Small but Notable Influence of Numerical Diffusion on Super Coarse Dust Sedimentation: Insights from UNO3 vs. Upwind Schemes
Abstract
1. Introduction
2. Materials and Methods
2.1. Transport of Mineral Dust in WRF-L
2.1.1. The Default First Order UPWIND Advective Scheme of WRF-L
2.1.2. The Upstream Non-Oscillating Scheme III (UNO3) in WRF-L Context
2.2. Model Experimental Set-Up
2.2.1. WRF-L/2D Benchmark Sensitivity Tests
2.2.2. WRF-L/3D: Real Cases
3. Results
3.1. Benchmark 2-D WRF-L Dust Simulations
3.2. Changes in Atmospheric Dust Fields Due to Advection Scheme
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UNO3 | Upstream Non-Oscillating III |
C2F | Coarse to Fine dust load ratio |
Appendix A
Variable | UNO3-UPWIND Absolute Difference [g/m2] | UNO3-UPWIND Relative Difference [%] |
---|---|---|
Total Dust load | −0.009 | −0.8 |
Dust load bin 1 | −0.003 | −2 |
Dust load bin 2 | −0.007 | −1.6 |
Dust load bin 3 | 0.007 | 0.3 |
Dust load bin 4 | 7 × 10−4 | 1.9 |
Dust load bin 5 | 9.2 × 10−5 | 2.3 |
References
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Contribution of the World’s Main Dust Source Regions to the Global Cycle of Desert Dust. Atmos. Chem. Phys. 2021, 21, 8169–8193. [Google Scholar] [CrossRef]
- Chen, S.-H.; Liu, Y.-C.; Nathan, T.R.; Davis, C.; Torn, R.; Sowa, N.; Cheng, C.-T.; Chen, J.-P. Modeling the Effects of Dust-Radiative Forcing on the Movement of Hurricane Helene (2006): Effect of Dust-Radiative Forcing on Helene Movement. Q. J. R. Meteorol. Soc. 2015, 141, 2563–2570. [Google Scholar] [CrossRef]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Özsoy, E. Interactive Dust-radiation Modeling: A Step to Improve Weather Forecasts. J. Geophys. Res. 2006, 111, 2005JD006717. [Google Scholar] [CrossRef]
- Spyrou, C.; Kallos, G.; Mitsakou, C.; Athanasiadis, P.; Kalogeri, C.; Iacono, M.J. Modeling the Radiative Effects of Desert Dust on Weather and Regional Climate. Atmos. Chem. Phys. 2013, 13, 5489–5504. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Fountoulakis, I.; Gkikas, A.; Kosmopoulos, P.G.; Nastos, P.T.; Hatzaki, M.; Kazadzis, S. 15-Year Analysis of Direct Effects of Total and Dust Aerosols in Solar Radiation/Energy over the Mediterranean Basin. Remote Sens. 2022, 14, 1535. [Google Scholar] [CrossRef]
- Guieu, C.; Ridame, C.; Pulido-Villena, E.; Bressac, M.; Desboeufs, K.; Dulac, F. Impact of Dust Deposition on Carbon Budget: A Tentative Assessment from a Mesocosm Approach. Biogeosciences 2014, 11, 5621–5635. [Google Scholar] [CrossRef]
- Okin, G.S.; Mladenov, N.; Wang, L.; Cassel, D.; Caylor, K.K.; Ringrose, S.; Macko, S.A. Spatial Patterns of Soil Nutrients in Two Southern African Savannas. J. Geophys. Res. 2008, 113, 2007JG000584. [Google Scholar] [CrossRef]
- Kok, J.F.; Storelvmo, T.; Karydis, V.A.; Adebiyi, A.A.; Mahowald, N.M.; Evan, A.T.; He, C.; Leung, D.M. Mineral Dust Aerosol Impacts on Global Climate and Climate Change. Nat. Rev. Earth Environ. 2023, 4, 71–86. [Google Scholar] [CrossRef]
- Nabat, P.; Kanji, Z.A.; Mallet, M.; Denjean, C.; Solmon, F. Aerosol-Cloud Interactions and Impact on Regional Climate. In Atmospheric Chemistry in the Mediterranean Region; Dulac, F., Sauvage, S., Hamonou, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 403–425. ISBN 978-3-030-82384-9. [Google Scholar]
- Fountoulakis, I.; Tsekeri, A.; Kazadzis, S.; Amiridis, V.; Nersesian, A.; Tsichla, M.; Proestakis, E.; Gkikas, A.; Papachristopoulou, K.; Barlakas, V.; et al. A Sensitivity Study on Radiative Effects Due to the Parameterization of Dust Optical Properties in Models. Atmos. Chem. Phys. 2024, 24, 4915–4948. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Lau, W.K.M.; Pu, B.; Wang, C. Interactions of Asian Mineral Dust with Indian Summer Monsoon: Recent Advances and Challenges. Earth-Sci. Rev. 2021, 215, 103562. [Google Scholar] [CrossRef]
- Atkinson, J.D.; Murray, B.J.; Woodhouse, M.T.; Whale, T.F.; Baustian, K.J.; Carslaw, K.S.; Dobbie, S.; O’Sullivan, D.; Malkin, T.L. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355–358. [Google Scholar] [CrossRef]
- Chatziparaschos, M.; Daskalakis, N.; Myriokefalitakis, S.; Kalivitis, N.; Nenes, A.; Gonçalves Ageitos, M.; Costa-Surós, M.; Pérez García-Pando, C.; Zanoli, M.; Vrekoussis, M.; et al. Role of K-Feldspar and Quartz in Global Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Atmos. Chem. Phys. 2023, 23, 1785–1801. [Google Scholar] [CrossRef]
- Froyd, K.D.; Yu, P.; Schill, G.P.; Brock, C.A.; Kupc, A.; Williamson, C.J.; Jensen, E.J.; Ray, E.; Rosenlof, K.H.; Bian, H.; et al. Dominant Role of Mineral Dust in Cirrus Cloud Formation Revealed by Global-Scale Measurements. Nat. Geosci. 2022, 15, 177–183. [Google Scholar] [CrossRef]
- Adebiyi, A.; Kok, J.F.; Murray, B.J.; Ryder, C.L.; Stuut, J.-B.W.; Kahn, R.A.; Knippertz, P.; Formenti, P.; Mahowald, N.M.; Pérez García-Pando, C.; et al. A Review of Coarse Mineral Dust in the Earth System. Aeolian Res. 2023, 60, 100849. [Google Scholar] [CrossRef]
- Nenes, A.; Murray, B.; Bougiatioti, A. Mineral Dust and Its Microphysical Interactions with Clouds. In Mineral Dust; Knippertz, P., Stuut, J.-B.W., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 287–325. ISBN 978-94-017-8977-6. [Google Scholar]
- Karydis, V.A.; Tsimpidi, A.P.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J. Global Impact of Mineral Dust on Cloud Droplet Number Concentration. Atmos. Chem. Phys. 2017, 17, 5601–5621. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Reicher, N.; Budke, C.; Eickhoff, L.; Raveh-Rubin, S.; Kaplan-Ashiri, I.; Koop, T.; Rudich, Y. Size-Dependent Ice Nucleation by Airborne Particles during Dust Events in the Eastern Mediterranean. Atmos. Chem. Phys. 2019, 19, 11143–11158. [Google Scholar] [CrossRef]
- Feingold, G.; Cotton, W.R.; Kreidenweis, S.M.; Davis, J.T. The Impact of Giant Cloud Condensation Nuclei on Drizzle Formation in Stratocumulus: Implications for Cloud Radiative Properties. J. Atmos. Sci. 1999, 56, 4100–4117. [Google Scholar] [CrossRef]
- Levin, Z.; Teller, A.; Ganor, E.; Yin, Y. On the Interactions of Mineral Dust, Sea-salt Particles, and Clouds: A Measurement and Modeling Study from the Mediterranean Israeli Dust Experiment Campaign. J. Geophys. Res. 2005, 110, 2005JD005810. [Google Scholar] [CrossRef]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L.A.; Prospero, J.M.; Omar, A.; Winker, D.; Yang, Y.; Zhang, Y.; et al. The Fertilizing Role of African Dust in the Amazon Rainforest: A First Multiyear Assessment Based on Data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 2015, 42, 1984–1991. [Google Scholar] [CrossRef]
- Van Der Does, M.; Knippertz, P.; Zschenderlein, P.; Giles Harrison, R.; Stuut, J.-B.W. The Mysterious Long-Range Transport of Giant Mineral Dust Particles. Sci. Adv. 2018, 4, eaau2768. [Google Scholar] [CrossRef]
- Weinzierl, B.; Petzold, A.; Esselborn, M.; Wirth, M.; Rasp, K.; Kandler, K.; Schütz, L.; Koepke, P.; Fiebig, M. Airborne Measurements of Dust Layer Properties, Particle Size Distribution and Mixing State of Saharan Dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 96. [Google Scholar] [CrossRef]
- Renard, J.-B.; Dulac, F.; Durand, P.; Bourgeois, Q.; Denjean, C.; Vignelles, D.; Couté, B.; Jeannot, M.; Verdier, N.; Mallet, M. In Situ Measurements of Desert Dust Particles above the Western Mediterranean Sea with the Balloon-Borne Light Optical Aerosol Counter/Sizer (LOAC) during the ChArMEx Campaign of Summer 2013. Atmos. Chem. Phys. 2018, 18, 3677–3699. [Google Scholar] [CrossRef]
- Ryder, C.L.; Highwood, E.J.; Walser, A.; Seibert, P.; Philipp, A.; Weinzierl, B. Coarse and Giant Particles Are Ubiquitous in Saharan Dust Export Regions and Are Radiatively Significant over the Sahara. Atmos. Chem. Phys. 2019, 19, 15353–15376. [Google Scholar] [CrossRef]
- Varga, G.; Dagsson-Waldhauserová, P.; Gresina, F.; Helgadottir, A. Saharan Dust and Giant Quartz Particle Transport towards Iceland. Sci. Rep. 2021, 11, 11891. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, A.A.; Kok, J.F. Climate Models Miss Most of the Coarse Dust in the Atmosphere. Sci. Adv. 2020, 6, eaaz9507. [Google Scholar] [CrossRef]
- Drakaki, E.; Amiridis, V.; Tsekeri, A.; Gkikas, A.; Proestakis, E.; Mallios, S.; Solomos, S.; Spyrou, C.; Marinou, E.; Ryder, C.L.; et al. Modeling Coarse and Giant Desert Dust Particles. Atmos. Chem. Phys. 2022, 22, 12727–12748. [Google Scholar] [CrossRef]
- Meng, J.; Huang, Y.; Leung, D.M.; Li, L.; Adebiyi, A.A.; Ryder, C.L.; Mahowald, N.M.; Kok, J.F. Improved Parameterization for the Size Distribution of Emitted Dust Aerosols Reduces Model Underestimation of Super Coarse Dust. Geophys. Res. Lett. 2022, 49, e2021GL097287. [Google Scholar] [CrossRef] [PubMed]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully Coupled “Online” Chemistry within the WRF Model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; NCAR: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Rood, R.B. Numerical Advection Algorithms and Their Role in Atmospheric Transport and Chemistry Models. Rev. Geophys. 1987, 25, 71–100. [Google Scholar] [CrossRef]
- Vuolo, M.R.; Menut, L.; Chepfer, H. Impact of Transport Schemes on Modeled Dust Concentrations. J. Atmos. Ocean. Technol. 2009, 26, 1135–1143. [Google Scholar] [CrossRef]
- Ginoux, P. Effects of Nonsphericity on Mineral Dust Modeling. J. Geophys. Res. 2003, 108, 4052. [Google Scholar] [CrossRef]
- Benduhn, F.; Lawrence, M.G. An Investigation of the Role of Sedimentation for Stratospheric Solar Radiation Management. JGR Atmos. 2013, 118, 7905–7921. [Google Scholar] [CrossRef]
- Li, J.-G. Upstream Nonoscillatory Advection Schemes. Mon. Weather. Rev. 2008, 136, 4709–4729. [Google Scholar] [CrossRef]
- Marinou, E.; Paschou, P.; Tsikoudi, I.; Tsekeri, A.; Daskalopoulou, V.; Kouklaki, D.; Siomos, N.; Spanakis-Misirlis, V.; Voudouri, K.A.; Georgiou, T.; et al. An Overview of the ASKOS Campaign in Cabo Verde. In Proceedings of the 16th International Conference on Meteorology, Climatology and Atmospheric Physics & COMECAP 2023, Athens, Greece, 21 September 2023; p. 200. [Google Scholar]
- Leonard, B.P. The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection. Comput. Methods Appl. Mech. Eng. 1991, 88, 17–74. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); Open-File Report; US Geological Survey: Reston, VA, USA, 2011.
- Gilliam, R.C.; Pleim, J.E. Performance Assessment of New Land Surface and Planetary Boundary Layer Physics in the WRF-ARW. J. Appl. Meteorol. Climatol. 2010, 49, 760–774. [Google Scholar] [CrossRef]
- LeGrand, S.L.; Polashenski, C.; Letcher, T.W.; Creighton, G.A.; Peckham, S.E.; Cetola, J.D. The AFWA Dust Emission Scheme for the GOCART Aerosol Model in WRF-Chem v3.8.1. Geosci. Model Dev. 2019, 12, 131–166. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database—Automated near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 Aerosol Retrieval Algorithm, Associated Uncertainties and Comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Janić, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Off. Note 2002, 437, 61. [Google Scholar]
- Janjic, Z. The Surface Layer Parameterization in the NCEP Eta Model; World Meteorological Organization-Publications-WMO TD: Geneva, Switzerland, 1996; pp. 4–16. [Google Scholar]
- Monin, A.S.; Obukhov, A.M. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V.I. A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques: Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Bound.-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Olson, J.B.; Kenyon, J.S.; Angevine, W.; Brown, J.M.; Pagowski, M.; Sušelj, K. A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW. NOAA Tech. Memo. OAR GSD 2019, 61, 37. [Google Scholar] [CrossRef]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and Distributions of Dust Aerosols Simulated with the GOCART Model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
2-D Experiments | Horizontal Resolution Δx (km) | Vertical Resolution ± z′ (km) | Numerical Scheme for Gravitational Settling |
---|---|---|---|
UPWIND_L30 | 50 km | 1.058 ± 0.187 | UPWIND_WRF |
UPWIND_L60 | 50 km | 0.516 ± 0.086 | UPWIND_WRF |
UPWIND_L120 | 50 km | 0.258 ± 0.046 | UPWIND_WRF |
UPWIND_L240 | 50 km | 0.129 ± 0.023 | UPWIND_WRF |
UNO3_L30 | 50 km | 1.058 ± 0.187 | UNO3 |
UNO3_L60 | 50 km | 0.516 ± 0.086 | UNO3 |
UNO3_L120 | 50 km | 0.258 ± 0.046 | UNO3 |
UNO3_L240 | 50 km | 0.129 ± 0.023 | UNO3 |
# of Horizontal Grid Points in the x-Direction | Lx * (km) | Δx (km) | Δz (km) Median | ± z′ (km) | Lz * (km) | # of Vertical Levels |
---|---|---|---|---|---|---|
91 | 5050 | 50 | 1.005 | 1.058 ± 0.187 | 30 | 30 |
91 | 5050 | 50 | 0.496 | 0.516 ± 0.086 | 30 | 60 |
91 | 5050 | 50 | 0.246 | 0.258 ± 0.046 | 30 | 120 |
91 | 5050 | 50 | 0.122 | 0.129 ± 0.023 | 30 | 240 |
Model Levels | Heights (km) | Δz (km) |
---|---|---|
1 | 0 | - |
2 | 0.05 | 0.05 |
3 | 0.1139 | 0.0639 |
4 | 0.1952 | 0.0813 |
5 | 0.298 | 0.1028 |
6 | 0.4272 | 0.1291 |
7 | 0.5878 | 0.1607 |
8 | 0.7855 | 0.1977 |
9 | 1.0256 | 0.24 |
10 | 1.3126 | 0.287 |
11 | 1.6496 | 0.337 |
12 | 2.0377 | 0.3882 |
13 | 2.4756 | 0.4379 |
14 | 2.9593 | 0.4837 |
15 | 3.4851 | 0.5258 |
16 | 4.0561 | 0.5709 |
17 | 4.675 | 0.6189 |
18 | 5.3449 | 0.6698 |
19 | 6.0684 | 0.7235 |
20 | 6.8482 | 0.7798 |
21 | 7.6865 | 0.8383 |
22 | 8.5850 | 0.8985 |
23 | 9.5449 | 0.9599 |
24 | 10.5662 | 1.0213 |
25 | 11.6479 | 1.0817 |
26 | 12.7033 | 1.0554 |
27 | 13.7271 | 1.0237 |
28 | 14.7508 | 1.0237 |
29 | 15.7746 | 1.0237 |
30 | 16.7983 | 1.0237 |
31 | 17.8221 | 1.0237 |
32 | 18.8458 | 1.0237 |
33 | 19.8696 | 1.0237 |
Parameterization | Reference | Namelist Variable | Namelist Option |
---|---|---|---|
Surface model | Noah [46] | sf_surface_physics | 2 |
Surface layer | Monin–Obukov–Janjic (or Eta Similarity Scheme) [47,48,49] | sf_sfclay_physics | 2 |
Radiation (SW & LW) | RRTMG [50] | ra_sw(lw)_physics | 4 |
Microphysics | Morrison two-moment [51] | mp_physics | 10 |
Cumulus | Grell-3 [52,53] | cu_physics | 5 |
Boundary layer | MYNN 2.5 [54,55] | bl_pbl_physics | 5 |
Chemistry | GOCART simple [56,57] | chem_opt | 300 |
Dust scheme | AFWA [43] | dust_opt | 3 |
3-D Experiments | Horizontal Resolution Δx (km) | # of Vertical Levels | Numerical Scheme for Gravitational Settling | Simulation Period |
---|---|---|---|---|
UPWIND_ASKOS | 15 km × 15 km | 33 | 1st order UPWIND (Default) | 1 June–30 September 2022 |
UNO3_ASKOS | 15 km × 15 km | 33 | UNO3 | 1 June–30 September 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drakaki, E.; Mallios, S.; García-Pando, C.P.; Katsafados, P.; Amiridis, V. Small but Notable Influence of Numerical Diffusion on Super Coarse Dust Sedimentation: Insights from UNO3 vs. Upwind Schemes. Atmosphere 2025, 16, 1086. https://doi.org/10.3390/atmos16091086
Drakaki E, Mallios S, García-Pando CP, Katsafados P, Amiridis V. Small but Notable Influence of Numerical Diffusion on Super Coarse Dust Sedimentation: Insights from UNO3 vs. Upwind Schemes. Atmosphere. 2025; 16(9):1086. https://doi.org/10.3390/atmos16091086
Chicago/Turabian StyleDrakaki, Eleni, Sotirios Mallios, Carlos Perez García-Pando, Petros Katsafados, and Vassilis Amiridis. 2025. "Small but Notable Influence of Numerical Diffusion on Super Coarse Dust Sedimentation: Insights from UNO3 vs. Upwind Schemes" Atmosphere 16, no. 9: 1086. https://doi.org/10.3390/atmos16091086
APA StyleDrakaki, E., Mallios, S., García-Pando, C. P., Katsafados, P., & Amiridis, V. (2025). Small but Notable Influence of Numerical Diffusion on Super Coarse Dust Sedimentation: Insights from UNO3 vs. Upwind Schemes. Atmosphere, 16(9), 1086. https://doi.org/10.3390/atmos16091086