Modeling the Start of Season Date of Hungarian Grasslands Using Remote Sensing Data and 10 Process-Based Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Target Area and Grassland Categorization
2.2. SOS Metrics
2.2.1. Vegetation Index Dataset
2.2.2. Start of Season Date Estimation Method
2.3. Driving Datasets
2.4. Phenology Models
2.5. Optimization of the SOS Models
2.6. Data Preparation and Statistical Analysis
2.7. Residual Analysis and Construction of Corrected Models
3. Results
3.1. Remote Sensing-Based Reference SOS
3.2. Performance of the Models
3.3. AIC
3.4. Residual Analysis
3.5. Corrected Models and Their Evaluation
4. Discussion
4.1. Remote Sensing-Based SOS Estimation
4.2. Comparison with Other Studies
4.3. Residual Patterns Across Models and Calibrations
4.4. Limitations and Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AGSI | Accumulated Heat Sum Growing Season Index |
| AGSIwSW | Accumulated Heat Sum Growing Season Index Model with Soil Water Content |
| AHSGSI | Accumulated Heat Sum Growing Season Index |
| ENS | Model Ensembles |
| GDD | Growing Degree Days |
| GSI | Heat Sum Growing Season Index |
| HSGSI | Heat Sum Growing Season Index |
| MGDD | Modified Growing Degree Days |
| MGDDwPP | Modified Growing Degree Days with Photoperiod |
| PAR | Parallel |
| PP | Photoperiod |
| SEQ | Sequential |
| SWC | Soil water content |
| Tavg | Average temperature |
| Tmax | Maximum temperature |
| Tmin | Minimum temperature |
| VPD | Vapor pressure deficit |
References
- Caparros-Santiago, J.A.; Rodriguez-Galiano, V.; Dash, J. Land Surface Phenology as Indicator of Global Terrestrial Ecosystem Dynamics: A Systematic Review. ISPRS J. Photogramm. Remote Sens. 2021, 171, 330–347. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Stuble, K.L.; Bennion, L.D.; Kuebbing, S.E. Plant Phenological Responses to Experimental Warming—A Synthesis. Glob. Change Biol. 2021, 27, 4110–4124. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, H.; Dong, W.; Yuan, W. Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere. PLoS ONE 2014, 9, e109544. [Google Scholar] [CrossRef]
- Jánosi, I.M.; Silhavy, D.; Tamás, J.; Csontos, P. Bulbous Perennials Precisely Detect the Length of Winter and Adjust Flowering Dates. New Phytol. 2020, 228, 1343–1351. [Google Scholar] [CrossRef]
- Templ, B.; Koch, E.; Bolmgren, K.; Ungersböck, M.; Paul, A.; Scheifinger, H.; Rutishauser, T.; Busto, M.; Chmielewski, F.M.; Hájková, L.; et al. Pan European Phenological Database (PEP725): A Single Point of Access for European Data. Int. J. Biometeorol. 2018, 62, 1109–1113. [Google Scholar] [CrossRef]
- Tóth, V.R. Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial Vehicles. Front. Plant. Sci. 2018, 9, 728. [Google Scholar] [CrossRef]
- Bellini, E.; Moriondo, M.; Dibari, C.; Leolini, L.; Staglianò, N.; Stendardi, L.; Filippa, G.; Galvagno, M.; Argenti, G. Impacts of Climate Change on European Grassland Phenology: A 20-Year Analysis of MODIS Satellite Data. Remote Sens. 2023, 15, 218. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Barcza, Z. Spring Vegetation Green-up Dynamics in Central Europe Based on 20-Year Long MODIS NDVI Data. Agric. For. Meteorol. 2020, 287, 107969. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, X.; Xie, Q.; Jin, J.; Zhou, Y.; Luo, Y.; Liu, Y.; Tian, J.; Zhao, Y. Monitoring Nature’s Calendar from Space: Emerging Topics in Land Surface Phenology and Associated Opportunities for Science Applications. Glob. Change Biol. 2022, 28, 7186–7204. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, Interpretation, and Assessment of Spring Phenology in North America Estimated from Remote Sensing for 1982–2006. Glob. Change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Xu, J.; Chen, J.; Bai, K.; Shu, S.; Yu, B.; Wu, J.; Huang, Y. Evaluation of Vegetation Indexes and Green-Up Date Extraction Methods on the Tibetan Plateau. Remote Sens. 2022, 14, 3160. [Google Scholar] [CrossRef]
- Aono, Y.; Saito, S. Clarifying Springtime Temperature Reconstructions of the Medieval Period by Gap-Filling the Cherry Blossom Phenological Data Series at Kyoto, Japan. Int. J. Biometeorol. 2010, 54, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Chuine, I.; Yiou, P.; Viovy, N.; Seguin, B.; Daux, V.; Le Roy Ladurie, E. Grape Ripening as a Past Climate Indicator. Nature 2004, 432, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Peaucelle, M.; Janssens, I.A.; Stocker, B.D.; Descals Ferrando, A.; Fu, Y.H.; Molowny-Horas, R.; Ciais, P.; Peñuelas, J. Spatial Variance of Spring Phenology in Temperate Deciduous Forests Is Constrained by Background Climatic Conditions. Nat. Commun. 2019, 10, 5388. [Google Scholar] [CrossRef]
- Tang, J.; Körner, C.; Muraoka, H.; Piao, S.; Shen, M.; Thackeray, S.J.; Yang, X. Emerging Opportunities and Challenges in Phenology: A Review. Ecosphere 2016, 7, e01436. [Google Scholar] [CrossRef]
- Wu, M.; Vico, G.; Manzoni, S.; Cai, Z.; Bassiouni, M.; Tian, F.; Zhang, J.; Ye, K.; Messori, G. Early Growing Season Anomalies in Vegetation Activity Determine the Large-Scale Climate-Vegetation Coupling in Europe. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006167. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A Continental Phenology Model for Monitoring Vegetation Responses to Interannual Climatic Variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Wu, W.; Sun, Y.; Xiao, K.; Xin, Q. Development of a Global Annual Land Surface Phenology Dataset for 1982–2018 from the AVHRR Data by Implementing Multiple Phenology Retrieving Methods. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102487. [Google Scholar] [CrossRef]
- Mo, Y.; Zhang, J.; Jiang, H.; Fu, Y.H. A Comparative Study of 17 Phenological Models to Predict the Start of the Growing Season. Front. For. Glob. Change 2023, 5, 1032066. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z. Development of the Biome-BGC Model for Simulation of Managed Herbaceous Ecosystems. Ecol. Model. 2012, 226, 99–119. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. Timesat for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring. Remote Sens. Digit. Image Process. 2016, 20, 177–194. [Google Scholar] [CrossRef]
- Balzarolo, M.; Vicca, S.; Nguy-Robertson, A.L.; Bonal, D.; Elbers, J.A.; Fu, Y.H.; Grünwald, T.; Horemans, J.A.; Papale, D.; Peñuelas, J.; et al. Matching the Phenology of Net Ecosystem Exchange and Vegetation Indices Estimated with MODIS and FLUXNET In-Situ Observations. Remote Sens. Environ. 2016, 174, 290–300. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Barcza, Z. Evaluation of the Quality of NDVI3g Dataset against Collection 6 MODIS NDVI in Central Europe between 2000 and 2013. Remote Sens. 2016, 8, 955. [Google Scholar] [CrossRef]
- Belényesi, M.; Pacskó, V.; Lehoczki, R.; Pataki, R.; Tanács, E.; Kristóf, D.; Szekeres, Á.; Zsembery, Z.; Mikus, G. National Grassland Mapping in Hungary: Status Report. Tájökológiai Lapok J. Landsc. Ecol. 2025, 23, 3–45. [Google Scholar] [CrossRef]
- Kroël-Dulay, G.; Ransijn, J.; Schmidt, I.K.; Beier, C.; De Angelis, P.; De Dato, G.; Dukes, J.S.; Emmett, B.; Estiarte, M.; Garadnai, J.; et al. Increased Sensitivity to Climate Change in Disturbed Ecosystems. Nat. Commun. 2015, 6, 6682. [Google Scholar] [CrossRef]
- Orbán, I.; Ónodi, G.; Kröel-Dulay, G. The Role of Drought, Disturbance, and Seed Dispersal in Dominance Shifts in a Temperate Grassland. J. Veg. Sci. 2023, 34, e13199. [Google Scholar] [CrossRef]
- Barcza, Z.; Haszpra, L.; Kondo, H.; Saigusa, N.; Yamamoto, S.; Bartholy, J. Carbon Exchange of Grass in Hungary. Tellus B Chem. Phys. Meteorol. 2003, 55, 187–196. [Google Scholar] [CrossRef]
- Nagy, Z.; Pintér, K.; Czóbel, S.; Balogh, J.; Horváth, L.; Fóti, S.; Barcza, Z.; Weidinger, T.; Csintalan, Z.; Dinh, N.Q.; et al. The Carbon Budget of Semi-Arid Grassland in a Wet and a Dry Year in Hungary. Agric. Ecosyst. Environ. 2007, 121, 21–29. [Google Scholar] [CrossRef]
- Nagy, Z.; Barcza, Z.; Horváth, L.; Balogh, J.; Hagyó, A.; Káposztás, N.; Béla, G.; Machon, A.; Pintér, K. Measurements and Estimations of Biosphere-Atmosphere Exchange of Greenhouse Gases–Grasslands. In Atmospheric Greenhouse Gases: The Hungarian Perspective; Haszpra, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 91–120. ISBN 978-90-481-9959-2. [Google Scholar]
- Tanács, E.; Belényesi, M.; Lehoczki, R.; Pataki, R.; Petrik, O.; Standovár, T.; Pásztor, L.; Laborczi, A.; Szatmári, G.; Molnár, Z.; et al. Országos, Nagyfelbontású Ökoszisztéma- Alaptérkép: Módszertan, Validáció És Felhasználási Lehetőségek. Természetvédelmi Közlemények 2019, 25, 34–58. [Google Scholar] [CrossRef]
- Vermote, E.F. MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid V061; NASA Land Processes Distributed Active Archive Center: Sioux Falls, South Dakota, 2021. [Google Scholar]
- Wood, D.J.A.; Powell, S.; Stoy, P.C.; Thurman, L.L.; Beever, E.A. Is the Grass Always Greener? Land Surface Phenology Reveals Differences in Peak and Season-Long Vegetation Productivity Responses to Climate and Management. Ecol. Evol. 2021, 11, 11168–11199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring Vegetation Phenology Using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Wang, B.; Tian, Z.; Zhang, W.; Chen, G.; Guo, Y.; Wang, M. Retrieval of Green-up Onset Date from MODIS Derived NDVI in Grasslands of Inner Mongolia. IEEE Access 2019, 7, 77885–77893. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing Altitudinal Gradient of Spring Vegetation Phenology during the Last Decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2014, 189–190, 71–80. [Google Scholar] [CrossRef]
- Yu, H.; Luedeling, E.; Xu, J. Winter and Spring Warming Result in Delayed Spring Phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef]
- Kern, A.; Dobor, L.; Hollós, R.; Marjanović, H.; Torma, C.Z.; Kis, A.; Fodor, N.; Barcza, Z. Seamlessly Combined Historical and Projected Daily Meteorological Datasets for Impact Studies in Central Europe: The FORESEE v4.0 and the FORESEE-HUN v1.0. Clim. Serv. 2024, 33, 100443. [Google Scholar] [CrossRef]
- Gruber, A.; Scanlon, T.; Van Der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture Climate Data Records and Their Underlying Merging Methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Preimesberger, W.; Stradiotti, P.; Dorigo, W. ESA CCI Soil Moisture GAPFILLED: An Independent Global Gap-Free Satellite Climate Data Record with Uncertainty Estimates. Earth Syst. Sci. Data 2025, 17, 4305–4329. [Google Scholar] [CrossRef]
- Pataki, A.; Bertalan, L.; Pásztor, L.; Nagy, L.A.; Abriha, D.; Liang, S.; Singh, S.K.; Szabó, S. Soil Moisture Satellite Data Under Scrutiny: Assessing Accuracy Through Environmental Proxies and Extended Triple Collocation Analysis. Earth Syst. Environ. 2025, 9, 801–824. [Google Scholar] [CrossRef]
- Asse, D.; Randin, C.F.; Bonhomme, M.; Delestrade, A.; Chuine, I. Process-Based Models Outcompete Correlative Models in Projecting Spring Phenology of Trees in a Future Warmer Climate. Agric. For. Meteorol. 2020, 285–286, 107931. [Google Scholar] [CrossRef]
- Basler, D. Evaluating Phenological Models for the Prediction of Leaf-out Dates in Six Temperate Tree Species across Central Europe. Agric. For. Meteorol. 2016, 217, 10–21. [Google Scholar] [CrossRef]
- Chuine, I. A Unified Model for Budburst of Trees. J. Theor. Biol. 2000, 207, 337–347. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting Plant Phenology in Response to Global Change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Hufkens, K.; Basler, D.; Milliman, T.; Melaas, E.K.; Richardson, A.D. An Integrated Phenology Modelling Framework in r. Methods Ecol. Evol. 2018, 9, 1276–1285. [Google Scholar] [CrossRef]
- Melaas, E.K.; Richardson, A.D.; Friedl, M.A.; Dragoni, D.; Gough, C.M.; Herbst, M.; Montagnani, L.; Moors, E. Using FLUXNET Data to Improve Models of Springtime Vegetation Activity Onset in Forest Ecosystems. Agric. For. Meteorol. 2013, 171–172, 46–56. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, H.; Shen, H.; Cong, Z.; Yang, D.; Liu, T. Evaluating the Representation of Vegetation Phenology in the Community Land Model 4.5 in a Temperate Grassland. J. Geophys. Res. Biogeosci. 2019, 124, 187–210. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aaasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European Phenological Response to Climate Change Matches the Warming Pattern. Glob. Change Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; The MIT Press: Cambridge, MA, USA, 1992; ISBN 9780262581110. [Google Scholar]
- Zhou, M.C.; Cui, M.; Xu, D.; Zhu, S.; Zhao, Z.; Abusorrah, A. Evolutionary Optimization Methods for High-Dimensional Expensive Problems: A Survey. IEEE/CAA J. Autom. Sin. 2024, 11, 1092–1105. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic Algorithms: A Comprehensive Review; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128133149. [Google Scholar]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272, Erratum in Nat. Methods 2020. https://doi.org/10.1038/s41592-020-0772-5. [Google Scholar] [CrossRef] [PubMed]
- Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G. Modelling of Grassland Fluxes in Europe: Evaluation of Two Biogeochemical Models. Agric. Ecosyst. Environ. 2016, 215, 1–19. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Global Vegetation Phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of Global Patterns and Comparison with in Situ Measurements. J. Geophys. Res. Biogeosci. 2006, 111, 716–723. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Xin, Q.; Broich, M.; Zhu, P.; Gong, P. Modeling Grassland Spring Onset across the Western United States Using Climate Variables and MODIS-Derived Phenology Metrics. Remote Sens. Environ. 2015, 161, 63–77. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-Comparison of Four Models for Smoothing Satellite Sensor Time-Series Data to Estimate Vegetation Phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving Sub-Pixel Geolocation Accuracy in Support of MODIS Land Science. Remote Sens. Environ. 2002, 83, 31–49. [Google Scholar] [CrossRef]
- Tan, B.; Woodcock, C.E.; Hu, J.; Zhang, P.; Ozdogan, M.; Huang, D.; Yang, W.; Knyazikhin, Y.; Myneni, R.B. The Impact of Gridding Artifacts on the Local Spatial Properties of MODIS Data: Implications for Validation, Compositing, and Band-to-Band Registration across Resolutions. Remote Sens. Environ. 2006, 105, 98–114. [Google Scholar] [CrossRef]
- Kern, A.; Barcza, Z.; Hollós, R.; Birinyi, E.; Marjanović, H. Critical Climate Periods Explain a Large Fraction of the Observed Variability in Vegetation State. Remote Sens. 2022, 14, 5621. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Blümel, K.; Chmielewski, F.M. Shortcomings of Classical Phenological Forcing Models and a Way to Overcome Them. Agric. For. Meteorol. 2012, 164, 10–19. [Google Scholar] [CrossRef]
- Bart, R.R.; Tague, C.L.; Dennison, P.E. Modeling Annual Grassland Phenology along the Central Coast of California. Ecosphere 2017, 8, e01875. [Google Scholar] [CrossRef]
- Fan, D.; Zhao, X.; Zhu, W.; Sun, W.; Qiu, Y. An Improved Phenology Model for Monitoring Green-up Date Variation in Leymus Chinensis Steppe in Inner Mongolia during 1962–2017. Agric. For. Meteorol. 2020, 291, 108091. [Google Scholar] [CrossRef]
- Post, A.K.; Hufkens, K.; Richardson, A.D. Predicting Spring Green-up across Diverse North American Grasslands. Agric. For. Meteorol. 2022, 327, 109204. [Google Scholar] [CrossRef]
- Dou, X.; Wu, L.; Zhao, C.; Li, J.; Yan, Y.; Zhu, J.; Wang, D. Comparison of Spring Phenology Simulation in Central Asian Grasslands. Ecol. Model. 2025, 501, 111011. [Google Scholar] [CrossRef]
- Tao, Z.; Huang, W.; Wang, H. Soil Moisture Outweighs Temperature for Triggering the Green-up Date in Temperate Grasslands. Theor. Appl. Climatol. 2020, 140, 1093–1105. [Google Scholar] [CrossRef]
- Ren, S.; Chen, X.; Lang, W.; Schwartz, M.D. Climatic Controls of the Spatial Patterns of Vegetation Phenology in Midlatitude Grasslands of the Northern Hemisphere. J. Geophys. Res. Biogeosci. 2018, 123, 2323–2336. [Google Scholar] [CrossRef]
- Moore, L.M.; Lauenroth, W.K.; Bell, D.M.; Schlaepfer, D.R. Soil Water and Temperature Explain Canopy Phenology and Onset of Spring in a Semiarid Steppe. Great Plains Res. 2015, 25, 121–138. [Google Scholar] [CrossRef]
- Sun, X.; Lu, N.; Shen, M.; Qin, J. Improved Modeling of Vegetation Phenology Using Soil Enthalpy. Glob. Change Biol. 2025, 31, e70116. [Google Scholar] [CrossRef] [PubMed]
- Piermattei, A. A New Perspective on Tree Growing Season Determination. J. Biogeogr. 2024, 51, 2334–2337. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net Carbon Uptake Has Increased through Warming-Induced Changes in Temperate Forest Phenology. Nat. Clim. Change 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, P.; Zhang, X.; Liu, H.; Dong, Y.; Feng, L. Effects of Snow Cover on Spring Vegetation Phenology Vary with Temperature Gradient Across the Pan-Arctic. J. Geophys. Res. Biogeosci. 2023, 128, e2022JG007183. [Google Scholar] [CrossRef]
- Gerard, F.F.; George, C.T.; Hayman, G.; Chavana-Bryant, C.; Weedon, G.P. Leaf Phenology Amplitude Derived from MODIS NDVI and EVI: Maps of Leaf Phenology Synchrony for Meso- and South America. Geosci. Data J. 2020, 7, 13–26. [Google Scholar] [CrossRef]
- Fan, D.; Zhao, T.; Jiang, X.; García-García, A.; Schmidt, T.; Samaniego, L.; Attinger, S.; Wu, H.; Jiang, Y.; Shi, J.; et al. A Sentinel-1 SAR-Based Global 1-Km Resolution Soil Moisture Data Product: Algorithm and Preliminary Assessment. Remote Sens. Environ. 2025, 318, 114579. [Google Scholar] [CrossRef]
- Jeong, S.J.; Medvigy, D.; Shevliakova, E.; Malyshev, S. Uncertainties in Terrestrial Carbon Budgets Related to Spring Phenology. J. Geophys. Res. Biogeosci 2012, 117, 1–17. [Google Scholar] [CrossRef]
- Jolly, W.M.; Nemani, R.; Running, S.W. A Generalized, Bioclimatic Index to Predict Foliar Phenology in Response to Climate. Glob. Chang. Biol. 2005, 11, 619–632. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Marjanovic, H.; Sever, M.Z.O.; Dobor, L.; Gelybó, G.; Fodor, N.; Pintér, K.; Churkina, G.; Running, S.; et al. Terrestrial Ecosystem Process Model Biome-BGCMuSo v4.0: Summary of Improvements and New Modeling Possibilities. Geosci. Model. Dev. 2016, 9, 4405–4437. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in Simulating Wheat Yields under Climate Change. Nat. Clim. Chang. 2013, 3, 827–832. [Google Scholar] [CrossRef]






| Grassland Type | Share of Grassland Pixels (250 m) [%] |
|---|---|
| Open sand steppes | 1.59 |
| Closed sand steppes | 0.86 |
| Salt steppes and meadows (grasslands affected by salinization included) | 77.5 |
| Closed grasslands in hills and mountains or on cohesive soil | 20.04 |
| Model Name | Model Abbreviation | Number of Adjustable Parameters | Applied Input Meteorology Data |
|---|---|---|---|
| Growing Degree Days | GDD | 2 | Tavg |
| Modified Growing Degree Days | MGDD | 3 | Tavg |
| Modified Growing Degree Days with Photoperiod | MGDDwPP | 4 | Tavg, PP |
| Sequential | SEQ | 4 | Tavg |
| Parallel | PAR | 4 | Tavg |
| Heat Sum Growing Season Index | GSI | 7 | Tmin, VPD, PP |
| Heat Sum Growing Season Index | HSGSI | 10 | Tavg, Tmin, VPD, PP |
| Accumulated Heat Sum Growing Season Index | AGSI | 7 | Tmin, VPD, PP |
| Accumulated Heat Sum Growing Season Index Model with Soil Water Content | AGSIwSW | 7 | Tmin, SWC, PP |
| Accumulated Heat Sum Growing Season Index | AHSGSI | 10 | Tavg, Tmin, VPD, PP |
| Model Ensembles | ENS |
| RMSE | Bias | R2 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Model | GEN | GEN GRASS | PIX | GEN | GEN GRASS | PIX | GEN | GEN GRASS | PIX |
| GDD | 8.2 | 7.1 | 3.8 | −0.2 | −0.6 | 1.5 | 0.002 | 0.174 | 0.814 |
| MGDD | 8.5 | 13.6 | 3.8 | 2.8 | 11.7 | 1.4 | 0.003 | 0.08 | 0.804 |
| MGDDwPP | 7.6 | 7.2 | 3.4 | 0.1 | 1.5 | 0 | 0.004 | 0.245 | 0.844 |
| SEQ | 8.2 | 7.1 | 3.7 | −1 | −0.4 | 1.3 | 0.001 | 0.194 | 0.814 |
| PAR | 8.3 | 7.1 | 3.8 | −1 | 0.5 | 1.3 | 0.003 | 0.156 | 0.812 |
| GSI | 9.9 | 9 | 6.5 | 4.2 | 4.3 | 3.2 | 0.04 | 0.029 | 0.724 |
| HSGSI | 10.6 | 13.7 | 6.5 | 4.7 | 10.2 | 3.1 | 0.072 | 0.025 | 0.726 |
| AGSI | 8.2 | 7 | 3.3 | −0.3 | −0.5 | 1.4 | 0.005 | 0.186 | 0.849 |
| AGSIwSW | 7.6 | 6.3 | 3.8 | 2.3 | 1.7 | 2.1 | 0.079 | 0.306 | 0.806 |
| AHSGSI | 7.8 | 9.7 | 3.3 | −0.1 | 5.6 | 1.1 | 0.001 | 0.007 | 0.848 |
| ENS | 8.0 | 7.5 | 3.5 | 1.2 | 3.5 | 1.6 | 0.005 | 0.161 | 0.857 |
| GEN Model Name | GEN AIC | GEN GRASS Model Name | GEN GRASS AIC | PIX Model Name | PIX AIC |
|---|---|---|---|---|---|
| MGDDwPP | 447.231 | MGDDwPP | 111.097 | GDD | 39.3 |
| MGDD | 453.235 | PAR | 111.628 | MGDD | 40.5 |
| AHSGSI | 454.206 | SEQ | 111.638 | MGDDwPP | 41.8 |
| SEQ | 454.855 | AGSI | 112.032 | SEQ | 42.9 |
| GDD | 456.595 | GDD | 112.165 | PAR | 43.0 |
| PAR | 456.721 | AHSGSI | 112.747 | AGSI | 49.1 |
| AGSIwSW | 461.371 | AGSIwSW | 112.815 | AGSIwSW | 52.0 |
| AGSI | 463.754 | MGDD | 134.829 | AHSGSI | 55.1 |
| HSGSI | 521.620 | GSI | 139.713 | GSI | 64.1 |
| GSI | 525.052 | HSGSI | 145.124 | HSGSI | 69.6 |
| Model Title | Correction Factor (Respredicted) |
|---|---|
| GEN GDD | |
| GEN MGDD | |
| GEN MGDDwPP | |
| GEN SEQ | |
| GEN PAR | |
| GEN GSI | |
| GEN HSGSI | |
| GEN AGSI | |
| GEN AGSIwSW | |
| GEN AHSGSI | |
| GEN GRASS GDD | |
| GEN GRASS MGDD | |
| GEN GRASS MGDDwPP | |
| GEN GRASS SEQ | |
| GEN GRASS PAR | |
| GEN GRASS GSI | |
| GEN GRASS HSGSI | |
| GEN GRASS AGSI | |
| GEN GRASS AGSIwSW | |
| GEN GRASS AHSGSI | |
| PIX GDD | |
| PIX MGDD | |
| PIX MGDDwPP | |
| PIX SEQ | |
| PIX PAR | |
| PIX GSI | |
| PIX HSGSI | |
| PIX AGSI | |
| PIX AGSIwSW | |
| PIX AHSGSI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dávid, R.Á.; Barcza, Z.; Hollós, R.; Kern, A. Modeling the Start of Season Date of Hungarian Grasslands Using Remote Sensing Data and 10 Process-Based Models. Atmosphere 2026, 17, 49. https://doi.org/10.3390/atmos17010049
Dávid RÁ, Barcza Z, Hollós R, Kern A. Modeling the Start of Season Date of Hungarian Grasslands Using Remote Sensing Data and 10 Process-Based Models. Atmosphere. 2026; 17(1):49. https://doi.org/10.3390/atmos17010049
Chicago/Turabian StyleDávid, Réka Ágnes, Zoltán Barcza, Roland Hollós, and Anikó Kern. 2026. "Modeling the Start of Season Date of Hungarian Grasslands Using Remote Sensing Data and 10 Process-Based Models" Atmosphere 17, no. 1: 49. https://doi.org/10.3390/atmos17010049
APA StyleDávid, R. Á., Barcza, Z., Hollós, R., & Kern, A. (2026). Modeling the Start of Season Date of Hungarian Grasslands Using Remote Sensing Data and 10 Process-Based Models. Atmosphere, 17(1), 49. https://doi.org/10.3390/atmos17010049

