The Rectification of ENSO into the Mean State: A Review of Theory, Mechanisms, and Implications
Abstract
1. Introduction
2. Conceptual Origins of the Regulatory View
3. The Formal Theory and Physical Mechanism
3.1. The New Framework: Quantitative Assessment of the Rectification as the Difference Between the Time-Mean Value and the Equilibrium State
3.2. Pinpointing the Cause: Nonlinear Dynamical Heating as the Core Physical Process
3.3. The Role of ENSO Asymmetry in the Rectification Process
4. Evidence from Models and Observations
4.1. Evidence from OGCMs
4.2. Evidence from Observational and Reanalysis-Based Analyses
4.3. Synthesis of Evidence and Methodological Caveats
5. Grand Challenges in Rectification Research
5.1. The GCM Fidelity Problem
5.2. Quantifying the Contribution of Rectification to TPDV
5.3. The Role of ENSO Diversity in Rectification
5.4. The Rectification Feedback Loop as a Decadal Oscillator
5.5. A Roadmap for Future Research
6. Consequences for Climate Science and Prediction
6.1. For Model Development: Moving Beyond Linear Dynamics to Improve Mean-State Simulations
6.2. For Diagnostics and Attribution: Rectification as a Necessary Metric
6.3. For Decadal Prediction: From Concept to Operational Forecast
6.4. For Climate Change Projections: Disentangling the Forced Response
7. Conclusions
- ENSO rectification is a robust physical process supported by multiple, convergent lines of evidence. The existence of a rectified signal that alters the mean state is not a theoretical curiosity, but has been confirmed through a hierarchy of methods, from analytical models and controlled OGCM experiments to advanced diagnostics of observational data.
- NDH is the dominant physical mechanism, but it is systematically underrepresented in climate models. The nonlinear advection of heat during asymmetric ENSO cycles is the primary driver of the rectified signal. The persistent failure of state-of-the-art GCMs to simulate this process realistically, due to mean-state biases and weak nonlinearity, is a critical barrier to progress.
- Rectification contributes substantially to TPDV, but its fractional role remains uncertain. The off-equatorial spatial pattern of the rectified signal provides a compelling physical explanation for the observed structure of TPDV. However, quantifying its precise contribution relative to other mechanisms, such as extratropical and stochastic forcing, is a major unresolved challenge.
- Future progress depends on resolving ENSO asymmetry in models and adopting new rectification metrics. Improving decadal predictions and long-term climate projections requires not only the development of models that can capture the nonlinear dynamics of ENSO, but also the adoption of a new suite of process-based diagnostics to track and attribute the effects of rectification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in Earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Timmermann, A.; An, S.-I.; Kug, J.-S.; Jin, F.-F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Nino-Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Patricola, C.M.; Hansen, G.E.; Sena, A.C.T. The Influence of Climate Variability and Future Climate Change on Atlantic Hurricane Season Length. Geophys. Res. Lett. 2024, 51, e2023GL107881. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Shankman, D.; Keim, B.D.; Song, J. Flood frequency in China’s Poyang Lake region: Trends and teleconnections. Int. J. Climatol. 2006, 26, 1255–1266. [Google Scholar] [CrossRef]
- Ma, T.; Chen, W. Recent progress in understanding the interaction between ENSO and the East Asian winter monsoon: A review. Front. Earth Sci. 2023, 11, 1098517. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Suarez, M.J.; Schopf, P.S. A delayed action oscillator for ENSO. J. Atmos. Sci. 1988, 45, 3283–3287. [Google Scholar] [CrossRef]
- Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 1997, 54, 811–829. [Google Scholar] [CrossRef]
- Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci. 1997, 54, 830–847. [Google Scholar] [CrossRef]
- Zebiak, S.E.; Cane, M.A. A model El Niño–southern oscillation. Mon. Weather Rev. 1987, 115, 2262–2278. [Google Scholar] [CrossRef]
- Philander, S.G. El Niño, La Niña, and the southern oscillation. Int. Geophys. Ser. 1989, 46, X–289. [Google Scholar]
- Neelin, J.D.; Battisti, D.S.; Hirst, A.C.; Jin, F.F.; Wakata, Y.; Yamagata, T.; Zebiak, S.E. ENSO theory. J. Geophys. Res. Ocean. 1998, 103, 14261–14290. [Google Scholar] [CrossRef]
- Chen, D.; Cane, M.A.; Kaplan, A.; Zebiak, S.E.; Huang, D. Predictability of El Nino over the past 148 years. Nature 2004, 428, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, R.-H.; Liu, T.; Duan, W.; Yang, D.; Zheng, F.; Ren, H.; Lian, T.; Gao, C.; Chen, D.; et al. Progress in ENSO prediction and predictability study. Natl. Sci. Rev. 2018, 5, 826–839. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Wang, G.; Yeh, S.-W.; An, S.-I.; Cobb, K.M.; Collins, M.; Guilyardi, E.; Jin, F.-F.; Kug, J.-S.; et al. ENSO and greenhouse warming. Nat. Clim. Change 2015, 5, 849–859. [Google Scholar] [CrossRef]
- Fang, X.; Xie, R. A brief review of ENSO theories and prediction. Sci. China-Earth Sci. 2020, 63, 476–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like interdecadal variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- An, S.-I. A review of interdecadal changes in the nonlinearity of the El Nino-Southern Oscillation. Theor. Appl. Climatol. 2009, 97, 29–40. [Google Scholar] [CrossRef]
- Hu, Z.-Z.; Kumar, A.; Ren, H.-L.; Wang, H.; L’Heureux, M.; Jin, F.-F. Weakened Interannual Variability in the Tropical Pacific Ocean since 2000. J. Clim. 2013, 26, 2601–2613. [Google Scholar] [CrossRef]
- Wittenberg, A.T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 2009, 36, L12702. [Google Scholar] [CrossRef]
- Zheng, F.; Fang, X.-H.; Zhu, J.; Yu, J.-Y.; Li, X.-C. Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett. 2016, 43, 12560–12568. [Google Scholar] [CrossRef]
- Liang, J.; Yang, X.-Q.; Sun, D.-Z. The Effect of ENSO Events on the Tropical Pacific Mean Climate: Insights from an Analytical Model. J. Clim. 2012, 25, 7590–7606. [Google Scholar] [CrossRef]
- Sun, D.-Z.; Zhang, T.; Sun, Y.; Yu, Y. Rectification of El Nino-Southern Oscillation into Climate Anomalies of Decadal and Longer Time Scales: Results from Forced Ocean GCM Experiments. J. Clim. 2014, 27, 2545–2561. [Google Scholar] [CrossRef]
- Power, S.; Lengaigne, M.; Capotondi, A.; Khodri, M.; Vialard, J.; Jebri, B.; Guilyardi, E.; McGregor, S.; Kug, J.-S.; Newman, M.; et al. Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science 2021, 374, eaay9165. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, M.H.; England, M.H.; Sen Gupta, A.; Santoso, A.; Taschetto, A.S.; Martin, T.; Park, W.; Latif, M. Uncertainty in near-term global surface warming linked to tropical Pacific climate variability. Nat. Commun. 2019, 10, 1990. [Google Scholar] [CrossRef]
- Capotondi, A.; McGregor, S.; McPhaden, M.J.; Cravatte, S.; Holbrook, N.J.; Imada, Y.; Sanchez, S.C.; Sprintall, J.; Stuecker, M.F.; Ummenhofer, C.C.; et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Environ. 2023, 4, 754–769. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Nino Modoki and its possible teleconnection. J. Geophys. Res.-Ocean. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Kao, H.-Y.; Yu, J.-Y. Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Kug, J.-S.; Jin, F.-F.; An, S.-I. Two Types of El Nino Events: Cold Tongue El Nino and Warm Pool El Nino. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.-Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO Diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- An, S.-I.; Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 2004, 17, 2399–2412. [Google Scholar] [CrossRef]
- Duan, W.; Xu, H.; Mu, M. Decisive role of nonlinear temperature advection in El Nino and La Nina amplitude asymmetry. J. Geophys. Res. 2008, 113, C01014. [Google Scholar] [CrossRef]
- Wang, C. A review of ENSO theories. Natl. Sci. Rev. 2018, 5, 813–825. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Hu, S.; Lengaigne, M.; Guilyardi, E. The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Nino events. Clim. Dyn. 2015, 44, 1381–1401. [Google Scholar] [CrossRef]
- Thual, S.; Majda, A.J.; Chen, N.; Stechmann, S.N. Simple stochastic model for El Nino with westerly wind bursts. Proc. Natl. Acad. Sci. USA 2016, 113, 10245–10250. [Google Scholar] [CrossRef]
- Duan, W.; Liu, X.; Zhu, K.; Mu, M. Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res. Ocean 2009, 114, C04022. [Google Scholar] [CrossRef]
- Levine, A.F.Z.; McPhaden, M.J. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys. Res. Lett. 2015, 42, 5034–5041. [Google Scholar] [CrossRef]
- Fang, X.-H.; Zheng, F.; Liu, Z.-Y.; Zhu, J. Decadal Modulation of ENSO Spring Persistence Barrier by Thermal Damping Processes in the Observation. Geophys. Res. Lett. 2019, 46, 6892–6899. [Google Scholar] [CrossRef]
- Schopf, P.S.; Burgman, R.J. A simple mechanism for ENSO residuals and asymmetry. J. Clim. 2006, 19, 3167–3179. [Google Scholar] [CrossRef]
- Choi, J.; An, S.-I. Quantifying the residual effects of ENSO on low-frequency variability in the tropical Pacific. Int. J. Climatol. 2013, 33, 1047–1052. [Google Scholar] [CrossRef]
- Kim, G.-I.; Kug, J.-S. Tropical Pacific Decadal Variability Induced by Nonlinear Rectification of El Nino-Southern Oscillation. J. Clim. 2020, 33, 7289–7302. [Google Scholar] [CrossRef]
- Sun, D.-Z.; Liu, Z. Dynamic Ocean-Atmosphere Coupling: A Thermostat for the Tropics. Science 1996, 272, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.-Z. The control of meridional differential surface heating over the level of ENSO activity: A heat-pump hypothesis. Geophys. Monogr. 2004, 147, 71–83. [Google Scholar]
- Sun, D.; Zhang, T. A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett. 2006, 33, L07710. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Li, T.; Rong, X.; Kug, J.-S.; Hong, C.-C. Causes of the El Nino and La Nina Amplitude Asymmetry in the Equatorial Eastern Pacific. J. Clim. 2010, 23, 605–617. [Google Scholar] [CrossRef]
- Hayashi, M.; Jin, F.-F. Subsurface Nonlinear Dynamical Heating and ENSO Asymmetry. Geophys. Res. Lett. 2017, 44, 12427–12435. [Google Scholar] [CrossRef]
- Kohyama, T.; Hartmann, D.L. Nonlinear ENSO Warming Suppression (NEWS). J. Clim. 2017, 30, 4227–4251. [Google Scholar] [CrossRef]
- Paek, H.; Yu, J.-Y.; Qian, C. Why were the 2015/2016 and 1997/1998 extreme El Ninos different? Geophys. Res. Lett. 2017, 44, 1848–1856. [Google Scholar] [CrossRef]
- Geng, T.; Cai, W.; Wu, L.; Yang, Y. Atmospheric Convection Dominates Genesis of ENSO Asymmetry. Geophys. Res. Lett. 2019, 46, 8387–8396. [Google Scholar] [CrossRef]
- Im, S.-H.; An, S.-I.; Kim, S.T.; Jin, F.-F. Feedback processes responsible for El Nino-La Nina amplitude asymmetry. Geophys. Res. Lett. 2015, 42, 5556–5563. [Google Scholar] [CrossRef]
- Gebbie, G.; Eisenman, I.; Wittenberg, A.; Tziperman, E. Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci. 2007, 64, 3281–3295. [Google Scholar] [CrossRef]
- Chen, D.; Lian, T.; Fu, C.; Cane, M.A.; Tang, Y.; Murtugudde, R.; Song, X.; Wu, Q.; Zhou, L. Strong influence of westerly wind bursts on El Nino diversity. Nat. Geosci. 2015, 8, 339–345. [Google Scholar] [CrossRef]
- Levine, A.; Jin, F.F.; McPhaden, M.J. Extreme Noise-Extreme El Nino: How State-Dependent Noise Forcing Creates El Nino-La Nina Asymmetry. J. Clim. 2016, 29, 5483–5499. [Google Scholar] [CrossRef]
- Martinez-Villalobos, C.; Newman, M.; Vimont, D.J.; Penland, C.; Neelin, J.D. Observed El Nino-La Nina Asymmetry in a Linear Model. Geophys. Res. Lett. 2019, 46, 9909–9919. [Google Scholar] [CrossRef]
- Geng, L.; Jin, F.-F. Insights into ENSO Diversity from an Intermediate Coupled Model. Part II: Role of Nonlinear Dynamics and Stochastic Forcing. J. Clim. 2023, 36, 7527–7547. [Google Scholar] [CrossRef]
- Hua, L.; Yu, Y.; Sun, D.-Z. A Further Study of ENSO Rectification: Results from an OGCM with a Seasonal Cycle. J. Clim. 2015, 28, 1362–1382. [Google Scholar] [CrossRef]
- Choi, J.; An, S.-I.; Yeh, S.-W.; Yu, J.-Y. ENSO-Like and ENSO-Induced Tropical Pacific Decadal Variability in CGCMs. J. Clim. 2013, 26, 1485–1501. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Jin, F.-F.; Stuecker, M.F.; Geng, L. Equatorial Origin of the Observed Tropical Pacific Quasi-Decadal Variability From ENSO Nonlinearity. Geophys. Res. Lett. 2022, 49, e2022GL097903. [Google Scholar] [CrossRef]
- Huang, P.; Chen, Y.; Li, J.; Yan, H. Redefined background state in the tropical Pacific resolves the entanglement between the background state and ENSO. npj Clim. Atmos. Sci. 2024, 7, 147. [Google Scholar] [CrossRef]
- McPhaden, M.J. A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett. 2012, 39, 9706. [Google Scholar] [CrossRef]
- Wen, C.; Kumar, A.; Xue, Y.; McPhaden, M.J. Changes in Tropical Pacific Thermocline Depth and Their Relationship to ENSO after 1999. J. Clim. 2014, 27, 7230–7249. [Google Scholar] [CrossRef]
- Zhai, F.; Wang, Q.; Wang, F.; Hu, D. Decadal variations of Pacific North Equatorial Current bifurcation from multiple ocean products. J. Geophys. Res.-Ocean. 2014, 119, 1237–1256. [Google Scholar] [CrossRef]
- Okumura, Y.M.; Sun, T.; Wu, X. Asymmetric Modulation of El Nino and La Nina and the Linkage to Tropical Pacific Decadal Variability. J. Clim. 2017, 30, 4705–4733. [Google Scholar] [CrossRef]
- An, S.-I. Interannual variations of the Tropical Ocean instability wave and ENSO. J. Clim. 2008, 21, 3680–3686. [Google Scholar] [CrossRef]
- Bellenger, H.; Guilyardi, E.; Leloup, J.; Lengaigne, M.; Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 2014, 42, 1999–2018. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, D.-Z. ENSO Asymmetry in CMIP5 Models. J. Clim. 2014, 27, 4070–4093. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, D.-Z. ENSO Asymmetry in CMIP6 Models. J. Clim. 2022, 35, 5555–5572. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, F.; Sun, D.-Z. Weak ENSO Asymmetry Due to Weak Nonlinear Air-Sea Interaction in CMIP5 Climate Models. Adv. Atmos. Sci. 2016, 33, 352–364. [Google Scholar] [CrossRef]
- Sutton, M.; Larson, S.M.; Becker, E. New insights on ENSO teleconnection asymmetry and ENSO forced atmospheric circulation variability over North America. Clim. Dyn. 2024, 62, 3189–3206. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, D.-Z.; Wu, L.; Wang, F. Western Pacific warm pool and ENSO asymmetry in CMIP3 models. Adv. Atmos. Sci. 2013, 30, 940–953. [Google Scholar] [CrossRef]
- Hayashi, M.; Jin, F.-F.; Stuecker, M.F. Dynamics for El Nino-La Nina asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 2020, 11, 4230, Corrected in Nat. Commun. 2020, 11, 4672. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Zhang, W.; Chen, Q.; Feng, J.; Zheng, F.; Wang, W.; Zhou, X. Impacts of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global Warming. J. Geophys. Res.-Ocean. 2017, 122, 8524–8542. [Google Scholar] [CrossRef]
- Bayr, T.; Domeisen, D.I.V.; Wengel, C. The effect of the equatorial Pacific cold SST bias on simulated ENSO teleconnections to the North Pacific and California. Clim. Dyn. 2019, 53, 3771–3789. [Google Scholar] [CrossRef]
- Fang, X.-H.; Zheng, F.; Zhu, J. The cloud-radiative effect when simulating strength asymmetry in two types of El Nino events using CMIP5 models. J. Geophys. Res.-Ocean. 2015, 120, 4357–4369. [Google Scholar] [CrossRef]
- Vimont, D.J.; Wallace, J.M.; Battisti, D.S. The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Clim. 2003, 16, 2668–2675. [Google Scholar] [CrossRef]
- Vimont, D.J.; Alexander, M.; Fontaine, A. Midlatitude Excitation of Tropical Variability in the Pacific: The Role of Thermodynamic Coupling and Seasonality. J. Clim. 2009, 22, 518–534. [Google Scholar] [CrossRef]
- Alexander, M.A.; Vimont, D.J.; Chang, P.; Scott, J.D. The Impact of Extratropical Atmospheric Variability on ENSO: Testing the Seasonal Footprinting Mechanism Using Coupled Model Experiments. J. Clim. 2010, 23, 2885–2901. [Google Scholar] [CrossRef]
- Min, Q.; Su, J.; Zhang, R. Impact of the South and North Pacific Meridional Modes on the El Nino-Southern Oscillation: Observational Analysis and Comparison. J. Clim. 2017, 30, 1705–1720. [Google Scholar] [CrossRef]
- Liguori, G.; Di Lorenzo, E. Separating the North and South Pacific Meridional Modes Contributions to ENSO and Tropical Decadal Variability. Geophys. Res. Lett. 2019, 46, 906–915. [Google Scholar] [CrossRef]
- Chang, P.; Zhang, L.; Saravanan, R.; Vimont, D.J.; Chiang, J.C.H.; Ji, L.; Seidel, H.; Tippett, M.K. Pacific meridional mode and El Nino-southern oscillation. Geophys. Res. Lett. 2007, 34, L16608. [Google Scholar] [CrossRef]
- Blanke, B.; Neelin, J.D.; Gutzler, D. Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Clim. 1997, 10, 1473–1486. [Google Scholar] [CrossRef]
- Fedorov, A.; Harper, S.; Philander, S.; Winter, B.; Wittenberg, A. How predictable is El Niño? Bull. Am. Meteorol. Soc. 2003, 84, 911–920. [Google Scholar] [CrossRef]
- Kleeman, R. Stochastic theories for the irregularity of ENSO. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2008, 366, 2511–2526. [Google Scholar] [CrossRef]
- Holmes, R.M.; McGregor, S.; Santoso, A.; England, M.H. Contribution of tropical instability waves to ENSO irregularity. Clim. Dyn. 2019, 52, 1837–1855. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Kao, P.-K.; Paek, H.; Hsu, H.-H.; Hung, C.-W.; Lu, M.-M.; An, S.-I. Linking Emergence of the Central Pacific El Nino to the Atlantic Multidecadal Oscillation. J. Clim. 2015, 28, 651–662. [Google Scholar] [CrossRef]
- Kug, J.-S.; Kang, I.-S. Interactive feedback between ENSO and the Indian Ocean. J. Clim. 2006, 19, 1784–1801. [Google Scholar] [CrossRef]
- Luo, J.-J.; Sasaki, W.; Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA 2012, 109, 18701–18706. [Google Scholar] [CrossRef]
- Dong, L.; McPhaden, M.J. Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Nino in 2014. Sci. Rep. 2018, 8, 2249. [Google Scholar] [CrossRef]
- Li, X.; Xie, S.-P.; Gille, S.T.; Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 2016, 6, 275–279. [Google Scholar] [CrossRef]
- Ashok, K.; Yamagata, T. Climate change: The El Nino with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Fang, X.-H.; Yu, J.-Y.; Zhu, J. Asymmetry of the Bjerknes positive feedback between the two types of El Nino. Geophys. Res. Lett. 2014, 41, 7651–7657. [Google Scholar] [CrossRef]
- Su, J.; Li, T.; Zhang, R. The Initiation and Developing Mechanisms of Central Pacific El Ninos. J. Clim. 2014, 27, 4473–4485. [Google Scholar] [CrossRef]
- Vimont, D.J.; Alexander, M.A.; Newman, M. Optimal growth of Central and East Pacific ENSO events. Geophys. Res. Lett. 2014, 41, 4027–4034. [Google Scholar] [CrossRef]
- Thomas, E.E.; Vimont, D.J. Modeling the Mechanisms of Linear and Nonlinear ENSO Responses to the Pacific Meridional Mode. J. Clim. 2016, 29, 8745–8761. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Kug, J.-S.; Dewitte, B.; Kwon, M.-H.; Kirtman, B.P.; Jin, F.-F. El Nino in a changing climate. Nature 2009, 461, 511–570. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Collins, M.; Dewitte, B.; Karamperidou, C.; Kug, J.-S.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Taschetto, A.S. Changing El Niño–Southern oscillation in a warming climate. Nat. Rev. Earth Environ. 2021, 2, 628–644. [Google Scholar] [CrossRef]
- Xue, M.; Li, T. To what extent does ENSO rectify the tropical Pacific mean state? Clim. Dyn. 2023, 61, 3875–3891. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Philander, S.G. Is El Nino changing? Science 2000, 288, 1997–2002. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Philander, S.G. A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Clim. 2001, 14, 3086–3101. [Google Scholar] [CrossRef]
- Kim, B.-M.; An, S.-I. Understanding ENSO Regime Behavior upon an Increase in the Warm-Pool Temperature Using a Simple ENSO Model. J. Clim. 2011, 24, 1438–1450. [Google Scholar] [CrossRef]
- Choi, J.; An, S.-I.; Dewitte, B.; Hsieh, W.W. Interactive Feedback between the Tropical Pacific Decadal Oscillation and ENSO in a Coupled General Circulation Model. J. Clim. 2009, 22, 6597–6611. [Google Scholar] [CrossRef]
- Sun, Q.; Du, Y.; Xie, S.-P.; Zhang, Y.; Wang, M.; Kosaka, Y. Sea Surface Salinity Change since 1950: Internal Variability versus Anthropogenic Forcing. J. Clim. 2021, 34, 1305–1319. [Google Scholar] [CrossRef]
- Wu, B.; Lin, X.; Yu, L. North Pacific subtropical mode water is controlled by the Atlantic Multidecadal Variability. Nat. Clim. Change 2020, 10, 238–243. [Google Scholar] [CrossRef]
- Nowack, P.; Runge, J.; Eyring, V.; Haigh, J.D. Causal networks for climate model evaluation and constrained projections. Nat. Commun. 2020, 11, 1415. [Google Scholar] [CrossRef]
- Glaubke, R.H.; Schmidt, M.W.; Hertzberg, J.E.; Ward, L.G.; Marcantonio, F.; Schimmenti, D.; Thirumalai, K. An Inconsistent ENSO Response to Northern Hemisphere Stadials Over the Last Deglaciation. Geophys. Res. Lett. 2024, 51, e2023GL107634. [Google Scholar] [CrossRef]
- Usui, N.; Fujii, Y.; Sakamoto, K.; Kamachi, M. Development of a Four-Dimensional Variational Assimilation System for Coastal Data Assimilation around Japan. Mon. Weather Rev. 2015, 143, 3874–3892. [Google Scholar] [CrossRef]
- Liu, D.; Wang, F.; Zhu, J.; Wang, D.; Wang, J.; Xie, Q.; Shu, Y. Impact of Assimilation of Moored Velocity Data on Low-Frequency Current Estimation in Northwestern Tropical Pacific. J. Geophys. Res.-Ocean. 2020, 125, e2019JC015829. [Google Scholar] [CrossRef]
- Maher, N.; Milinski, S.; Ludwig, R. Large ensemble climate model simulations: Introduction, overview, and future prospects for utilising multiple types of large ensemble. Earth Syst. Dyn. 2021, 12, 401–418. [Google Scholar] [CrossRef]
- Wu, M.; Zhou, T.; Li, C.; Wu, B.; Jiang, J. Unraveling the Role of the Interdecadal Pacific Oscillation in Recent Tropical Expansion via Large-Ensemble Simulations. J. Geophys. Res.-Atmos. 2024, 129, e2023JD040294. [Google Scholar] [CrossRef]
- Chan, W.; Tanguy, M.; Chevuturi, A.; Hannaford, J. Climate variability conceals emerging hydrological trends across Great Britain. J. Hydrol. 2025, 660, 133414. [Google Scholar] [CrossRef]
Dataset | Number of Models Analyzed | Ensemble Mean Skewness | Range of Skewness | Fraction with Negative Skewness |
---|---|---|---|---|
Observations | N/A | 0.88 | N/A | N/A |
CMIP3 Ensemble | 19 | −0.02 | −0.88 to +0.80 | ~50% |
CMIP5 Ensemble | 14 | ~0.0 | −0.8 to +0.8 | ~50% |
CMIP6 Ensemble | 19 | 0.16 | −0.34 to +0.88 | ~16% (3 of 19) |
Diagnostic Method | Scientific Purpose/Question Addressed | Key Reference(s) |
---|---|---|
1. Forced OGCM “ENSO-on/off” Experiments | Isolates the ocean’s intrinsic nonlinear response to wind forcing. Quantifies the spatial pattern of the rectified signal. | [25,58] |
2. NDH Budget Calculation | Directly quantifies the strength of the primary physical mechanism (⟨v′·∇T′⟩) in both coupled models and reanalyses. | [24,60] |
3. ENSO Asymmetry Metrics | Provides a statistical measure of the behavioral prerequisite for rectification. Essential for model fidelity evaluation. | [33,68] |
4. Equilibrium vs. Time-Mean State Analysis | (For simpler/analytical models) Provides a formal, rigorous quantification of the total rectified effect. | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Zhou, N.; Sun, D.-Z.; Liu, W. The Rectification of ENSO into the Mean State: A Review of Theory, Mechanisms, and Implications. Atmosphere 2025, 16, 1087. https://doi.org/10.3390/atmos16091087
Liang J, Zhou N, Sun D-Z, Liu W. The Rectification of ENSO into the Mean State: A Review of Theory, Mechanisms, and Implications. Atmosphere. 2025; 16(9):1087. https://doi.org/10.3390/atmos16091087
Chicago/Turabian StyleLiang, Jin, Nan Zhou, De-Zheng Sun, and Wei Liu. 2025. "The Rectification of ENSO into the Mean State: A Review of Theory, Mechanisms, and Implications" Atmosphere 16, no. 9: 1087. https://doi.org/10.3390/atmos16091087
APA StyleLiang, J., Zhou, N., Sun, D.-Z., & Liu, W. (2025). The Rectification of ENSO into the Mean State: A Review of Theory, Mechanisms, and Implications. Atmosphere, 16(9), 1087. https://doi.org/10.3390/atmos16091087