A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation
Abstract
:1. Introduction
1.1. The Number of Prognostic Moments and Free Parameters
1.2. Choices for the Distribution Function
1.3. The Examination Setup
2. Methodical Overview of the Three-Moment Schemes
2.1. B-Distribution
- x : internal coordinate drop mass, in g,
- C0 : scaling factor, in cm−3,
- p, q : skewness parameters, non-dimensional,
- xmax : mass of the largest drop considered, in g. xmax < ∞.
2.2. Γ-Distribution
- D : internal coordinate drop diameter, in cm,
- n0 : intercept of the distribution, in cm−4,
- μ : shape parameter, non-dimensional,
- λ : slope parameter, in cm−1.
2.3. Log-Normal Distribution
- D : internal coordinate drop diameter, in cm,
- : scaling parameter, in cm−3,
- ν, σ : skewness parameters, non-dimensional.
2.4. Comparison of the Distributions
3. Model Equations and Numerical Implementation
3.1. MOM3 Models
3.2. Spectral Reference Model
3.3. Numerical Implementation
- BOX case (rectangular signal): at each height level, the same spectrum with the parameters n0, μ and λ given above is prescribed.
- PAR case (parabola-shaped signal): at each height level, n0 is scaled with a height-dependent factor, which is zero at the cloud’s top and base (8250 and 9750 m) and one at 9000 m, with a quadratic height dependence in between. Scaling of n0 means that while the resulting moments’ values may be changed, their ratio is unaffected.
4. Numerical Results
4.1. Profiles of Moments and Mean Mass
4.2. Heights and Values of the Signal Maxima
4.3. Rain Rate
5. Discussion
5.1. Some Notes on the Implementation
5.2. Invariant-Signal Area
5.3. Development of Mean Mass
5.4. Moments Larger Than Their Initial Value
5.5. Choice of the Reference Solution
6. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
A. Validity of Moment Sets
A.1. B-Distribution
A.2. Γ- or Log-Normal Distribution
A.3. Validity and Hankel–Hadamard Determinants
B. The Choice of the Dependent Parameter When Using the B-Distribution
- q and the resulting p (Equation (A9a)) are arguments of the B-function and therefore have to be positive.
- p < 1 and q < 1 for the same set of moments is not allowed, since that would lead to a bimodal distribution function with poles at both ends (x = 0 and x = xmax). This is not physical in the context of sedimentation.
- q should increase with mean mass, because: (1) the mean mass of the ensemble represented by a B-Distribution with increasing q is also increasing; and (2) this behavior can also be seen in q in numerical runs when holding xmax constant (Equation (A8)).
C. Properties of B- and Γ-Functions
C.1. B-Function
C.2. Γ-Function
References
- McGraw, R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol 1997, 27, 255–265. [Google Scholar]
- Milbrandt, J.A.; Yau, M. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci 2005, 62, 3051–3064. [Google Scholar]
- Shipway, B.J.; Hill, A.A. Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Q. J. R. Meteorol. Soc 2012. [Google Scholar] [CrossRef]
- Bryan, G.H.; Morrison, H. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Weather Rev 2012, 140, 202–225. [Google Scholar]
- Stevens, B.; Giorgetta, M.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Salzmann, M.; Schmidt, H.; Bader, J.; Block, K.; et al. Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst 2013, 5, 146–172. [Google Scholar]
- ECMWF. IFS Documentation-CY38r1, Operational Implementation 19 June 2012, Part IV: Physical Processes; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2013. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. NCAR Technical Note: A Description of the Advanced Research WRF Version 3; NCAR/TN–475+STR; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci 2005, 62, 3065–3081. [Google Scholar]
- Marshall, J.S.; Palmer, W. The distribution of raindrops with size. J. Atmos. Sci 1948, 5, 165–166. [Google Scholar]
- Waldvogel, A. The N0 jump of raindrop spectra. J. Atmos. Sci 1974, 31, 1067–1078. [Google Scholar]
- Willis, P.T. Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci 1984, 41, 1648–1661. [Google Scholar]
- Kessler, E. On the distribution and continuity of water substance in atmospheric circulations. In Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1969. [Google Scholar]
- Ferrier, B. A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci 1994, 51, 249–280. [Google Scholar]
- Cohard, J.M.; Pinty, J.P. A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Q. J. R. Meteorol. Soc 2000, 126, 1815–1842. [Google Scholar]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V.I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci 2005, 62, 1665–1677. [Google Scholar]
- Seifert, A.; Beheng, K. A two-moment cloud microphysics parameterization for mixed phase clouds. Part 1: Model description. Meteorol. Atmos. Phys 2006, 92, 45–66. [Google Scholar]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev 2008, 136, 5095–5115. [Google Scholar]
- Seifert, A.; Khain, A.; Pokrovsky, A.; Beheng, K.D. A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmos. Res 2006, 80, 46–66. [Google Scholar]
- Van Weverberg, K.; van Lipzig, N.P.M.; Delobbe, L. The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Mon. Weather Rev 2011, 139, 1131–1146. [Google Scholar]
- Van Weverberg, K.; Vogelmann, A.M.; Morrison, H.; Milbrandt, J.A. Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Weather Rev 2012, 140, 1883–1907. [Google Scholar]
- Clark, T.L. Use of log-normal distributions for numerical calculations of condensation and collection. J. Atmos. Sci 1976, 33, 810–821. [Google Scholar]
- Feingold, G.; Walko, R.L.; Stevens, B.; Cotton, W.R. Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res 1998, 47–, 505–528. [Google Scholar]
- Nickerson, E.C.; Richard, E.; Rosset, R.; Smith, D.R. The numerical simulation of clouds, rain, and airflow over the Vosges and Black Forest Mountains: A meso-β model with parameterized microphysics. Mon. Weather Rev 1986, 114, 398–414. [Google Scholar]
- Höller, H. A parameterization of droplet collection in a convective cloud model. Meteorol. Rdsch 1987, 40, 33–40. [Google Scholar]
- Beck, J.; Watkins, P. On the development of spray submodels based on droplet size moments. J. Comput. Phys 2002, 182, 586–621. [Google Scholar]
- Yue, B.; Watkins, P. Mathematical development and numerical analysis of further transport equations for the droplet size moment theory. Proceedings of the19th ILASS, Nottingham, UK, 6–8 September 2004.
- Watkins, A. The Application of gamma and beta number size distribution to the modelling of sprays. Proceedings of the 20th ILASS, Orlean, France, 4–7 September; 2005. [Google Scholar]
- Dems, P.; Carneiro, J.; Polifke, W. Large eddy simulation of a particle-laden swirling flow with a presumed function method of moments. Prog. Comput. Fluid Dying 2012, 12, 92–102. [Google Scholar]
- Ziemer, C.; Wacker, U. Parameterisation of the sedimentation of raindrops with finite maximum diameter. Mon. Weather Rev 2012, 140, 1589–1602. [Google Scholar]
- Sekhon, R.; Srivastava, R. Snow size spectra and radar reflectivity. J. Atmos. Sci 1970, 27, 299–307. [Google Scholar]
- Ćurić, M.; Janc, D. Analysis of collection equation solutions under truncated size spectrum assumption for hydrometeors. Atmos. Res 2010, 96, 378–387. [Google Scholar]
- Feingold, G.; Levin, Z. The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Clim. Appl. Meteorol 1986, 25, 810–821. [Google Scholar]
- Sauvageot, H.; Lacaux, J.P. The shape of averaged drop size distributions. J. Atmos. Sci 1995, 52, 1070–1083. [Google Scholar]
- Vilar, E.; Montanari, C.; Pontes, M.S.; Silva Mello, L.A.R.; Lorente, J.; Codina, B. Scattering and extinction: Dependence upon raindrop size distributions in temperate (Barcelona) and tropical (Belem) regions. Proceedings of the 10th International Conference on Antennas and Propagation, Edinburgh, UK, 14–17 April; 1997. [Google Scholar]
- Ulbrich, C.W.; Atlas, D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Clim. Appl. Meteorol 2007, 46, 1777–1791. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Kluwer Academic Publishers: Dordrecht, the Switzerland, 1997; p. 954. [Google Scholar]
- Carneiro, J.N.E. Development of a Presumed Function Method of Moments with Application to Polydisperse Sprays. 2011. [Google Scholar]
- Milbrandt, J.A.; McTaggart-Cowan, R. Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci 2010, 67, 3931–3948. [Google Scholar]
- Wacker, U.; Seifert, A. Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res 2001, 58, 19–39. [Google Scholar]
- Wacker, U.; Lüpkes, C. On the selection of prognostic moments in parameterization schemes for drop sedimentation. Tellus 2009, 61A, 498–511. [Google Scholar]
- Cohard, J.M.; Pinty, J.P. A comprehensive two-moment warm microphysical bulk scheme. II: 2D experiments with a non-hydrostatic model. Q. J. R. Meteorol. Soc 2000, 126, 1843–1859. [Google Scholar]
- Shohat, J.A.; Tamarkin, J.D. The problem of moments. In Mathematical Surveys; American Mathematical Society: New York, NY, USA, 1943; p. 140. [Google Scholar]
- Curto, R.E.; Fialkow, L.A. Recursiveness, positivity, and truncated moment problems. Houston J. Math 1991, 17, 603–635. [Google Scholar]
- Carneiro, J.N.E.; Dems, P. Eulerian simulations of polydisperse flows using a moments model with a relaxation approach for the moment transport velocities. Proceedings of the 7th International Conference on Multiphase Flow, Tampa, FL, USA, 30 May–4 June 2010; pp. 1–11.
- Mazzei, L.; Marchisio, D.L.; Lettieri, P. New quadrature-based moment method for the mixing of inert polydisperse fluidized powders in commercial CFD codes. AIChE J 2012, 58, 3054–3069. [Google Scholar]
- Handy, C.R.; Bessis, D.; Morley, T.D. Generating quantum energy bounds by the moment method: A linear-programming approach. Phys. Rev. A 1988, 37, 4557–4569. [Google Scholar]
- Rogers, R.R.; Yau, M.K. A Short Course in Cloud Physics; Pergamon Press: Oxford, UK, 1989; p. 290. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science-An Introductory Survey; Elsevier: Amsterdam, The Netherlands, 2006; p. 483. [Google Scholar]
Distribution | # Param. | Int.Coord. | N | L | Z |
---|---|---|---|---|---|
B | 4 | x | MB,0 | MB,1 | MB,2 |
Γ | 3 | D | MΓ,0 | MΓ,3 | MΓ,6 |
log-normal | 3 | D | Ml-n,0 | Ml-n,3 | Ml-n,6 |
Distribution | FN | FL | FZ |
---|---|---|---|
B | aMB,0+b | aMB,1+b | MB,2+b |
Γ | αMΓ,0+β | MΓ,3+β | αMΓ,6+β |
log-normal | αMl-n,0+β | Ml-n,3+β | αMl-n,6+β |
Distribution | (a) | (b) | ||
---|---|---|---|---|
Nmax, inv. area | ||||
BOX | B | 2.09 × 10−3 cm−3 | +0.70% | +1.18% |
Γ | 3.23 × 10−4 cm−3 | +4.91% | +2.45% | |
log-normal | — | +2.94% | +3.42% | |
PAR | B | 2.01 × 10−3 cm−3 | — | — |
Γ | 5.85 × 10−5 cm−3 | — | — | |
log-normal | — | — | — |
Distribution | (a) | (b) | |||
---|---|---|---|---|---|
BOX | B | −91.2% | −8.6% | +32.7% | |
Γ | −54.3% | −10.2% | −2.0% | ||
log-normal | +212.6% | −3.7% | −36.0% | ||
PAR | B | −90.7% | −6.9% | +34.2% | |
Γ | −54.4% | −5.3% | −8.0% | ||
log-normal | +184.1% | +12.7% | −33.8% |
Z [cm3] | B-Distribution | Γ-Distribution | ||||
---|---|---|---|---|---|---|
p | q | n0 | λ | μ | ||
Case 0 | 6.0793 × 10−9 | 68.6509 | 0.0518 | 7.9840 × 10−2 | 26.6134 | 0 |
Case I | 3.7257 × 10−9 | 116.5581 | 0.0880 | 6.8793 × 10−1 | 34.5475 | 0.5 |
Case II | 9.1052 × 10−10 | 662.1761 | 0.5 | 1.7501 × 107 | 100.0092 | 4.8773 |
Case III | 5.9304 × 10−10 | 1,390.5124 | 1.05 | 5.1995 × 1015 | 176.3913 | 10.0714 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ziemer, C.; Wacker, U. A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation. Atmosphere 2014, 5, 484-517. https://doi.org/10.3390/atmos5030484
Ziemer C, Wacker U. A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation. Atmosphere. 2014; 5(3):484-517. https://doi.org/10.3390/atmos5030484
Chicago/Turabian StyleZiemer, Corinna, and Ulrike Wacker. 2014. "A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation" Atmosphere 5, no. 3: 484-517. https://doi.org/10.3390/atmos5030484
APA StyleZiemer, C., & Wacker, U. (2014). A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation. Atmosphere, 5(3), 484-517. https://doi.org/10.3390/atmos5030484