Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations
Abstract
:1. Introduction
2. Equipment and Method
2.1. Ground-Based Instruments
2.2. Satellite Remote Sensing Observations
3. Results and Discussion
3.1. Identification and Source of Haze
3.2. Meteorological Conditions and Pollutant Concentrations
Date | WS (m∙s−1) | WD (Degrees) | Temp (°C) | Pressure (hPa) | RH (%) | Visibility (km) |
---|---|---|---|---|---|---|
6 June 2012 | 0.41 | 181.95 | 30.27 | 992.44 | 70.13 | 3.62 |
(0.21, 0.68) | (95.00, 256.13) | (29.84, 30.64) | (991.48, 992.99) | (68.62, 71.59) | (1.81, 6.75) | |
7 June 2012 | 0.57 | 226.48 | 30.08 | 992.42 | 60.55 | 3.46 |
(0.22, 0.78) | (150.27, 258.59) | (29.79, 31.40) | (991.61, 993.24) | (59.36, 68.21) | (1.78, 4.30) | |
8 June 2012 | 0.69 | 234.50 | 32.43 | 992.12 | 64.15 | 5.41 |
(0.42, 0.90) | (203.62, 250.28) | (30.89, 35.96) | (991.28, 992.84) | (52.87, 67.59) | (3.08, 9.72) | |
9 June 2012 | 0.50 | 214.82 | 34.65 | 988.31 | 60.67 | 7.55 |
(0.34, 0.72) | (152.79, 239.41) | (32.79, 38.56) | (987.82, 991.85) | (49.60, 67.68) | (3.50, 12.93) | |
10 June 2012 | 0.31 | 133.40 | 31.96 | 987.88 | 64.72 | 6.38 |
(0.24, 0.43) | (56.58, 190.36) | (29.86, 33.53) | (987.20, 989.00) | (60.72, 69.53) | (3.63, 8.55) | |
11 June 2012 | 0.47 | 42.65 | 31.20 | 989.95 | 63.08 | 1.09 |
(0.21, 0.74) | (19.33, 186.79) | (29.17, 33.00) | (988.04, 990.79) | (59.79, 65.45) | (0.77, 6.91) | |
12 June 2012 | 0.32 | 185.02 | 40.64 | 987.91 | 66.93 | 1.72 |
(0.11, 0.73) | (47.64, 240.46) | (36.42, 42.65) | (987.44, 989.73) | (51.15, 73.95) | (1.04, 5.47) | |
13 June 2012 | 0.32 | 124.87 | 34.54 | 990.17 | 65.08 | 3.62 |
(0.18, 1.08) | (79.89, 198.18) | (31.13, 41.12) | (988.27, 990.98) | (45.20, 69.89) | (2.09, 7.45) | |
14 June 2012 | 0.26 | 128.10 | 30.90 | 993.50 | 59.89 | 3.29 |
(0.21, 0.55) | (92.22, 242.92) | (29.78, 36.92) | (991.20, 994.38) | (47.53, 63.07) | (2.09, 4.34) |
3.3. Aerosol Optical Properties
3.3.1. Aerosol Scattering Properties
(1) Aerosol Scattering Coefficient
(2) Aerosol Scattering Ångström Exponent
(3) Aerosol Asymmetry Parameter and Backscatter Ratio
Date | PM2.5 (μg·m−3) | BC (μg·m−3) | BC/PM2.5 | σs_550 | σab_532 | αs | b_550 | g_550 | β_550 | ω0 |
---|---|---|---|---|---|---|---|---|---|---|
6 June 2012 | 26.00 | 2.71 | 0.09 | 0.22 | 0.02 | 1.60 | 0.10 | 0.66 | 0.24 | 0.92 |
(16.50, 46.50) | (1.11, 4.67) | (0.04, 0.17) | (0.13, 0.35) | (0.01, 0.04) | (1.54, 1.85) | (0.09, 0.11) | (0.62, 0.68) | (0.23, 0.25) | (0.87, 0.96) | |
7 June 2012 | 35.00 | 2.90 | 0.07 | 0.39 | 0.02 | 1.49 | 0.09 | 0.67 | 0.23 | 0.95 |
(26.00, 54.50) | (2.33, 4.91) | (0.05, 0.17) | (0.29, 0.54) | (0.02, 0.04) | (1.17, 1.56) | (0.09, 0.10) | (0.65, 0.68) | (0.23, 0.24) | (0.89, 0.96) | |
8 June 2012 | 36.00 | 2.65 | 0.07 | 0.27 | 0.02 | 1.57 | 0.10 | 0.66 | 0.24 | 0.93 |
(22.50, 41.00) | (2.22, 3.20) | (0.06, 0.11) | (0.17, 0.36) | (0.02, 0.03) | (1.46, 1.71) | (0.09, 0.11) | (0.62, 0.68) | (0.23, 0.25) | (0.89, 0.95) | |
9 June 2012 | 29.00 | 2.74 | 0.10 | 0.22 | 0.02 | 1.72 | 0.11 | 0.62 | 0.25 | 0.91 |
(23.50, 36.0) | (2.33, 3.92) | (0.08, 0.13) | (0.13, 0.30) | (0.02, 0.03) | (1.57, 1.90) | (0.10, 0.12) | (0.61, 0.66) | (0.24, 0.26) | (0.87, 0.93) | |
10 June 2012 | 31.00 | 2.91 | 0.08 | 0.23 | 0.02 | 1.72 | 0.10 | 0.65 | 0.24 | 0.92 |
(25.00, 43.0) | (1.71, 4.34) | (0.06, 0.12) | (0.15, 0.41) | (0.01, 0.04) | (1.63, 1.79) | (0.10, 0.11) | (0.63, 0.67) | (0.23, 0.25) | (0.89, 0.94) | |
11 June 2012 | 304.00 | 11.58 | 0.03 | 2.45 | 0.10 | 1.52 | 0.10 | 0.66 | 0.23 | 0.96 |
(22.00, 553.50) | (2.22, 15.63) | (0.02, 0.13) | (0.21, 3.65) | (0.02, 0.13) | (1.39, 1.64) | (0.10, 0.10) | (0.66, 0.67) | (0.23, 0.24) | (0.92, 0.97) | |
12 June 2012 | 242.00 | 8.34 | 0.03 | 1.28 | 0.07 | 1.66 | 0.11 | 0.64 | 0.24 | 0.95 |
(115.50, 384.0) | (5.45, 10.23) | (0.02, 0.07) | (0.50, 2.05) | (0.05, 0.08) | (1.52, 1.80) | (0.10, 0.12) | (0.61, 0.67) | (0.23, 0.26) | (0.89, 0.97) | |
13 June 2012 | 130.00 | 5.89 | 0.05 | 0.59 | 0.05 | 1.61 | 0.11 | 0.63 | 0.24 | 0.93 |
(83.50, 168.50) | (2.85, 7.90) | (0.03, 0.06) | (0.29, 0.84) | (0.02, 0.07) | (1.50, 1.66) | (0.10, 0.12) | (0.60, 0.65) | (0.24, 0.26) | (0.89, 0.94) | |
14 June 2012 | 132.50 | 5.70 | 0.05 | 0.54 | 0.05 | 1.46 | 0.10 | 0.65 | 0.24 | 0.93 |
(108.50, 139.0) | (4.44, 6.89) | (0.04, 0.05) | (0.46, 0.75) | (0.04, 0.06) | (1.36, 1.53) | (0.10, 0.11) | (0.65, 0.67) | (0.23, 0.24) | (0.92, 0.95) |
3.3.2. Aerosol Absorption Properties
Site | α(m2∙g−1) | Reference |
---|---|---|
Urban Guangzhou, southern China | 8.28 | [63] |
BTH, China | 8.28 | [3] |
Texas, USA | 8.5 | Big Bend Regional Aerosol and Visibility Observation Study (BRAVO) [61] |
SDZ, China | 8.28 | [64] |
Urban Beijing, China | 8 | [65] |
Urban, Illinois, USA | 7.5 | [66] |
Colorado, USA | 10 | Often used for urban aerosols [67] |
Mexico City, Mexico | ~8–10 | [68] |
Colorado, USA | 7 | Diesel soot [69] |
3.3.3. Single Scattering Albedo
3.3.4. Aerosol Vertical Structure during Haze
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Solomon, S. Climate Change 2007—The Physical Science Basis: Working Group in Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Ackerman, A.S.; Toon, O.; Stevens, D.; Heymsfield, A.; Ramanathan, V.; Welton, E. Reduction of tropical cloudiness by soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, P.; Xu, J.; Meng, W.; Pu, W.; Dong, F.; He, D.; Shi, Q. Analysis of a winter regional haze event and its formation mechanism in the north china plain. Atmos. Chem. Phys. 2013, 13, 5685–5696. [Google Scholar]
- World Health Organization. Health Aspects of Air Pollution: Results from the WHO Project Systematic Review of Health Aspects of Air Pollution in Europe; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2004. [Google Scholar]
- Parrish, D.D.; Zhu, T. Clean air for megacities. Science 2009, 326, 674–675. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Xu, X.; Zhao, X. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 2011, 101, 711–718. [Google Scholar]
- Lee, K.H.; Kim, Y.J.; Kim, M.J. Characteristics of aerosols observed during two severe haze events over Korea in June and October 2004. Atmos. Environ. 2006, 40, 5146–5155. [Google Scholar]
- Li, Z.; Xia, X.; Cribb, M.; Mi, W.; Holben, B.; Wang, P.; Chen, H.; Tsay, S.C.; Eck, T.; Zhao, F. Aerosol optical properties and their radiative effects in northern China. J. Geophys. Res.: Atmos. 2007. [Google Scholar] [CrossRef]
- See, S.; Balasubramanian, R.; Wang, W. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and non-hazy days. J. Geophys. Res.: Atmos. 2006. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Tang, A.; Wang, Y.; An, Z. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar]
- Tan, J.-H.; Duan, J.-C.; Chen, D.-H.; Wang, X.-H.; Guo, S.-J.; Bi, X.-H.; Sheng, G.-Y.; He, K.-B.; Fu, J.-M. Chemical characteristics of haze during summer and winter in Guangzhou. Atmos. Res. 2009, 94, 238–245. [Google Scholar] [CrossRef]
- Kang, H.; Zhu, B.; Su, J.; Wang, H.; Zhang, Q.; Wang, F. Analysis of a long-lasting haze episode in Nanjing, China. Atmos. Res. 2013, 120, 78–87. [Google Scholar]
- Lau, K.M.; Kim, K.M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, M.K.; Kim, K.M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim. Dyn. 2006, 26, 855–864. [Google Scholar] [CrossRef]
- Lau, K.-M.; Ramanathan, V.; Wu, G.-X.; Li, Z.; Tsay, S.; Hsu, C.; Sikka, R.; Holben, B.; Lu, D.; Tartari, G. The joint aerosol-monsoon experiment. Bull. Am. Meteorol. Soc. 2008, 89, 369–383. [Google Scholar] [CrossRef]
- Wang, Y.; Che, H.; Ma, J.; Wang, Q.; Shi, G.; Chen, H.; Goloub, P.; Hao, X. Aerosol radiative forcing under clear, hazy, foggy, and dusty weather conditions over Beijing, China. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Lelieveld, J.; Mitra, A.; Althausen, D.; Anderson, J.; Andreae, M.; Cantrell, W.; Cass, G.; Chung, C. Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo—Asian haze. J. Geophys. Res.: Atmos. 2001, 106, 28371–28398. [Google Scholar] [CrossRef]
- Xia, X.; Chen, H.; Wang, P.; Zhang, W.; Goloub, P.; Chatenet, B.; Eck, T.; Holben, B. Variation of column-integrated aerosol properties in a Chinese urban region. J. Geophys. Res.: Atmos. 2006. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Pósfai, M.; Buseck, P.R. Nature and climate effects of individual tropospheric aerosol particles. 2010, 38, 17–43. [Google Scholar]
- Chameides, W.L.; Yu, H.; Liu, S.; Bergin, M.; Zhou, X.; Mearns, L.; Wang, G.; Kiang, C.; Saylor, R.; Luo, C. Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls? Proc. Natl. Acad. Sci. 1999, 96, 13626–13633. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.; Wang, X.; Xu, Z.; Yuan, C.; Yu, Y.; Zhang, Q.; Wang, W. Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states. J. Geophys. Res.: Atmos. 2011. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Zhu, W.; Rao, R. Aerosol characteristics during summer haze episodes from different source regions over the coast city of North China Plain. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 180–193. [Google Scholar]
- Chakrabarty, R.K.; Garro, M.A.; Wilcox, E.M.; Moosmüller, H. Strong radiative heating due to wintertime black carbon aerosols in the Brahmaputra River valley. Geophys. Res. Lett. 2012. [Google Scholar] [CrossRef]
- Thornhill, K.L.; Chen, G.; Dibb, J.; Jordan, C.E.; Omar, A.; Winstead, E.L.; Schuster, G.; Clarke, A.; McNaughton, C.; Scheuer, E. The impact of local sources and long-range transport on aerosol properties over the northeast U.S. region during INTEX-NA. J. Geophys. Res.: Atmos. 2008. [Google Scholar] [CrossRef]
- Li, W.; Shao, L.; Buseck, P. Haze types in Beijing and the influence of agricultural biomass burning. Atmos. Chem. Phys. 2010, 10, 8119–8130. [Google Scholar]
- Duan, F.; Liu, X.; Yu, T.; Cachier, H. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 2004, 38, 1275–1282. [Google Scholar] [CrossRef]
- Anderson, T.; Covert, D.; Marshall, S.; Laucks, M.; Charlson, R.; Waggoner, A.; Ogren, J.; Caldow, R.; Holm, R.; Quant, F. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Ocean. Technol. 1996, 13, 967–986. [Google Scholar]
- Heintzenberg, J.; Charlson, R.J. Design and applications of the integrating nephelometer: A review. J. Atmos. Ocean. Technol. 1996, 13, 987–1000. [Google Scholar] [CrossRef]
- Anderson, T.L.; Ogren, J.A. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol. 1998, 29, 57–69. [Google Scholar] [CrossRef]
- Lyamani, H.; Olmo, F.; Alados-Arboledas, L. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmos. Environ. 2008, 42, 2630–2642. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Li, C.; Lin, A.; Hu, B.; Ma, Y. Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in central China. Appl. Energy 2013, 111, 1010–1017. [Google Scholar]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res.: Atmos. 1998, 103, 32215–32238. [Google Scholar]
- Justice, C.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Morisette, J.T.; Giglio, L.; Csiszar, I.; Justice, C.O. Validation of the MODIS active fire product over southern Africa with ASTER data. Int. J. Remote Sens. 2005, 26, 4239–4264. [Google Scholar] [CrossRef]
- Csiszar, I.A.; Morisette, J.T.; Giglio, L. Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in northern Eurasia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1757–1764. [Google Scholar] [CrossRef]
- Giglio, L. MODIS Collection 5 Active Fire Product User’s Guide Version 2.4; Science Systems and Applications, Inc.: Maryland, MD, USA, 2010. [Google Scholar]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; pp. 1–11. [Google Scholar]
- Winker, D.; Pelon, J.; McCormick, M. Initial results from CALIPSO. In Proceedings of the 23rd International Laser Radar Conference, Nara, Japan, 24–28 July 2006; pp. 991–994.
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Huang, J.; Vaughan, M.; Uno, I.; Sugimoto, N.; Kittaka, C.; Trepte, C.; Wang, Z.; Hostetler, C. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys. 2008, 8, 5045–5060. [Google Scholar]
- Tao, M.; Chen, L.; Su, L.; Tao, J. Satellite observation of regional haze pollution over the North China Plain. J. Geophys. Res.: Atmos. 2012. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yi, Y.; Tang, Q.; Wang, X.; Hu, Y.; Liu, Z.; Ayers, K.; Trepte, C.; Winker, D. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Geng, F.; Zhang, H.; Cai, C.; Xu, T.; Ma, X.; Li, H. Vertical distribution of optical and micro-physical properties of ambient aerosols during dry haze periods in Shanghai. Atmos. Environ. 2012, 50, 50–59. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; van Oldenborgh, G.J. Decline of fog, mist and haze in Europe over the past 30 years. Nat. Geosci. 2009, 2, 115–119. [Google Scholar] [CrossRef]
- Quan, J.; Zhang, Q.; He, H.; Liu, J.; Huang, M.; Jin, H. Analysis of the formation of fog and haze in North China Plain (NCP). Atmos. Chem. Phys. 2011, 11, 8205–8214. [Google Scholar] [CrossRef]
- Deng, X.; Shi, C.; Wu, B.; Chen, Z.; Nie, S.; He, D.; Zhang, H. Analysis of aerosol characteristics and their relationships with meteorological parameters over Anhui Province in China. Atmos. Res. 2012, 109, 52–63. [Google Scholar]
- Ma, N.; Zhao, C.; Nowak, A.; Müller, T.; Pfeifer, S.; Cheng, Y.; Deng, Z.; Liu, P.; Xu, W.; Ran, L. Aerosol optical properties in the North China Plain during HaChi campaign: An in-situ optical closure study. Atmos. Chem. Phys. 2011, 11, 5959–5973. [Google Scholar]
- Balis, D.; Amiridis, V.; Zerefos, C.; Gerasopoulos, E.; Andreae, M.; Zanis, P.; Kazantzidis, A.; Kazadzis, S.; Papayannis, A. Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode. Atmos. Environ. 2003, 37, 4529–4538. [Google Scholar] [CrossRef]
- Huang, X.-F.; Yu, J.Z. Size distributions of elemental carbon in the atmosphere of a coastal urban area in South China: Characteristics, evolution processes, and implications for the mixing state. Atmos. Chem. Phys. 2008, 8, 5843–5853. [Google Scholar] [CrossRef]
- Eck, T.; Holben, B.; Reid, J.; Dubovik, O.; Smirnov, A.; O’neill, N.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res.: Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Eck, T.; Holben, B.; Ward, D.; Dubovik, O.; Reid, J.; Smirnov, A.; Mukelabai, M.; Hsu, N.; O’neill, N.; Slutsker, I. Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign. J. Geophys. Res.: Atmos. 2001, 106, 3425–3448. [Google Scholar]
- O’Neill, N.; Eck, T.; Holben, B.; Smirnov, A.; Royer, A.; Li, Z. Optical properties of boreal forest fire smoke derived from sun photometry. J. Geophys. Res.: Atmos. 2002. [Google Scholar] [CrossRef]
- Abdalmogith, S.S.; Harrison, R.M.; Derwent, R.G. Particle sulphate and nitrate in southern England and Northern Ireland during 2002/3 and its formation in a photochemical trajectory model. Sci. Total Environ. 2006, 368, 769–780. [Google Scholar] [CrossRef]
- Iziomon, M.G.; Lohmann, U. Optical and meteorological properties of smoke-dominated haze at the ARM Southern Great Plains Central Facility. Geophys. Res. Lett. 2003. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Moosmüller, H.; Chen, L.-W.; Lewis, K.; Arnott, W.; Mazzoleni, C.; Dubey, M.; Wold, C.; Hao, W.; Kreidenweis, S. Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys. 2010, 10, 6363–6370. [Google Scholar] [CrossRef]
- Bodhaine, B.A. Aerosol absorption measurements at Barrow, Mauna Loa and the South Pole. J. Geophys. Res.: Atmos. 1995, 100, 8967–8975. [Google Scholar] [CrossRef]
- Weingartner, E.; Saathoff, H.; Schnaiter, M.; Streit, N.; Bitnar, B.; Baltensperger, U. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 2003, 34, 1445–1463. [Google Scholar] [CrossRef]
- Arnott, W.; Moosmüller, H.; Sheridan, P.; Ogren, J.; Raspet, R.; Slaton, W.; Hand, J.; Kreidenweis, S.; Collett, J. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity. J. Geophys. Res.: Atmos. 2003. [Google Scholar] [CrossRef]
- Arnott, W.P.; Hamasha, K.; Moosmüller, H.; Sheridan, P.J.; Ogren, J.A. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 2005, 39, 17–29. [Google Scholar] [CrossRef]
- Clarke, A.D.; Charlson, R.J. Radiative properties of the background aerosol: Absorption component of extinction. Science 1985, 229, 263–265. [Google Scholar] [CrossRef]
- Schmid, O.; Chand, D.; Andreae, M.O. Aerosol optical properties in urban Guangzhou. In Proceedings of PRD Workshop, Beijing, China, 13–14 January 2005.
- Yan, P.; Tang, J.; Huang, J.; Mao, J.; Zhou, X.; Liu, Q.; Wang, Z.; Zhou, H. The measurement of aerosol optical properties at a rural site in northern China. Atmos. Chem. Phys. 2008, 8, 2229–2242. [Google Scholar]
- Bergin, M.; Cass, G.; Xu, J.; Fang, C.; Zeng, L.; Yu, T.; Salmon, L.; Kiang, C.; Tang, X.; Zhang, Y. Aerosol radiative, physical, and chemical properties in Beijing during June 1999. J. Geophys. Res.: Atmos. 2001, 106, 17969–17980. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Moosmüller, H.; Arnott, W.; Rogers, C.; Chow, J.; Frazier, C.; Sherman, L.; Dietrich, D. Photoacoustic and filter measurements related to aerosol light absorption during the northern front range air quality study (Colorado 1996/1997). J. Geophys. Res.: Atmos. 1998, 103, 28149–28157. [Google Scholar] [CrossRef]
- Barnard, J.; Kassianov, E.; Ackerman, T.; Frey, S.; Johnson, K.; Zuberi, B.; Molina, L.; Molina, M.; Gaffney, J.; Marley, N. Measurements of black carbon specific absorption in the Mexico City metropolitan area during the MCMA 2003 field campaign. Atmos. Chem. Phys. Discuss. 2005, 5, 4083–4113. [Google Scholar] [CrossRef]
- Fuller, K.A.; Malm, W.C.; Kreidenweis, S.M. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res.: Atmos. 1999, 104, 15941–15954. [Google Scholar] [CrossRef]
- Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Clim. 2002, 15, 333–352. [Google Scholar] [CrossRef]
- Virkkula, A.; Ahlquist, N.C.; Covert, D.S.; Arnott, W.P.; Sheridan, P.J.; Quinn, P.K.; Coffman, D.J. Modification, calibration and a field test of an instrument for measuring light absorption by particles. Aerosol Sci. Technol. 2005, 39, 68–83. [Google Scholar]
- Jung, J.; Lee, H.; Kim, Y.J.; Liu, X.; Zhang, Y.; Hu, M.; Sugimoto, N. Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 campaign of air quality research in Beijing (CAREBeijing-2006). J. Geophys. Res.: Atmos. 2009. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Wiedensohler, A.; Eichler, H.; Heintzenberg, J.; Tesche, M.; Ansmann, A.; Wendisch, M.; Su, H.; Althausen, D.; Herrmann, H.; et al. Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study. Atmos. Environ. 2008, 42, 6373–6397. [Google Scholar]
- Cheng, Y.F.; Berghof, M.; Garland, R.M.; Wiedensohler, A.; Wehner, B.; Müller, T.; Su, H.; Zhang, Y.H.; Achtert, P.; Nowak, A.; et al. Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China. J. Geophys. Res.: Atmos. 2009. [Google Scholar] [CrossRef]
- Hänel, A.; Baars, H.; Althausen, D.; Ansmann, A.; Engelmann, R.; Sun, J.Y. One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station: Beijing plume and seasonal variations. J. Geophys. Res.: Atmos. 2012. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ma, Y.; Gong, W.; Zhu, Z. Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations. Atmosphere 2014, 5, 699-719. https://doi.org/10.3390/atmos5040699
Zhang M, Ma Y, Gong W, Zhu Z. Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations. Atmosphere. 2014; 5(4):699-719. https://doi.org/10.3390/atmos5040699
Chicago/Turabian StyleZhang, Miao, Yingying Ma, Wei Gong, and Zhongmin Zhu. 2014. "Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations" Atmosphere 5, no. 4: 699-719. https://doi.org/10.3390/atmos5040699
APA StyleZhang, M., Ma, Y., Gong, W., & Zhu, Z. (2014). Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations. Atmosphere, 5(4), 699-719. https://doi.org/10.3390/atmos5040699