An Analysis of the Spatial-Temporal Characteristics and Regulatory Strategies Pertaining to CH4 Emissions in China from 2000 to 2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. CH4 Emission Data
2.1.2. Influencing Factors Data
2.2. Research Methods
2.2.1. Trend Analysis
2.2.2. Spatial Autocorrelation
2.2.3. Spatial Hotspot Analysis
2.2.4. K-Means Analysis
- 1.
- Select the objects, which number is k, as the initial clustering centers;
- 2.
- According to the value of clustering center, each object is assigned to the bunch which is the most similar with;
- 3.
- The average value of each bunch is re-calculated, which is used a new clustering center;
- 4.
- Repeat the steps (2), (3), until the clustering centers no longer vary and the average error function E has already restrained [32].
3. Results
3.1. Spatiotemporal Distribution Characteristics of CH4 Emissions
3.2. Distribution Characteristics of CH4 Emissions by Sectors
3.3. Driving Factors and Cluster Analysis of CH4 Emissions
4. Discussion
4.1. Characteristics of CH4 Emissions
4.2. Regional CH4 Control Strategies
5. Conclusions
- 1.
- Temporally, total CH4 emissions followed a fluctuating upward trajectory with three distinct phases—rapid growth (2000–2010), stabilization (2011–2016), and resurgence (2017–2023)—closely aligned with economic cycles, energy restructuring policies, and waste management advancements.
- 2.
- Spatially, emissions exhibited an east-high-west-low gradient with northwestward expansion, where hotspots were concentrated in coal-mining regions (Inner Mongolia, Shanxi, Shaanxi), accounting for the largest share, followed by agricultural emissions from livestock (Inner Mongolia, Sichuan) and rice paddies (Hunan, Hubei), while waste sector emissions dominated coastal provinces (Shandong, Jiangsu, Guangdong), and industrial contributions remained minimal and spatially uniform. Low-emission zones (Tibet and Qinghai) were correlated with sparse populations and underdevelopment, with Tibet demonstrating a declining trend.
- 3.
- Cluster analysis identified four spatially heterogeneous emission typologies: (i) resource-dependent, coal-driven regions, (ii) economically active, waste-driven regions, (iii) balanced-development, multi-factor regions, and (iv) ecology-rich, agro-petro complex regions. To achieve precise mitigation, we recommend (a) scientifically delineating priority control zones, (b) focusing on key emission sectors for prioritized regulation, and (c) deploying tailored emission-reduction technologies. In addition, in key areas affected by ozone pollution, coordinated control of CH4 reduction and ozone pollution should be strengthened.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Source | Sector | IPCC Sector Code | Sector ID | |
---|---|---|---|---|
Energy Activities | Fossil Fuel Combustion | Petroleum refining, solid fuel manufacturing, mobile sources (others), uncontrolled combustion and coal pile burning, others, processing, solid fuel transportation | 1A1b + 1A1ci + 1A1cii + 1A5biii + 1B1b + 1B2aiii6 + 1B2biii3 + 1B1c | a11 |
Transportation | Rail, other transport | 1A3c + 1A3e | a21 | |
Aviation | 1A3a_LTO + 1A3a_CRS + 1A3a_CDS + 1A3a_SPS | a22 | ||
Water transport | 1A3d | a23 | ||
Road transport | 1A3b_noRES | a24 | ||
Industrial Production Processes | Coal Mining Fugitive Emissions | Coal fuel extraction | 1B1a | a31 |
Oil and Gas System Fugitive Emissions | Oil & natural gas (venting, flaring) | 1B2aiii2 + 1B2aiii3 + 1B2bi + 1B2bii | a41 | |
Other Production Processes | Manufacturing industries and construction | 1A2 | b11 | |
Iron & steel production, ferroalloy production | 2C1 + 2C2 | b12 | ||
Chemical industry | 2B | b13 | ||
Main activity electricity and heat production | 1A1a | b14 | ||
Agriculture | Rice Cultivation | Lime application, urea application, direct emissions from managed soils, rice cultivation | 3C2 + 3C3 + 3C4 + 3C7 | c11 |
Enteric Fermentation | Enteric fermentation | 3A1 | c21 | |
Manure Management | Manure management | 3A2 | c31 | |
LULUCF | Forest Conversion Carbon Emissions (Combustion Emissions) | Biomass burning in croplands | 3C1b | d11 |
Waste Management | Solid Waste | Waste incineration and open burning | 4C | e11 |
Solid waste disposal, biological treatment of solid waste | 4A + 4B | e12 |
References
- IPCC. 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Volume 184. [Google Scholar] [CrossRef]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce CH4 Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Wang, M.; Yang, R.P.; Li, L.P. The Impact of CH4 on Ground-Level Ozone Pollution: Research Progress and Policy Implications. Res. Environ. Sci. 2025, 38, 561–568. [Google Scholar]
- CH4 Tracker. Available online: https://www.iea.org/data-and-statistics/data-tools/CH4-tracker (accessed on 26 June 2025).
- Global CH4 Assessment 2030: Baseline Report. Available online: https://www.unep.org/resources/report/global-methane-assessment-2030-baseline-report (accessed on 26 June 2025).
- Zhang, B.; Guo, J.L.; Gao, J.L.; Zhang, G.S.; Liu, H. Medium- and Long-Term Challenges and Countermeasures for China’s CH4 Emission Control. Eng. Sci. 2024, 2, 185–197. [Google Scholar]
- Peng, Y.Q.; Cai, H.K.; Cai, Z.N. Analysis of Spatio-Temporal Characteristics of CH4 in China from 2003 to 2018. Remote Sens. Technol. Appl. 2024, 39, 841–849. [Google Scholar]
- Guo, H.H.; Zhu, W.X.; Zhang, X.Y.; Zhang, H.; Wei, Y.X.; Hou, X.; Xun, N.N. Temporal and Spatial Distribution Characteristics and Influencing Factors of Near-Surface CH4 Concentration in China. China Environ. Sci. 2024, 44, 593–601. [Google Scholar]
- Han, Y.Y.; Li, X.; Li, S.T.; Han, L.J.; Guo, W.Y.; Wang, X.D.; Wen, K.X. Analysis of Global Surface CH4 Distribution Characteristics and Its Emission Sources. J. Xi’an Polytech. Univ. 2025, 39, 80–88. [Google Scholar]
- Li, X.Y.; Yang, S.Y.; Yu, F.; Liu, D.; Yao, J.H. Research on CH4 Emissions from Oil and Gas Production Systems in China Based on IPCC Inventory Guidelines. Chem. Eng. Des. Commun. 2025, 51, 118–120. [Google Scholar]
- Xu, X.; Li, H.; Chen, C.; Zhang, H.; Chen, S.; Li, J. Research Progress on CH4 Generation and Emission from Urban Sewage Systems. Environ. Eng. 2024, 42, 29–39. [Google Scholar] [CrossRef]
- Kong, B. Research on the Current Situation and Control Policies of CH4 Emissions in the Coal Industry. Coal Process. Compr. Util. 2025, 5, 104–109. [Google Scholar] [CrossRef]
- Fu, C. Influencing Factors and Utilization Pathways of CH4 Emission in Coal Industry. Coal Qual. Technol. 2024, 39, 40–47. [Google Scholar]
- Zhang, J.X.; Liu, J.T.; Huang, M.L.; Wang, H.L.; Hu, W.L. Analysis of Spatiotemporal Heterogeneity and Influencing Factors of CH4 Emissions from Animal Husbandry in China. Res. Environ. Sci. 2025, 38, 1184–1194. [Google Scholar] [CrossRef]
- Yang, C.; Yin, Z.X.; Liu, C.Q.; Chang, H.; Xu, Y.X.; Wang, H.L. Study on CH4 Production of Multiple Agricultural and Rural Organic Solid Wastes by Cooperative Anaerobic Digestion. Acta Sci. Circumstantiae 2023, 43, 153–162. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 26 June 2025).
- Anon. Environmental Epidemiology, Volume 1: Public Health and Hazardous Wastes; National Academy Press: Washington, DC, USA, 1991; Volume 68, pp. 27729–27744. [Google Scholar]
- Wang, T.N.; Wang, Y.P. Spatiotemporal Characteristics and Influencing Factors of CH4 Emissions in the Sichuan Basin Based on the EDGAR Emission Inventory. J. Green Sci. Technol. 2025, 27, 103–110. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.S.; Shan, W.; Deng, C.; Liu, Z.J.; Ji, J. Study on Spatio–Temporal Distribution Mechanism of CH4 Concentration and Geological Release Sources in the Atmospheric Troposphere across Northeast China during 2003–2022. Clim. Environ. Res. 2025, 30, 77–93. [Google Scholar] [CrossRef]
- Olivier, J.G.J.; Bouwman, A.F.; Maas, C.W.M.; Berdowski, J.J.M. Emission Database for Global Atmospheric Research (EDGAR). Stud. Environ. Sci. 1994, 65, 651–659. [Google Scholar]
- Oreggioni, G.D.; Ferraio, F.M.; Crippa, M.; Muntean, M.; Schaaf, E.; Guizzardi, D.; Solazzo, E.; Duerr, M.; Perry, M.; Vignati, E. Climate Change in a Changing World: Socio-Economic and Technological Transitions, Regulatory Frameworks and Trends on Global Greenhouse Gas Emissions from EDGAR v.5.0. Glob. Environ. Change 2021, 70, 102350. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Schiavina, M.; Melchiorri, M.; Pisoni, E.; Graziosi, F.; Muntean, M.; Maes, J.; Dijkstra, L. Insights on the Spatial Distribution of Global, National and Sub-National GHG Emissions in EDGAR v8.0. Earth Syst. Sci. Data Discuss. 2023, 4, 12–23. [Google Scholar]
- Tucker, C.J.; Newcomb, W.W.; Los, S.O.; Prince, S.D. Mean and Inter-Year Variation of Growing-Season Normalized Difference Vegetation Index for the Sahel 1981–1989. Int. J. Remote Sens. 1991, 13, 1133–1135. [Google Scholar] [CrossRef]
- Cai, B.F.; Yu, R. Advance and Evaluation in the Long Time Series Vegetation Trends Research Based on Remote Sensing. J. Remote Sens. 2009, 13, 1170–1186. [Google Scholar]
- Frimpong, B.F.; Koranteng, A.; Molkenthin, F. Analysis of temperature variability utilising Mann–Kendall and Sen’s slope estimator tests in the Accra and Kumasi Metropolises in Ghana. Environ. Syst. Res. 2022, 11, 24. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating Crop Water Deficit Using the Relation Between Surface–Air Temperature and Spectral Vegetation Index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Tu, X.; Fu, C.; Huang, A.; Chen, H.; Ding, X. DBSCAN Spatial Clustering Analysis of Urban “Production–Living–Ecological” Space Based on POI Data: A Case Study of Central Urban Wuhan, China. Int. J. Environ. Res. Public Health 2022, 19, 51–53. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 2010, 24, 12–21. [Google Scholar]
- Zhang, S.L.; Zhang, K. Contrast Study on Global Spatial Autocorrelation Moran’s Index and G-Coefficient. Acta Sci. Nat. Univ. Sun Yat-Sen 2007, 46, 5. [Google Scholar]
- Tian, J.; Lin, Z.; Zhang, S.; Lu, L. Improvement and Parallelism of k-Means Clustering Algorithm. Tsinghua Sci. Technol. 2012, 10, 277–281. [Google Scholar] [CrossRef]
- Napoleon, D.; Lakshmi, P.G. An Efficient k-Means Clustering Algorithm for Reducing Time Complexity Using Uniform Distribution Data Points; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Meng, Y.; Liu, X. Application of k-Means Algorithm Based on Ant Clustering Algorithm in Macroscopic Planning of Highway Transportation Hub. In Proceedings of the 2007 First IEEE International Symposium on Information Technologies and Applications in Education, Kunming, China, 3–8 November 2007. [Google Scholar]
- Hassan, M.M.; Mollick, S.; Yasmin, F. An Unsupervised Cluster-Based Feature Grouping Model for Early Diabetes Detection. Healthc. Anal. 2022, 2, 2–4. [Google Scholar]
- Li, J.; Kang, H.; Sha, H.W. CH4 Emission Control and Environmental Management in Coal Mining Industry. Environ. Impact Assess. 2024, 46, 19–23. [Google Scholar] [CrossRef]
- Hua, E.S.; Chen, M.P.; Cui, Y.R. Analysis of the Impact of Healthy Diet on Agricultural CH4 Emissions. Clim. Change Res. 2023, 19, 559–572. [Google Scholar]
- Li, Y.X.; Wang, X.; Xu, H.W.; Liao, C.H.; Zhang, Y.B. Analysis on CH4 Emission Characteristics and Control Policies of Municipal Waste Disposal in Guangdong Province. Clim. Change Res. 2023, 19, 582–591. [Google Scholar]
- Wang, X.Y.; Deng, X.Z.; Liu, Y.J.; Shi, W.J.; Zhou, D.M. Spatiotemporal Distribution Characteristics and Industry Emission Source Analysis of CH4 Emissions in China from 1970 to 2018. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2022, 3, 419–428. [Google Scholar]
- Liu, J.B.; Xu, X.Y.; Huo, Z.J.; Long, Y. Influence of Coal Pattern Change on Coal Mine CH4 Emission in China. Ecol. Econ. 2021, 37, 1–8. [Google Scholar]
- Liu, W.G.; Zhang, K.S.; Han, J.Y.; Sang, F.Y.; Huang, L. Technology and Prospect Analysis of AMM Development and Utilization. China Coalbed CH4 2016, 13, 3–6. [Google Scholar]
- Yang, S.; Talbot, R.W.; Frish, M.B.; Golston, L.M.; Aubut, N.F.; Zondlo, M.A.; Gretencord, C.; McSpiritt, J. Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle: Measurement System Description and Mass Balance Approach. Atmosphere 2018, 9, 383. [Google Scholar] [CrossRef]
- Xu, H.Y. Greenhouse Gas Emission Control and Development Prospect of Landfill in China. Environ. Sanit. Eng. 2024, 32, 13–18. [Google Scholar]
- Huang, Q.L.; Li, Q.S.; Li, W.Q.; Li, J.Z.; Zhang, K. Promoting the Transformation of Old Industrial Bases Through Energy Revolution. Strateg. Study CAE 2021, 23, 79–85. [Google Scholar] [CrossRef]
- Li, S.Q.; Hua, E.S.; Chen, M.P. The Spatial Evolution of Rice CH4 Emission and Technology Mitigation Potential in China. China Environ. Sci. 2025, 45, 1218–1230. [Google Scholar]
- Zheng, X. Study on China’s Agriculture-Related CH4 Emissions Embodied in Interprovincial Transfer and Mitigation Strategies. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2024. [Google Scholar]
- Jiang, S.; Luo, D.Q.; Liu, X.X.; Xi, F.Y.; Zhao, Y.X. Situation and Recommendations for CH4 Emission Reduction in the Oil and Gas Industry. Contemp. Pet. Petrochem. 2024, 32, 7–10. [Google Scholar]
- Zhao, J.; Zhang, J.; Yang, J.Y.; Ma, H.L.; Gao, J.J.; Zhang, M.; Wang, H. Quantitative Analysis on CH4 Emission Reduction in Oil and Gas Pipeline Industry. Environ. Prot. Oil Gas Fields 2024, 34, 40–44. [Google Scholar]
- Golston, L.T.; Brosy, C.; Schafer, K.; Wolf, B.; McSpiritt, J.; Buchholz, B.; Caulton, D.R.; Pan, D.; Zondlo, M.A.; Yoel, D.; et al. Lightweight mid-infrared methane sensor for unmanned aerial systems. Appl. Phys. B 2017, 123, 170. [Google Scholar] [CrossRef]
- Nzekwu, N.J.; Fernandes, M.A.; Fernandes, G.M.; Monteiro, P.P.; Guiomar, F.P. A Comprehensive Review of UAV-Assisted FSO Relay Systems. Photonics 2024, 11, 274. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wang, J.Y.; Zhang, T.L.; Li, B.L.; Yan, L. Assessment of CH4 Emissions from China’s Agricultural System and Low-Carbon Measures. Environ. Sci. Technol. 2021, 44, 200–208. [Google Scholar]
- Sang, S.X.; Liu, S.Q.; Han, S.J.; Zheng, S.J.; Liu, T.; Zhou, X.Z.; Wang, R.; Wang, M. CH4 Control and Emission Reduction Potential of Coal in China. Coal Geol. Explor. 2023, 4, 159–175. [Google Scholar]
Type | Name | Unit |
---|---|---|
Energy | Fossil energy consumption | 104 tons of standard coal |
Freight turnover serves | 104 persons | |
Industrial | raw coal production | kt |
Crude oil production | kt | |
Natural gas production | kt | |
Agricultural | Rice Sown Area | 103 hectares |
Large Livestock Year-end Inventory | 104 heads | |
Waste | Domestic Waste Collection Volume | kt |
Economic Development | Added value of the secondary industry | Yuan/person |
CH4 Emission and Its Influencing Factors | Type | Resource-Dependent, Coal-Driven Regions | Economically Active, Waste-Driven Regions | Balanced-Development, Multi-Factor Regions | Ecology-Rich, Agro-Petro Complex Regions |
---|---|---|---|---|---|
Emissions/Mt | Min | 4,602,180 | 1,605,693 | 555,974 | 222,045 |
max | 7,935,822 | 3,012,190 | 3,449,280 | 1,904,494 | |
mean | 6,800,180 | 2,464,772 | 1,926,427 | 932,727 | |
Fossil energy consumption/104 tonsof standard coal | Min | 15,186.29 | 31,635.38 | 9877.30 | 2091.27 |
max | 37,668.03 | 49,040.49 | 33,400.14 | 25,196.59 | |
mean | 25,248.51 | 39,198.00 | 19,501.70 | 10,053.97 | |
freight turnover serve/104 persons | Min | 4368.94 | 11,829.27 | 2931.57 | 702.64 |
max | 6473.00 | 28,078.11 | 32,369.69 | 9963.70 | |
mean | 5354.22 | 16,931.45 | 11,242.64 | 2914.58 | |
raw coal production/kt | Min | 74,876.00 | 0.00 | 0.00 | 0.00 |
max | 132,009.00 | 8753.00 | 11,177.00 | 41,305.00 | |
mean | 109,413.00 | 2429.25 | 3375.44 | 6251.43 | |
crude oil production/kt | Min | 0.00 | 0.00 | 0.00 | 0.00 |
max | 2537.00 | 2200.00 | 984.00 | 3575.00 | |
mean | 861.00 | 1059.50 | 208.33 | 841.21 | |
Natural gas production/kt | Min | 132.00 | 0.00 | 0.00 | 0.00 |
max | 307.00 | 124.00 | 19.00 | 554.00 | |
mean | 248.67 | 33.25 | 4.56 | 91.43 | |
Rice Sown Area/103 hectares | Min | 2.16 | 106.43 | 76.59 | 0.00 |
max | 117.23 | 2221.42 | 3967.67 | 3601.37 | |
mean | 75.16 | 1198.23 | 1558.77 | 743.00 | |
Large Livestock Year-end Inventory/104 heads. | Min | 154.13 | 15.54 | 5.80 | 8.44 |
max | 956.88 | 287.04 | 443.60 | 943.91 | |
mean | 421.85 | 109.90 | 249.35 | 444.19 | |
Domestic Waste Collection Volume/kt | Min | 348.56 | 1553.53 | 527.70 | 117.25 |
max | 654.88 | 3280.64 | 1087.87 | 1259.20 | |
mean | 490.04 | 2129.23 | 862.49 | 473.79 | |
added value of the secondary industry/Yuan/person | Min | 11,241.80 | 33,205.20 | 11,458.40 | 1310.90 |
max | 15,933.10 | 55,888.70 | 25,465.00 | 21,157.10 | |
mean | 13,671.90 | 44,237.90 | 18,242.03 | 6989.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, M.; Yang, R.; Li, L.; Feng, X. An Analysis of the Spatial-Temporal Characteristics and Regulatory Strategies Pertaining to CH4 Emissions in China from 2000 to 2023. Atmosphere 2025, 16, 1062. https://doi.org/10.3390/atmos16091062
Yang L, Wang M, Yang R, Li L, Feng X. An Analysis of the Spatial-Temporal Characteristics and Regulatory Strategies Pertaining to CH4 Emissions in China from 2000 to 2023. Atmosphere. 2025; 16(9):1062. https://doi.org/10.3390/atmos16091062
Chicago/Turabian StyleYang, Lin, Min Wang, Rupu Yang, Liping Li, and Xiangzhao Feng. 2025. "An Analysis of the Spatial-Temporal Characteristics and Regulatory Strategies Pertaining to CH4 Emissions in China from 2000 to 2023" Atmosphere 16, no. 9: 1062. https://doi.org/10.3390/atmos16091062
APA StyleYang, L., Wang, M., Yang, R., Li, L., & Feng, X. (2025). An Analysis of the Spatial-Temporal Characteristics and Regulatory Strategies Pertaining to CH4 Emissions in China from 2000 to 2023. Atmosphere, 16(9), 1062. https://doi.org/10.3390/atmos16091062