, C.; Baglivi, F.; Daniele, L. Analysis of raw soils and their re-suspended PM10 fractions: Characterisation of source profiles and enrichment factors. Appl. Geochem. 2012, 27, 1238–1246. [Google Scholar] [CrossRef]
- Soil Census Office of Guangdong province. Guangdong Soil; Science Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Dongarrà, G.; Manno, E.; Varrica, D.; Voltaggio, M. Mass levels, crustal component and trace elements in PM10 in Palermo, Italy. Atmos. Environ. 2007, 41, 7977–7986. [Google Scholar] [CrossRef]
- Henry, R.C.; Lewis, C.W.; Hopke, P.K.; Williamson, H.J. Review of receptor model fundamentals. Atmos. Environ. 1984, 18, 1507–1515. [Google Scholar] [CrossRef]
- Contini, D.; Belosi, F.; Gambaro, A.; Cesari, D.; Stortini, A.M.; Bove, M.C. Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosols sources. J. Environ. Sci. 2012, 24, 1954–1965. [Google Scholar] [CrossRef]
- Contini, D.; Genga, A.; Cesari, D.; Siciliano, M.; Donateo, A.; Bove, M.C.; Guascito, M.R. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos. Res. 2010, 95, 40–54. [Google Scholar] [CrossRef]
- Baumann, K.; Jayanty, R.K.M.; Flanagan, J.B. Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization. J. Air Waste Manag. Assoc. 2008, 58, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Fung, Y.S.; Wong, L.W.Y. Apportionment of air pollution sources by receptor models in Hong Kong. Atmos. Environ. 1995, 29, 2041–2048. [Google Scholar] [CrossRef]
- Stortini, A.M.; Freda, A.; Cesari, D.; Cairns, W.R.L.; Contini, D.; Barbante, C.; Prodi, F.; Cescon, P.; Gambaro, A. An evaluation of the PM2.5 trace elemental composition in the Venice Lagoon area and an analysis of the possible sources. Atmos. Environ. 2009, 43, 6296–6304. [Google Scholar] [CrossRef] [Green Version]
- Janssen, N.; van Mansom, D.F.M.; van der Jagt, K.; Harseema, H.; Hoek, G. Mass concentration and elemental composition of airborne particulate matter at street and background locations. Atmos. Environ. 1997, 31, 1185–1193. [Google Scholar] [CrossRef]
- Manoli, E.; Voutsa, D.; Samara, C. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos. Environ. 2002, 36, 949–961. [Google Scholar] [CrossRef]
- “Observation Methodology for Long-term Forest Ecosystem Research” of People’s Republic of China. Available online: http://www.cfern.org/wjpicture/upload/bzgf/bzgf 2011-10-10-8-13-39.pdf (accessed on 29 August 2014). (In Chinese)
- Ministry of Environmental Protection. Ambient Air-Determination of Lead-Flame Atomic Absorption Spectrophotometric Method (GB/T 15264-94). 1995. Available online: http://www.shuigongye.com/standard/20096/2009061816220200001.html (accessed on 2 September 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.-H.; Liu, S.-R.; Tong, F.-C.; Kuang, Y.-W.; Chen, B.-F.; Guo, Y.-D. Characteristics and Sources of Metals in TSP and PM2.5 in an Urban Forest Park at Guangzhou. Atmosphere 2014, 5, 775-787. https://doi.org/10.3390/atmos5040775
Xiao Y-H, Liu S-R, Tong F-C, Kuang Y-W, Chen B-F, Guo Y-D. Characteristics and Sources of Metals in TSP and PM2.5 in an Urban Forest Park at Guangzhou. Atmosphere. 2014; 5(4):775-787. https://doi.org/10.3390/atmos5040775
Chicago/Turabian StyleXiao, Yi-Hua, Shi-Rong Liu, Fu-Chun Tong, Yuan-Wen Kuang, Bu-Feng Chen, and Yue-Dong Guo. 2014. "Characteristics and Sources of Metals in TSP and PM2.5 in an Urban Forest Park at Guangzhou" Atmosphere 5, no. 4: 775-787. https://doi.org/10.3390/atmos5040775
APA StyleXiao, Y. -H., Liu, S. -R., Tong, F. -C., Kuang, Y. -W., Chen, B. -F., & Guo, Y. -D. (2014). Characteristics and Sources of Metals in TSP and PM2.5 in an Urban Forest Park at Guangzhou. Atmosphere, 5(4), 775-787. https://doi.org/10.3390/atmos5040775