Wildfires in the Southern Amazon: Insights into Pyro-Convective Cloud Development from Two Case Studies in August 2021
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Studies in August 2021
2.2. Data and Models
3. Results
3.1. Vegetation Conditions and Fire Radiative Power
3.2. Meteorological Conditions and Cloud Development
3.2.1. Case 1: 7 August 2021
Large-Scale Environment
Fire–Weather Conditions and Vertical Structure of the Atmosphere
Satellite Observation and Cloud Development
3.2.2. Case 2: 23 August 2021
Large-Scale Environment
Fire–Weather Conditions and Vertical Structure of the Atmosphere
Satellite Observation and Cloud Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.J.S.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Li, S.; Guo, Y. Wildfires, global climate change, and human health. N. Engl. J. Med. 2020, 383, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, K.; Hornbrook, R.S.; Permar, W.; Levin, E.J.T.; Garofalo, L.A.; Apel, E.C.; Blake, N.J.; Jarnot, A.; Pothier, M.A.; Farmer, D.K.; et al. Correction to Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. Environ. Sci. Technol. 2022, 56, 5. [Google Scholar] [CrossRef]
- Forgioni, F.P.; Bresciani, C.; Reis, A.; Müller, G.V.; Herdies, D.L.; Cabral Júnior, J.B.; dos Santos Silva, F.D. Aerosol Transport from Amazon Biomass Burning to Southern Brazil: A Case Study of an Extreme Event During September 2024. Atmosphere 2025, 16, 1138. [Google Scholar] [CrossRef]
- Bezerra, K.F.S.; Gomes, H.B.; Nascimento, J.; Ray, P.; Baltaci, H.; Silva, M.C.L.; Herdies, D.L.; Silva, F.D.S.; Gomes, H.B.; de Oliveira-Júnior, J.F.; et al. Tropical Wildfires Analyzed Through Remote Sensing and Machine Learning. Earth Syst. Environ. 2025. [Google Scholar] [CrossRef]
- Bezerra, K.F.S.; Gomes, H.B.; Nascimento, J.P.; Herdies, D.L.; Baltaci, H.; Silva, M.C.L.; de Oliveira, G.; Koster, E.; Gomes, H.B.; Silva, M.T.; et al. Fire and the Vulnerability of the Caatinga Biome to Droughts and Heatwaves. Atmosphere 2026, 17, 46. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef]
- Libonati, R.; Pereira, J.M.C.; Da Camara, C.C.; Peres, L.F.; Oom, D.; Rodrigues, J.A.; Santos, F.L.M.; Trigo, R.M.; Gouveia, C.M.P.; Machado-Silva, F.; et al. Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Sci. Rep. 2021, 11, 4400. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Westerling, A.L. Correction to ‘Increasing Western US Forest Wildfire Activity: Sensitivity to Changes in the Timing of Spring’. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160373. [Google Scholar] [CrossRef]
- Parks, S.A.; Abatzoglou, J.T. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Yue, X.; Mickley, L.J.; Logan, J.A.; Kaplan, J.O. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ. 2013, 75, 54–64. [Google Scholar] [CrossRef]
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, K.F.S.; Baltaci, H.; Ray, P.; Nascimento, J.P.; Herdies, D.L.; Lyra, M.J.A.; Silva, M.C.L.; Silva, F.D.S.; e Silva, C.M.S.; Gomes, H.B. Simultaneous Drought and Heatwave Events During Austral Summer in Northeast Brazil. Int. J. Climatol. 2025, 45, e8920. [Google Scholar] [CrossRef]
- Libonati, R.; Geirinhas, J.L.; Silva, P.S.; Russo, A.; Rodrigues, J.A.; Belém, L.B.C.; Nogueira, J.; Roque, F.O.; DaCamara, C.C.; Nunes, A.M.B.; et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ. Res. Lett. 2022, 17, 015005. [Google Scholar] [CrossRef]
- Couto, F.T.; Santos, F.L.M.; Campos, C.; Purificação, C.; Andrade, N.; López-Vega, J.M.; Lacroix, M. A Case Study of the Possible Meteorological Causes of Unexpected Fire Behavior in the Pantanal Wetland, Brazil. Earth 2024, 5, 548–563. [Google Scholar] [CrossRef]
- Couto, F.T.; Santos, F.L.M.; Campos, C.; Purificação, C.; Andrade, N.; Lopez-Veja, J.M.; Lacroix, M. Exploratory analysis of atmospheric modelling use over Pantanal wildfires. Ra’e Ga Espaç. Geogr. Anál. 2025, 63, 35–56. [Google Scholar] [CrossRef]
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Fonseca, M.G.; Alves, L.M.; Aguiar, A.P.D.; Arai, E.; Anderson, L.O.; Rosan, T.M.; Shimabukuro, Y.E.; de Aragão, L.E.O.E.C. Effects of climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Change Biol. 2019, 25, 2903–2917. [Google Scholar] [CrossRef]
- Brando, P.M.; Soares-Filho, B.; Rodrigues, L.; Assunção, A.; Morton, D.; Tuchschneider, D.; Fernandes, E.C.M.; Macedo, M.N.; Oliveira, U.; Coe, M.T. The gathering firestorm in southern Amazonia. Sci. Adv. 2020, 6, eaay1632. [Google Scholar] [CrossRef]
- Mu, Y.; Hu, Y.; Jones, C.; Biggs, T.; Domingues, T.F.; Funk, C.; Peterson, P. Increasing dry-season vapor pressure deficit in the Amazon Basin: Historical trends, future projections, and links to deforestation. Environ. Res. Commun. 2025, 7, 101001. [Google Scholar] [CrossRef]
- Bezerra, K.F.S.; Gomes, H.B.; Nascimento, J.P.; Baltaci, H.; Osman, M.; Silva, M.C.L.; Ferreira, T.R.; Lins, M.C.C.; Rocha, L.H.S.; Gomes, H.B.; et al. Climate Extremes and Fire Behavior in the Brazilian Cerrado: A Multi-Years Assessment (2012–2023). Earth Syst. Environ. 2025. [Google Scholar] [CrossRef]
- Papastefanou, P.; Zang, C.S.; Angelov, Z.; Anderson de Castro, A.; Jimenez, J.C.; De Rezende, L.F.C.; Ruscica, R.C.; Sakschewski, B.; Sörensson, A.A.; Thonicke, K.; et al. Recent extreme drought events in the Amazon rainforest: Assessment of different precipitation and evapotranspiration datasets and drought indicators. Biogeosciences 2022, 19, 3843–3861. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Segura, H.; Ronchail, J.; Drapeau, G.; Gutierrez-Cori, O. Evolution of wet-day and dry-day frequency in the western Amazon basin: Relationship with atmospheric circulation and impacts on vegetation. Water Resour. Res. 2016, 52, 8671–8688. [Google Scholar] [CrossRef]
- Yoon, J.H.; Zeng, N. An Atlantic influence on Amazon rainfall. Clim. Dyn. 2010, 34, 249–264. [Google Scholar] [CrossRef]
- Richardson, D.; Black, A.S.; Irving, D.; Matear, R.J.; Monselesan, D.P.; Risbey, J.S.; Squire, D.T.; Tozer, C.R. Global increase in wildfire potential from compound fire weather and drought. npj Clim. Atmos. Sci. 2022, 5, 23. [Google Scholar] [CrossRef]
- Holdrege, M.C.; Schlaepfer, D.R.; Palmquist, K.A.; Crist, M.; Doherty, K.E.; Lauenroth, W.K.; Remington, T.E.; Riley, K.; Short, K.C.; Tull, J.C.; et al. Wildfire probability estimated from recent climate and fine fuels across the big sagebrush region. Fire Ecol. 2024, 20, 22. [Google Scholar] [CrossRef]
- Lareau, N.P.; Clements, C.B. Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys. 2016, 16, 4005–4020. [Google Scholar] [CrossRef]
- Katich, J.M.; Apel, E.C.; Bourgeois, I.; Brock, C.A.; Bui, T.; Campuzano-Jost, P.; Commane, R.; Daube, B.; Dollner, M.; Fromm, M.; et al. Pyrocumulonimbus affect average stratospheric aerosol composition. Science 2023, 379, 815–820. [Google Scholar] [CrossRef]
- Fromm, M.; Servranckx, R. Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett. 2003, 30, 1542. [Google Scholar] [CrossRef]
- Fromm, M.; Tupper, A.; Rosenfeld, D.; Servranckx, R.; McRae, R. Violent pyro-convective storm devastates Australia’s capital and pollutes the stratosphere. Geophys. Res. Lett. 2006, 33, L05815. [Google Scholar] [CrossRef]
- McRae, R.H.D.; Sharples, J.J.; Wilkes, S.R.; Walker, A. An Australian pyro-tornadogenesis event. Nat. Hazards 2013, 65, 1801–1811. [Google Scholar] [CrossRef]
- Peterson, D.A.; Campbell, J.R.; Hyer, E.J.; Fromm, M.D.; Kablick, G.P., III; Cossuth, J.H.; DeLand, M.T. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. npj Clim. Atmos. Sci. 2018, 1, 30. [Google Scholar] [CrossRef]
- Kablick, G.P.; Allen, D.R.; Fromm, M.D.; Nedoluha, G.E. Australian pyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. 2020, 47, e2020GL088101. [Google Scholar] [CrossRef]
- Hirsch, E.; Koren, I. Record-breaking aerosol levels explained by smoke injection into the stratosphere. Science 2021, 371, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Mirocha, J.D.; Lareau, N.P.; Whitney, T.; To, W.; Kochanski, A.; Lassman, W. Sensitivity of pyrocumulus convection to tree mortality during the 2020 Creek Fire in California. Geophys. Res. Lett. 2023, 50, e2023GL104193. [Google Scholar] [CrossRef]
- Couto, F.T.; Filippi, J.-B.; Baggio, R.; Campos, C.; Salgado, R. Numerical investigation of the Pedrógão Grande pyrocumulonimbus using a fire-to-atmosphere coupled model. Atmos. Res. 2024, 299, 107223. [Google Scholar] [CrossRef]
- Couto, F.T.; Filippi, J.-B.; Baggio, R.; Campos, C.; Salgado, R. Triggering Pyro-Convection in a High-Resolution Coupled Fire–Atmosphere Simulation. Fire 2024, 7, 92. [Google Scholar] [CrossRef]
- Peace, M.; Greenslade, J.; Ye, H.; Kepert, J.D. Simulations of the Waroona fire using the coupled atmosphere–fire model ACCESS-Fire. J. South. Hemisph. Earth Syst. Sci. 2022, 72, 126–138. [Google Scholar] [CrossRef]
- Campos, C.; Couto, F.T.; Filippi, J.-B.; Baggio, R.; Salgado, R. Modelling pyro-convection phenomenon during a mega-fire event in Portugal. Atmos. Res. 2023, 290, 106776. [Google Scholar] [CrossRef]
- Campos, C.; Couto, F.T.; Santos, F.L.M.; Pinto, P.; Purificação, C.; Silva, H.M.; Rio, J.; Lopes, M.; Baggio, R.; Filippi, J.-B.; et al. Assessing wildfire dynamics during a megafire in Portugal using the MesoNH/ForeFire coupled model. Q. J. R. Meteorol. Soc. 2025, e70075. [Google Scholar] [CrossRef]
- Coen, J.L.; Cameron, M.; Michalakes, J.; Patton, E.G.; Riggan, P.J.; Yedinak, K.M. WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteorol. Climatol. 2013, 52, 16–38. [Google Scholar] [CrossRef]
- Filippi, J.; Bosseur, F.; Pialat, X.; Santoni, P.; Strada, S.; Mari, C. Simulation of Coupled Fire/Atmosphere Interaction with the MesoNH-ForeFire Models. J. Combust. 2011, 2011, 540390. [Google Scholar] [CrossRef]
- Costes, A.; Rochoux, M.; Lac, C.; Masson, V. Subgrid-scale fire front reconstruction for ensemble coupled atmosphere-fire simulations of the FireFlux I experiment. Fire Saf. J. 2021, 126, 103475. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Sieg, C.H.; Linn, R.R.; Mell, W.; Parsons, R.A.; Ziegler, J.P.; Hiers, J.K. Advancing the Science of Wildland Fire Dynamics Using Process-Based Models. Fire 2018, 1, 32. [Google Scholar] [CrossRef]
- Jiang, M.; Bai, M.; He, Z.; Fan, G.; Tang, M.; Liang, Z. A Technology of Forest Fire Smoke Detection Using Dual-Polarization Weather Radar. Forests 2025, 16, 1471. [Google Scholar] [CrossRef]
- McHardy, T.M.; Peterson, D.A.; Apke, J.M.; Miller, S.D.; Campbell, J.R.; Hyer, E.J. Novel comparison of pyrocumulonimbus updrafts to volcanic eruptions and supercell thunderstorms using optical flow techniques. J. Geophys. Res. Atmos. 2024, 129, e2023JD039418. [Google Scholar] [CrossRef]
- Chen, Y.; Morton, D.C.; Randerson, J.T. Remote Sensing for Wildfire Monitoring: Insights into Burned Area, Emissions, and Fire Dynamics. One Earth 2024, 7, 1022–1028. [Google Scholar] [CrossRef]
- Silva-Junior, C.H.L.; Silva, F.B.; Arisi, B.M.; Mataveli, G.; Pessôa, A.C.M.; Carvalho, N.S.; Reis, J.B.C.; Silva Júnior, A.R.; Motta, N.A.C.S.; Moreira e Silva, P.V.; et al. Brazilian Amazon indigenous territories under deforestation pressure. Sci. Rep. 2023, 13, 5851. [Google Scholar] [CrossRef]
- Rajão, R.; Soares-Filho, B.; Nunes, F.; Börner, J.; Machado, L.; Assis, D.; Figueira, D. The rotten apples of Brazil’s agribusiness. Science 2020, 369, 246–248. [Google Scholar] [CrossRef]
- Spera, S.; Winter, J.; Partridge, T. Brazilian maize yields negatively affected by climate after land clearing. Nat. Sustain. 2020, 3, 845–852. [Google Scholar] [CrossRef]
- Montaveli, G.A.; Chaves, M.E.; Brunsell, N.A.; Aragão, L.E.O. The emergence of a new deforestation hotspot in Amazonia. Perspect. Ecol. Conserv. 2021, 19, 33–36. [Google Scholar] [CrossRef]
- Schielein, J.; Börner, J. Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon. Land Use Policy 2018, 76, 81–94. [Google Scholar] [CrossRef]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The drivers and impacts of Amazon forest degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef] [PubMed]
- Sands, E.; Pope, R.J.; Doherty, R.M.; O’Connor, F.M.; Wilson, C.; Pumphrey, H. Satellite-observed relationships between land cover, burned area, and atmospheric composition over the southern Amazon. Atmos. Chem. Phys. 2024, 24, 11081–11102. [Google Scholar] [CrossRef]
- Ahmad, S.; Holmes, T.; Lahmers, T.; Konapala, G.; Getirana, A.; Nie, W.; Libonati, R. Human footprint drives sustained evapotranspiration decline in Amazonia. Atmos. Chem. Phys. 2025, 25, 1–18. [Google Scholar] [CrossRef]
- Muth, L.J.; Bierbauer, S.; Hoose, C.; Vogel, B.; Vogel, H.; Hoshyaripour, G.A. Influence of Fire-Induced Heat and Moisture Release on Pyro-Convective Cloud Dynamics During the Australian New Year’s Event: A Study Using Convection-Resolving Simulations and Satellite Data. Atmos. Chem. Phys. 2025, 25, 16027–16040. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Y.; Wang, S.; Wei, C.; Pöhlker, M.L.; Pöhlker, C.; Artaxo, P.; Shrivastava, M.; Andreae, M.O.; Pöschl, U.; et al. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: Relative importance of aerosol–cloud and aerosol–radiation interactions. Atmos. Chem. Phys. 2020, 20, 13283–13301. [Google Scholar] [CrossRef]
- Herbert, R.; Stier, P. Satellite observations of smoke–cloud–radiation interactions over the Amazon rainforest. Atmos. Chem. Phys. 2023, 23, 4595–4616. [Google Scholar] [CrossRef]
- Kingsmill, D.E.; French, J.R.; Lareau, N.P. In situ microphysics observations of intense pyroconvection from a large wildfire. Atmos. Chem. Phys. 2023, 23, 1–21. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Forkel, M.; Andela, N.; Harrison, S.P.; Lasslop, G.; van Marle, M.; Chuvieco, E.; Dorigo, W.; Forrest, M.; Hantson, S.; Heil, A.; et al. Emergent relationships with respect to burned area in global satellite observations. Biogeosciences 2019, 16, 4223–4240. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2020, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Damoah, R.; Spichtinger, N.; Servranckx, R.; Fromm, M.; Eloranta, E.W.; Razenkov, I.A.; James, P.; Shulski, M.; Forster, C.; Stohl, A. A case study of pyro-convection using transport model and remote sensing data. Atmos. Chem. Phys. 2006, 6, 173–185. [Google Scholar] [CrossRef]
- Peterson, D.A.; Fromm, M.D.; McRae, R.H.D.; Campbell, J.R.; Hyer, E.J.; Taha, G.; Camacho, C.P.; Kablick, G.P.; Schmidt, C.C.; DeLand, M.T. Australia’s Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. npj Clim. Atmos. Sci. 2021, 4, 38. [Google Scholar] [CrossRef]
- Lac, C.; Chaboureau, J.-P.; Masson, V.; Pinty, J.-P.; Tulet, P.; Escobar, J.; Leriche, M.; Barthe, C.; Aouizerats, B.; Augros, C.; et al. Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev. 2018, 11, 1929–1969. [Google Scholar] [CrossRef]
- Couto, F.T.; Campos, C.; Purificação, C.; Santos, F.L.M.; Andrade, H.N.; Andrade, N.; Nunes, A.B.; Guiomar, N.; Salgado, R. Synoptic and Regional Meteorological Drivers of a Wildfire in the Wildland–Urban Interface of Faro (Portugal). Fire 2025, 8, 362. [Google Scholar] [CrossRef]
- Purificação, C.; Andrade, N.; Potes, M.; Salgueiro, V.; Couto, F.T.; Salgado, R. Modelling the Atmospheric Environment Associated with a Wind-Driven Fire Event in Portugal. Atmosphere 2022, 13, 1124. [Google Scholar] [CrossRef]
- Purificação, C.; Campos, C.; Henkes, A.; Couto, F.T. Exploring the atmospheric conditions increasing fire danger in the Iberian Peninsula. Q. J. R. Meteorol. Soc. 2024, 150, 3475–3494. [Google Scholar] [CrossRef]
- Pergaud, J.; Masson, V.; Malardel, S.; Couvreux, F. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction. Bound. Lay. Meteorol. 2009, 132, 83–106. [Google Scholar] [CrossRef]
- Pinty, J.-P.; Jabouille, P. A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. In Proceedings of the Conference on Cloud Physics, Everett, WA, USA, 17–21 August 1998; American Meteorological Society: Boston, MA, USA, 1999; pp. 217–220. [Google Scholar]
- Cuxart, J.; Bougeault, P.; Redelsperger, J.L. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc. 2000, 126, 1–30. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; et al. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev. 2013, 6, 929–960. [Google Scholar] [CrossRef]
- Peterson, D.; Hyer, E.; Campbell, J.; Fromm, M.; Hair, J.; Butler, C.; Fenn, M. The 2013 Rim Fire: Implications for predicting extreme fire spread, pyroconvection, and smoke emissions. Bull. Am. Meteorol. Soc. 2015, 96, 229–247. [Google Scholar] [CrossRef]
- Peterson, D.A.; Hyer, E.J.; Campbell, J.R.; Solbrig, J.E.; Fromm, M.D. A conceptual model for development of intense pyrocumulonimbus in western North America. Mon. Weather Rev. 2017, 145, 2235–2255. [Google Scholar] [CrossRef]
- Doswell, C.A., III. The distinction between large-scale and mesoscale contributions to severe convection: A case study example. Weather Forecast. 1987, 2, 3–16. [Google Scholar] [CrossRef]
- Markowski, P.M.; Richardson, Y.P. Mesoscale Meteorology in Midlatitudes; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978 0 470 74213 6. [Google Scholar]
- Rodriguez, B.; Lareau, N.P.; Kingsmill, D.E.; Clements, C.B. Extreme Pyroconvective Updrafts During a Megafire. Geophys. Res. Lett. 2020, 47, e2020GL089001. [Google Scholar] [CrossRef]
- Ke, Z.; Tang, Q.; Zhang, J.; Chen, Y.; Randerson, J.P.; Li, J.; Zhang, Y. Simulating pyrocumulonimbus clouds using a multiscale wildfire simulation framework. Geophys. Res. Lett. 2025, 52, e2024GL114025. [Google Scholar] [CrossRef]
- McRae, R.H.D.; Sharples, J.J.; Fromm, M. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 2015, 15, 417–428. [Google Scholar] [CrossRef]
- Lareau, N.P.; Nauslar, N.J.; Bentley, E.; Roberts, M.; Emmerson, S.; Brong, B.; Mehle, M.; Wallman, J. Fire-Generated Tornadic Vortices. Bull. Am. Meteorol. Soc. 2022, 103, E1296–E1320. [Google Scholar] [CrossRef]
- Sharples, J.J.; Hilton, J.E. Modeling vorticity-driven wildfire behavior using near-field techniques. Front. Mech. Eng. 2020, 5, 69. [Google Scholar] [CrossRef]
- McCarthy, N.; Guyot, A.; Dowdy, A.; McGowan, H. Wildfire and Weather Radar: A Review. J. Geophys. Res. 2019, 124, 266–286. [Google Scholar] [CrossRef]












| Data | Sensor/Model | Source | Period/Dates | Application in the Study |
|---|---|---|---|---|
| Infrared imagery (CH13) | ABI (Channel 13) | GOES-16 | 7 August 2021 (16:00–19:00 UTC); 23 August 2021 (16:10–20:10 UTC) | Identification and evolution of pyro-convective clouds |
| Visible channel imagery | ABI (Visible) | GOES-16 | 7 August 2021 and 23 August 2021 | Visual analysis of smoke plumes and convection |
| Fire Radiative Power (FRP) | VIIRS | Suomi NPP/NOAA-20 (FIRMS) | August 2021 | Quantification of fire intensity |
| NDVI | VIIRS/Sentinel-2 | NASA/NOAA/ESA | 6, 11, 14 and 24 August 2021 | Characterization of vegetation conditions |
| Wind speed | Analysis | ECMWF | August 2021 | Analysis of smoke transport |
| Atmospheric simulations | Meso-NH | Own simulation | 7 and 23 August 2021 | Atmospheric dynamics and convection |
| Atmospheric Level | Wind Intensity | Predominant Direction | PyroCu Event Role |
|---|---|---|---|
| 250 hPa (Upper Troposphere) | Moderate (10–20 m/s) | Southeasterly flow (SE) | Provided outflow at the top of the cloud without causing excessive shear, allowing the plume to maintain its vertical structure and radial morphology. |
| 500 hPa (Mid-Troposphere) | Low to moderate (~10 m/s) | East/Northeast (E/NE) | Served as a transitional layer with weak winds, favoring vertical ascent and preventing significant horizontal dispersion of the convective column. |
| 850 hPa (Lower Troposphere) | Low (<10 m/s) | Without a predominant direction | Calm low-level conditions provided limited mechanical forcing. Fire heating may contribute in reality, but in Meso-NH the plume effects are not considered, with simulation reflecting only atmospheric stability and wind field. |
| Atmospheric Level | Wind Intensity | Predominant Direction | PyroCb Event Role |
|---|---|---|---|
| 250 hPa (Upper troposphere) | ~5–15 m/s, with periods below 10 m/s | West to west–northwest (W/WNW) | Weak upper-level winds without jet influence favored vertical plume ascent and anvil formation while minimizing shear-induced disruption. |
| 500 hPa (Mid-Troposphere) | ~5 m/s | Easterly to northeasterly flow | Moderate mid-level flow supported plume organization and sustained vertical mass transport during PyroCb development. |
| 850 hPa (Lower Troposphere) | ~5–15 m/s | East to southeast (E/SE) | Low-level easterly flow enhanced moisture transport and convergence at the cloud base, sustaining deep fire-induced convection. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bezerra, K.F.d.S.; Couto, F.T.; Gomes, H.B.; Nascimento, J.; Mendes, P.V.d.A.; Herdies, D.L.; Baltaci, H.; Silva, M.C.L.d.; Lins, M.C.C.; Bresciani, C.; et al. Wildfires in the Southern Amazon: Insights into Pyro-Convective Cloud Development from Two Case Studies in August 2021. Atmosphere 2026, 17, 173. https://doi.org/10.3390/atmos17020173
Bezerra KFdS, Couto FT, Gomes HB, Nascimento J, Mendes PVdA, Herdies DL, Baltaci H, Silva MCLd, Lins MCC, Bresciani C, et al. Wildfires in the Southern Amazon: Insights into Pyro-Convective Cloud Development from Two Case Studies in August 2021. Atmosphere. 2026; 17(2):173. https://doi.org/10.3390/atmos17020173
Chicago/Turabian StyleBezerra, Katyelle Ferreira da Silva, Flavio Tiago Couto, Helber Barros Gomes, Janaína Nascimento, Paulo Vítor de Albuquerque Mendes, Dirceu Luís Herdies, Hakki Baltaci, Maria Cristina Lemos da Silva, Mayara Christine Correia Lins, Caroline Bresciani, and et al. 2026. "Wildfires in the Southern Amazon: Insights into Pyro-Convective Cloud Development from Two Case Studies in August 2021" Atmosphere 17, no. 2: 173. https://doi.org/10.3390/atmos17020173
APA StyleBezerra, K. F. d. S., Couto, F. T., Gomes, H. B., Nascimento, J., Mendes, P. V. d. A., Herdies, D. L., Baltaci, H., Silva, M. C. L. d., Lins, M. C. C., Bresciani, C., Costa, R. L., Silva, M. T., Gomes, H. B., Lima, D. M. C. d., Silva, J. d. B., Paz, F. L. d. A., & dos Santos Silva, F. D. (2026). Wildfires in the Southern Amazon: Insights into Pyro-Convective Cloud Development from Two Case Studies in August 2021. Atmosphere, 17(2), 173. https://doi.org/10.3390/atmos17020173

