DWTPred-Net: A Spatiotemporal Ionospheric TEC Prediction Model Using Denoising Wavelet Transform Convolution
Abstract
1. Introduction
2. Data
3. Methodology
3.1. The ST-LSTM Unit
3.2. PredRNN
3.3. WTConv and DWTConv
3.4. DWTConv-ST-LSTM
3.5. DWTPred-Net
4. Experimental Results and Discussion
4.1. Evaluation Metric
4.2. Optimization of the Model’s Hyperparameter
4.3. Ablation Experiment
4.4. Comparison with Other Mainstream Models
4.4.1. Performance Evaluations Under Different Solar Activity Conditions
4.4.2. Comparison at Different Latitudinal Bands
4.4.3. Comparison Under Geomagnetic Storm Conditions
4.5. Computational Cost
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forbes, J.M.; Palo, S.E.; Zhang, X. Variability of the Ionosphere. J. Atmos. Sol.-Terr. Phys. 2000, 62, 685–693. [Google Scholar] [CrossRef]
- Klobuchar, J. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Belehaki, A.; Stanislawska, I.; Lilensten, J. An Overview of Ionosphere—Thermosphere Models Available for Space Weather Purposes. Space Sci. Rev. 2009, 147, 271–313. [Google Scholar] [CrossRef]
- Luo, H.; Gong, Y.; Chen, S.; Yu, C.; Yang, G.; Yu, F.; Hu, Z.; Tian, X. Prediction of Global Ionospheric Total Electron Content (TEC) Based on SAM-ConvLSTM Model. Space Weather 2023, 21, e2023SW003707. [Google Scholar] [CrossRef]
- Lean, J.L.; Emmert, J.T.; Picone, J.M.; Meier, R.R. Global and Regional Trends in Ionospheric Total Electron Content. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Sivavaraprasad, G.; Deepika, V.S.; SreenivasaRao, D.; Ravi Kumar, M.; Sridhar, M. Performance Evaluation of Neural Network TEC Forecasting Models over Equatorial Low-Latitude Indian GNSS Station. Geod. Geodyn. 2020, 11, 192–201. [Google Scholar] [CrossRef]
- Xiong, P.; Zhai, D.; Long, C.; Zhou, H.; Zhang, X.; Shen, X. Long Short-Term Memory Neural Network for Ionospheric Total Electron Content Forecasting Over China. Space Weather 2021, 19, e2020SW002706. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, K.; Wu, S.; Shi, J.; Hu, A.; Wu, H.; Li, Y. An Investigation of Ionospheric TEC Prediction Maps Over China Using Bidirectional Long Short-Term Memory Method. Space Weather 2022, 20, e2022SW003103. [Google Scholar] [CrossRef]
- Sivakrishna, K.; Venkata Ratnam, D.; Sivavaraprasad, G. A Bidirectional Deep-Learning Algorithm to Forecast Regional Ionospheric TEC Maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4531–4543. [Google Scholar] [CrossRef]
- Mao, S.; Li, H.; Zhang, Y.; Shi, Y. Prediction of Ionospheric Electron Density Distribution Based on CNN-LSTM Model. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1003305. [Google Scholar] [CrossRef]
- Kaselimi, M.; Doulamis, N.; Voulodimos, A.; Doulamis, A.; Delikaraoglou, D. Spatio-Temporal Ionospheric TEC Prediction Using a Deep CNN-GRU Model on GNSS Measurements. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8317–8320. [Google Scholar]
- Ren, X.; Zhao, B.; Ren, Z.; Wang, Y.; Xiong, B. Deep Learning-Based Prediction of Global Ionospheric TEC During Storm Periods: Mixed CNN-BiLSTM Method. Space Weather 2024, 22, e2024SW003877. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; WOO, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Curran Associates Inc.: New York, NY, USA, 2015; Volume 28. [Google Scholar]
- Li, L.; Liu, H.; Le, H.; Yuan, J.; Shan, W.; Han, Y.; Yuan, G.; Cui, C.; Wang, J. Spatiotemporal Prediction of Ionospheric Total Electron Content Based on ED-ConvLSTM. Remote Sens. 2023, 15, 3064. [Google Scholar] [CrossRef]
- Xia, G.; Zhang, F.; Wang, C.; Zhou, C. ED-ConvLSTM: A Novel Global Ionospheric Total Electron Content Medium-Term Forecast Model. Space Weather 2022, 20, e2021SW002959. [Google Scholar] [CrossRef]
- Yang, J.; Huang, W.; Zhang, L.; Xu, H.; Shen, H.; Wang, X.; Li, M. Ionospheric TEC Forecasting with ED-ConvLSTM-Res Integrating Multi-Channel Features. Remote Sens. 2025, 17, 3564. [Google Scholar] [CrossRef]
- Tang, J.; Zhong, Z.; Ding, M.; Yang, D.; Liu, H. Forecast of Ionospheric TEC Maps Using ConvGRU Deep Learning Over China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3334–3344. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Yuan, J.; Le, H.; Shan, W.; Li, L. MAOOA-Residual-Attention-BiConvLSTM: An Automated Deep Learning Framework for Global TEC Map Prediction. Space Weather 2024, 22, e2024SW003954. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Le, H.; Yuan, J.; Shan, W.; Wu, Y.; Chen, Y. CGAOA-STRA-BiConvLSTM: An Automated Deep Learning Framework for Global TEC Map Prediction. GPS Solut. 2025, 29, 55. [Google Scholar] [CrossRef]
- Tang, J.; Zhong, Z.; Hu, J.; Wu, X. Forecasting Regional Ionospheric TEC Maps over China Using BiConvGRU Deep Learning. Remote Sens. 2023, 15, 3405. [Google Scholar] [CrossRef]
- Chen, J.; Zhi, N.; Liao, H.; Lu, M.; Feng, S. Global Forecasting of Ionospheric Vertical Total Electron Contents via ConvLSTM with Spectrum Analysis. GPS Solut. 2022, 26, 69. [Google Scholar] [CrossRef]
- Xu, C.; Ding, M.; Tang, J. Prediction of GNSS-Based Regional Ionospheric TEC Using a Multichannel ConvLSTM With Attention Mechanism. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1001405. [Google Scholar] [CrossRef]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs. Adv. Neural Inf. Process. Syst. 2017, 30, 879–888. [Google Scholar]
- Wu, D.; Wu, L.; Zhang, T.; Zhang, W.; Huang, J.; Wang, X. Short-Term Rainfall Prediction Based on Radar Echo Using an Improved Self-Attention PredRNN Deep Learning Model. Atmosphere 2022, 13, 1963. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Y.; Le, H.; Li, L.; Zhou, R.; Xiao, J.; Shan, W.; Wu, Z.; Li, Y. Global Ionospheric TEC Map Prediction Based on Multichannel ED-PredRNN. Atmosphere 2025, 16, 422. [Google Scholar] [CrossRef]
- Wu, D.; Kong, J.; Li, Z.; Zhang, G.; Zhang, H.; Liang, J.; Zhang, X. EnPredRNN: An Enhanced PredRNN Network for Extending Spatio-Temporal Prediction Period. IEEE Access 2024, 12, 107631–107644. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Huang, Z.; Xing, E.P. High-Frequency Component Helps Explain the Generalization of Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8684–8694. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Finder, S.E.; Amoyal, R.; Treister, E.; Freifeld, O. Wavelet Convolutions for Large Receptive Fields. In Proceedings of the Computer Vision—ECCV 2024, Milan, Italy, 29 September–4 October 2024; Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 363–380. [Google Scholar]
- Sun, L.; Yuan, G.; Le, H.; Yao, X.; Li, S.; Liu, H. Global Ionosphere Total Electron Content Prediction Based on Bidirectional Denoising Wavelet Transform Convolution. Atmosphere 2025, 16, 1139. [Google Scholar] [CrossRef]








| Model | The Number of Convolution Kernels |
|---|---|
| DWTPred-Net | 39 |
| ConvLSTM | 31 |
| ConvGRU | 40 |
| Year | Model | ) | ) | ||
|---|---|---|---|---|---|
| 2015 | PredRNN | 2.4851 | - | 3.7678 | - |
| WTConv-PredRNN | 2.4580 | 1.09% | 3.7192 | 1.29% | |
| DWTPred-Net | 2.3997 | 2.37% | 3.6456 | 1.98% | |
| 2019 | PredRNN | 0.9500 | - | 1.4087 | - |
| WTConv-PredRNN | 0.9321 | 1.88% | 1.3804 | 2.01% | |
| DWTPred-Net | 0.8598 | 7.76% | 1.3074 | 5.29% |
| Year | Model | ||
|---|---|---|---|
| 2015 | C1PG | 2.9828 | 4.2296 |
| ConvLSTM | 2.5959 | 3.8863 | |
| ConvGRU | 2.7029 | 4.0183 | |
| DWTPred-Net | 2.3997 | 3.6456 | |
| 2019 | C1PG | 1.1699 | 1.6186 |
| ConvLSTM | 1.0230 | 1.4775 | |
| ConvGRU | 1.0965 | 1.5583 | |
| DWTPred-Net | 0.8598 | 1.3074 |
| Model | |
|---|---|
| DWTPred-Net | 7.02 |
| ConvLSTM | 4.03 |
| ConvGRU | 3.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, J.; Du, X.; Liu, S.; Wang, Y.; Li, S.; Xiao, J.; Liu, H. DWTPred-Net: A Spatiotemporal Ionospheric TEC Prediction Model Using Denoising Wavelet Transform Convolution. Atmosphere 2026, 17, 54. https://doi.org/10.3390/atmos17010054
Li J, Du X, Liu S, Wang Y, Li S, Xiao J, Liu H. DWTPred-Net: A Spatiotemporal Ionospheric TEC Prediction Model Using Denoising Wavelet Transform Convolution. Atmosphere. 2026; 17(1):54. https://doi.org/10.3390/atmos17010054
Chicago/Turabian StyleLi, Jie, Xiaofeng Du, Shixiang Liu, Yali Wang, Shaomin Li, Jian Xiao, and Haijun Liu. 2026. "DWTPred-Net: A Spatiotemporal Ionospheric TEC Prediction Model Using Denoising Wavelet Transform Convolution" Atmosphere 17, no. 1: 54. https://doi.org/10.3390/atmos17010054
APA StyleLi, J., Du, X., Liu, S., Wang, Y., Li, S., Xiao, J., & Liu, H. (2026). DWTPred-Net: A Spatiotemporal Ionospheric TEC Prediction Model Using Denoising Wavelet Transform Convolution. Atmosphere, 17(1), 54. https://doi.org/10.3390/atmos17010054

