Determining Wind Shear Threshold by Using Historical Sounding Data in Experimental Area
Abstract
1. Introduction
2. Principles and Implementation Process
2.1. Theoretical Derivation
- α—Wind shear index;
- Vy—Vy is the wind speed corresponding to the desired height of Zy in m/s;
- Vx—Vx is the measured known wind speed corresponding to the height Zx, in m/s;
- Zy—Altitude unit of height layer at Zy in meters;
- Zx—Altitude unit of height layer at Zx in meters.
- α—Wind shear index;
- V1—V1 is the wind speed corresponding to the desired height of Z1 in m/s;
- V2—V2 is the measured known wind speed corresponding to the height Z2, in m/s;
- Z2—Altitude unit of height layer at Z2, in meters;
- Z1—Altitude unit of height layer at Z1, in meters.
- ws1—Wind speed of a certain layer, in m/s;
- wd1—Wind direction of a certain layer, in deg;
- ws2—Wind speed of the previous layer corresponding to ws1, in m/s;
- wd2—Wind direction of the previous layer corresponding to ws1, in deg;
- θ—Angle between the two layers of vector wind direction, in deg;
- PWS—PWS is the modulus of the wind vector shear.
- ws1—Wind speed of a certain layer, in m/s;
- wd1—Wind direction of a certain layer, in deg;
- ws2—Wind speed of the previous layer corresponding to ws1, in m/s;
- wd2—Wind direction of the previous layer corresponding to ws1, in deg;
- θ—Angle between the two layers of vector wind direction, in deg
- PWS—PWS is the modulus of the wind vector shear
2.2. Implementation Process
3. Simulation Validation Experiments and Results
3.1. Simulation Verification Experiment
- —Polynomial fitting function, referring to wind speed here;
- p1, p2, …, pn, pn+1—Fitted polynomial coefficient;
- —Wind shear index.
3.2. Experimental Verification Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LLWAS | Low-level wind shear alert system |
References
- Zhao, S.; Yang, C.; Shan, Y.; Zhu, F. Identification and Analysis of Wind Shear Within the Transiting Frontal System at Xining International Airport Using Lidar. Remote Sens. 2025, 17, 732. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, L.; Hu, Z.; Wang, J.; Zhang, K.; Liang, J.; Wang, Y.; Zhang, Z.; Xu, L.; Wang, J.; et al. Study of Low-Level Wind Shear and Its Evolution Based on LIDAR and Aircraft Reports Identification. Plateau Meteorol. 2023, 42, 1338–1348. (In Chinese) [Google Scholar]
- Zhang, Y.; Guo, J.; Yang, Y.; Wang, Y.; Yim, S.H. Vertical Wind Shear Modulates Particulate Matter Pollutions: A Perspective from Radar Wind profiler Observations in Beijing, China. Remote Sens. 2020, 12, 546. (In Chinese) [Google Scholar] [CrossRef]
- Machidon, D.; Istrate, M.; Beniuga, R. Wind Shear Coefficient Estimation Based on LIDAR Measurements to Improve Power Law Extrapolation Performance. Remote Sens. 2025, 17, 23. [Google Scholar] [CrossRef]
- Jin, S.L.; Liu, X.L.; Li, H.X.; Shang, K.Z.; Wang, S.G. A contrast study on vertical wind shear characteristics of different underlying surfaces. J. Lanzhou Univ. (Nat. Sci.) 2019, 55, 340–346. (In Chinese) [Google Scholar]
- Browning, K.A. Now Casting; Academic Press Inc.: New York, NY, USA, 1982. [Google Scholar]
- Mccarthy, J.; Wilson, J.; Fujita, T. The Joint Airport Weather Studies project. Bull. Am. Meteorol. Soc. 2013, 63, 15–22. [Google Scholar] [CrossRef]
- Harris, F.I.; Glover, K.M.; Smythe, G.R. Gust front detection and prediction. In Proceedings of the Preprints 14th Conference on Severe Local Storms, Indianapolis, IN, USA, 29 October–1 November 1985; Bulletin of the American Meteorological Society: Boston, MA, USA, 1985; pp. 342–345. [Google Scholar]
- Uyeda, H.; Zrnić, D.S. Automatic Detection of Gust Fronts. J. Atmos. Ocean. Technol. 1985, 3, 672–679. [Google Scholar]
- Hermes, L.G.; Witt, A.; Smith, S.D.; Klingle-Wilson, D.; Morris, D.; Stumpf, G.J.; Eilts, M.D. The Gust-Front Detection and Wind-Shift Algorithms for the Terminal Doppler Weather Radar System. J. Atmos. Ocean. Technol. 1993, 10, 693–709. [Google Scholar] [CrossRef]
- Köpp, F.; Rahm, S.; Smalikho, I. Characterization of Aircraft Wake Vortices by 2-μm Pulsed Doppler Lidar. J. Atmos. Ocean. Technol. 2004, 21, 194–206. [Google Scholar] [CrossRef]
- Keohan, C. Ground-based wind shear detection systems have become vital to safe operations. Icao J. 2007, 62, 16–34. [Google Scholar]
- Hu, M.B.; Tan, Z.Q.; Tang, D.Z.; Xie, P. Method for detecting low-level wind shear using a Doppler weather radar. Trans. Atmos. Sci. 2000, 23, 113–118. [Google Scholar]
- Li, S.M.; Chen, B.W. Application of Doppler Laser Radar at Hong Kong International Airport. In Proceedings of the Meeting on Civil Aviation Meteorological Services and Technical Exchange of the China Meteorological Administration, Beijing, China, 1 October 2004. [Google Scholar]
- Chan, P.W.; Lee, Y.F. Application of Short-Range Lidar in Wind Shear Alerting. J. Atmos. Ocean. Technol. 2012, 29, 207–220. [Google Scholar] [CrossRef]
- Wang, N.; Liu, L.P.; Xu, B.X.; Zhang, J.Y. Research on methods for identifying low-altitude wind shear and convergence lines using Doppler radar data. In Proceedings of the Annual Conference of the Chinese Meteorological Society, Guangzhou, China, 22 November 2007. [Google Scholar]
- Wei, Y.; Zhang, X.G. Research and Improve on a Method of Radial Velocity Azimuth Composite Shear Using Doppler Weather Radar. J. Electron. Inf. Technol. 2010, 32, 43–47. [Google Scholar] [CrossRef]
- Zheng, J.F.; Zhang, J.; Zhu, K.Y.; Liu, L.; Liu, Y. Gust Front Statistical Characteristics and Automatic Identification Algorithm for CINRAD. J. Meteorol. Res. 2014, 28, 607–623. [Google Scholar] [CrossRef]
- Jiang, L.H.; Zhang, C.Q.; Xiong, X.L.; Zhuang, Z.B. Study on type recognition of low-level wind shear based on radar image simulation. Laser Infrared 2013, 43, 334–338. (In Chinese) [Google Scholar]
- Hon, K.K.; Chan, P.W. Application of LIDAR-derived eddy dissipation rate profiles in low-level wind shear and turbulence alerts at Hong Kong International Airport. Meteorol. Appl. 2014, 21, 74–85. [Google Scholar] [CrossRef]
- Chan, P.W. Application of LIDAR-based F-factor in wind shear alerting. Meteorol. Z. 2012, 21, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.E.; Isaminger, M.; Meuse, C.; Vasiloff, S.; Shepherd, T. Comparative analysis of ground-based wind shear detection radars. In Proceedings of the IEEE 1995 International Radar Conference, Alexandria, VA, USA, 8–11 May 1995; pp. 486–495. [Google Scholar]
Month Coefficient | Linear p1x + p2 | Quadratic p1x2 + p2x + p3 | Cubic p1x3 + p2x2 + p3x + p4 | Quadratic p1x4 + p2x3 + p3x2 + p4x + p5 | Fifth p1x5 + p2x4 + p3x3 + p4x2 + p5x + p6 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p1 | p2 | p1 | p2 | p3 | p1 | p2 | p3 | p4 | p1 | p2 | p3 | p4 | p5 | p1 | p2 | p3 | p4 | p5 | p6 | |
1. | −0.82 | 8.3 | 0.011 | −0.9 | 8.3 | 0.0064 | 0.0095 | −0.82 | 8.5 | −0.00063 | 0.019 | −0.084 | −1.2 | 8.6 | −7.4 × 10−5 | 0.0012 | 0.018 | −0.21 | −0.95 | 8.6 |
2. | −0.84 | 8.6 | 0.056 | −1.4 | 8.7 | 0.0025 | 0.0092 | −1.2 | 8.7 | −0.0016 | 0.049 | −0.32 | −0.91 | 8.9 | 0.00034 | −0.014 | 0.19 | −0.76 | −1 | 9.2 |
3. | −0.75 | 9.2 | 0.036 | −1.2 | 9.2 | 0.0022 | −0.02 | 1 | 9.3 | −0.00073 | 0.03 | −0.28 | −0.91 | 9.6 | 8.7 × 10−5 | −0.0048 | 0.082 | −0.38 | −1.4 | 9.7 |
4. | −0.94 | 9.3 | −0.033 | −0.77 | 9.3 | 0.018 | −0.23 | −0.87 | 9.6 | −0.00046 | 0.024 | −0.21 | −1 | 9.6 | −0.00056 | 0.008 | 0.045 | −0.6 | −0.76 | 9.9 |
5. | −1.1 | 9 | 0.02 | −1.2 | 9 | 0.027 | −0.31 | −0.93 | 9.3 | −0.0038 | 0.09 | −0.47 | −1.3 | 9.4 | −0.00021 | 0.00059 | 0.074 | −0.55 | −1.1 | 9.4 |
6. | −0.8 | 6.8 | 0.0022 | −0.81 | 6.8 | 0.046 | −0.31 | −1.1 | 7.1 | −0.0026 | 0.068 | −0.27 | −1.3 | 7 | −0.0024 | 0.022 | 0.11 | −0.78 | −1.2 | 7.3 |
7. | −0.95 | 6.7 | 0.0086 | −0.99 | 6.7 | 0.03 | −0.35 | −0.74 | 7 | −0.0052 | 0.11 | −0.51 | −1.1 | 7.1 | −0.00056 | 0.0052 | 0.079 | −0.64 | −0.89 | 7.1 |
8. | −0.92 | 6.6 | 0.024 | −1 | 6.6 | 0.032 | −0.35 | −0.67 | 6.8 | −0.0086 | 0.17 | −0.82 | −0.8 | 7 | 0.00093 | −0.028 | 0.28 | −0.86 | −1.1 | 7 |
9. | −0.69 | 5.9 | −0.0071 | −0.66 | 5.9 | 0.02 | −0.2 | −0.67 | 6.2 | −0.0027 | 0.054 | −0.21 | −0.98 | 6.2 | −8.4 × 10−5 | −0.0012 | 0.05 | −0.24 | −0.93 | 6.2 |
10. | −0.89 | 6.9 | 0.06 | −1.3 | 6.9 | 0.013 | −0.087 | −1.1 | 7.1 | −0.0034 | 0.066 | −0.22 | −1.4 | 7.2 | 0.00021 | −0.0075 | 0.081 | −0.17 | −0.16 | 7.2 |
11. | −0.7 | 8 | 0.024 | −1.1 | 8.1 | 0.0026 | −0.066 | −0.81 | 8.2 | −0.00089 | 0.038 | −0.28 | −0.87 | 8.4 | 9.8 × 10−5 | −0.0054 | 0.079 | −0.3 | −1.2 | 8.4 |
12. | −0.82 | 9 | 0.035 | −1.3 | 9.2 | 0.0034 | −0.052 | −1 | 9.2 | −0.00059 | 0.022 | −0.15 | −1.2 | 9.5 | 2.3 × 10−5 | −0.0015 | 0.029 | −0.12 | −1.4 | 9.5 |
Month | Wind Speed (m/s) |
---|---|
1 | 7.75 |
2 | 7.80 |
3 | 8.52 |
4 | 8.61 |
5 | 8.52 |
6 | 6.32 |
7 | 6.00 |
8 | 6.30 |
9 | 5.50 |
10 | 6.62 |
11 | 7.48 |
12 | 8.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, T.; Zhu, Q.; Dong, X.; Chen, H.; Lin, L.; Liu, X. Determining Wind Shear Threshold by Using Historical Sounding Data in Experimental Area. Atmosphere 2025, 16, 1064. https://doi.org/10.3390/atmos16091064
Shu T, Zhu Q, Dong X, Chen H, Lin L, Liu X. Determining Wind Shear Threshold by Using Historical Sounding Data in Experimental Area. Atmosphere. 2025; 16(9):1064. https://doi.org/10.3390/atmos16091064
Chicago/Turabian StyleShu, Tingting, Qinglin Zhu, Xiang Dong, Houcai Chen, Leke Lin, and Xuan Liu. 2025. "Determining Wind Shear Threshold by Using Historical Sounding Data in Experimental Area" Atmosphere 16, no. 9: 1064. https://doi.org/10.3390/atmos16091064
APA StyleShu, T., Zhu, Q., Dong, X., Chen, H., Lin, L., & Liu, X. (2025). Determining Wind Shear Threshold by Using Historical Sounding Data in Experimental Area. Atmosphere, 16(9), 1064. https://doi.org/10.3390/atmos16091064