A New Filtration Model of a Particulate Filter for Accurate Estimation of Particle Number Emissions
Abstract
1. Introduction
2. Materials and Methods
2.1. Miniature GPF Testing with a Particle Generator
2.2. A New Filtration Model of a Particulate Filter
2.3. Full-Size GPF Testing with a G-DI Engine
- 3000 rpm/100 Nm
- 3000 rpm/50 Nm
- 2000 rpm/100 Nm
- 2000 rpm/50 Nm
- 1000 rpm/50 Nm
3. Results
3.1. Pressure Drop of the Miniature GPF Test Piece in a Clean State
3.2. Emissions Downstream of the Miniature GPF Test Piece with CAST
3.3. Emissions Downstream of the Full-Size GPF with G-DI Engine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | AVL particle counter |
CAST | combustion aerosol standard |
CFD | computational fluid dynamics |
CMD | count median diameter |
CPC | condensation particle counter |
CS | catalytic stripper |
CVS | constant volume sampler |
DPF | diesel particulate filter |
EC | elemental carbon |
ET | evaporation tube |
G-DI | gasoline direct injection |
GMD | geometric mean diameter |
GPF | gasoline particulate filter |
GTR | global technical regulation |
HD | heavy-duty |
ISO | International Organization for Standardization |
MSS2 | AVL micro soot sensor 2 |
NRMM | non-road mobile machinery |
LD | light duty |
PCRF | particle number concentration reduction factor |
PEMS | portable emissions measurement system |
PF | particulate filter |
PM | particulate matter |
PMP | particle measurement programme |
PND1 | particle number diluter 1 |
PND2 | particle number diluter 2 |
PNC | particle number counter |
RDE | real driving emission |
SEM | scanning electron microscopy |
SPN10 | solid particle number in diameter above 10 nm |
SPN23 | solid particle number in diameter above 23 nm |
SV | space velocity |
TOT | thermal and optical transmittance |
TWC | three-way catalyst |
UDC | urban driving cycle |
UNECE | United Nations Economic Commission for Europe |
VPR | volatile particle remover |
WHO | World Health Organization |
WLTC | worldwide harmonized light vehicles test cycle |
Nomenclature
b | collector diameter |
CD | a coefficient for Brownian diffusion collection efficiency |
CR,A | the first coefficient for interception collection efficiency |
CR,B | the second coefficient for interception collection efficiency |
dc | collector diameter |
dc,i | initial collector diameter |
dpore,i | initial pore diameter |
Edep,j | overall filtration efficiency of PM class j |
l | a number of slabs consisting of a wall |
mPM,wall | PM mass deposited in a wall |
mPM,cake | PM mass of a cake layer |
mPMj,in | mass of PM class j in an inlet channel |
mPMj,wall | mass of PM class j in a wall |
mPMj,out | mass of PM class j in an outlet channel |
mass flux of PM class j exiting an inlet channel at its south side boundary | |
mass flux of PM class j exiting a wall at its north side boundary | |
mass flux of PM class j entering an outlet channel at its north side boundary | |
NR,j | interception parameter |
Pej | Peclet number for PM class j |
q | PM mass threshold for attaining 100% filtration efficiency of cake layers |
U∞ | collector approach velocity |
ugw,sf | superficial wall velocity |
γ | collection efficiency of a cake layer |
∆x | slab thickness |
εwall | wall porosity |
εwall,i | initial wall porosity |
ζwall | a fraction of deposited PM in a wall |
ζslip | a fraction of persistently slipped PM |
ηD,j | collection efficiency of PM class j due to Brownian diffusion |
ηR,j | collection efficiency of PM class j due to interception |
ηDR,j | combined collection efficiency of PM class j |
ξ | a persistent slip factor |
ρPM,wall | density of deposited PM in a wall |
Φ | a partition factor |
Φm | a modified partition factor |
Φu | an updated partition factor |
ψ | a percolation factor |
References
- Fowler, D.; Brimblecombe, P.; Burrows, J.; Heal, M.R.; Grennfelt, P.; Stevenson, D.S.; Jowett, A.; Nemitz, E.; Coyle, M.; Liu, X.; et al. A Chronology of Global Air Quality. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190314. [Google Scholar] [CrossRef]
- Bell, M.L.; Davis, D.L. Reassessment of the Lethal London Fog of 1952: Novel Indicators of Acute and Chronic Consequences of Acute Exposure to Air Pollution. Environ. Health Perspect. 2001, 109 (Suppl. S3), 389–394. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Welstand, J.S. Vehicle Emissions and Air Quality: The Early Years (1940s–1950s). Atmosphere 2021, 12, 1354. [Google Scholar] [CrossRef]
- Harrison, R.M. Airborne Particulate Matter. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190319. [Google Scholar] [CrossRef] [PubMed]
- Pope III, C.A.; Coleman, N.; Pond, Z.A.; Burnett, R.T. Fine Particulate Air Pollution and Human Mortality: 25+ Years of Cohort Studies. Environ. Res. 2020, 183, 108924. [Google Scholar] [CrossRef]
- Ohlwein, S.; Kappeler, R.; Kutlar Joss, M.; Künzli, N.; Hoffmann, B. Health Effects of Ultrafine Particles: A Systematic Literature Review Update of Epidemiological Evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef]
- Kwon, H.-S.; Ryu, M.H.; Carlsten, C. Ultrafine Particles: Unique Physicochemical Properties Relevant to Health and Disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- European Commission. Council Directive 91/441/EEC of 26 June 1991 Amending Directive 70/220/EEC on the Approximation of the Laws of the Member States Relating to Measures to Be Taken Against Air Pollution by Emissions from Motor Vehicles. 1991. Available online: http://data.europa.eu/eli/dir/1991/441/oj/eng (accessed on 31 January 2023).
- European Commission. Commission Regulation (EU) 2016/646 of 20 April 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). 2016. Available online: https://eur-lex.europa.eu/eli/reg/2016/646/oj (accessed on 31 January 2023).
- European Commission. Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information (Text with EEA Relevance). 2007. Available online: http://data.europa.eu/eli/reg/2007/715/oj/eng (accessed on 30 January 2023).
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of Automotive Nonvolatile Particle Number Emissions Within the European Legislative Framework: A Review. Aerosol Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 582/2011 of 25 May 2011 Implementing and Amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and Amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council Text with EEA Relevance. 2011. Available online: https://eur-lex.europa.eu/eli/reg/2011/582/oj (accessed on 30 January 2023).
- European Commission. Commission Regulation (EU) No 459/2012 of 29 May 2012 Amending Regulation (EC) No 715/2007 of the European Parliament and of the Council and Commission Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) Text with EEA Relevance. Off. J. Eur. Union. 2012, 48, 258–266. Available online: http://data.europa.eu/eli/reg/2012/459/oj/eng (accessed on 30 January 2023).
- European Commission. Regulation (EU) 2016/1628 of the European Parliament and of the Council of 14 September 2016 on Requirements Relating to Gaseous and Particulate Pollutant Emission Limits and Type-Approval for Internal Combustion Engines for Non-Road Mobile Machinery, Amending Regulations (EU) No 1024/2012 and (EU) No 167/2013, and Amending and Repealing Directive 97/68/EC (Text with EEA Relevance). 2016. Available online: http://data.europa.eu/eli/reg/2016/1628/oj/eng (accessed on 30 January 2023).
- European Commission. Commission Regulation (EU) 2016/427 of 10 March 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0427 (accessed on 30 January 2023).
- Giechaskiel, B.; Clairotte, M.; Valverde-Morales, V.; Bonnel, P.; Kregar, Z.; Franco, V.; Dilara, P. Framework for the Assessment of PEMS (Portable Emissions Measurement Systems) Uncertainty. Environ. Res. 2018, 166, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Bonnel, P.; Perujo, A.; Dilara, P. Solid Particle Number (SPN) Portable Emissions Measurement Systems (PEMS) in the European Legislation: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4819. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Lahde, T.; Giechaskiel, B.; Martini, G. Development of Measurement Methodology for Sub 23 Nm Particle Number (PN) Measurements. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 3, 551–560. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Manfredi, U.; Martini, G. Engine Exhaust Solid Sub-23 Nm Particles: I. Literature Survey. SAE Int. J. Fuels Lubr. 2014, 7, 950–964. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Vanhanen, J.; Väkevä, M.; Martini, G. Investigation of Vehicle Exhaust Sub-23 Nm Particle Emissions. Aerosol Sci. Technol. 2017, 51, 626–641. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Valverde, V.; Otura, M.; Martini, G. Challenging Conditions for Gasoline Particulate Filters (GPFs). Catalysts 2022, 12, 70. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Valverde, V.; Kontses, A.; Melas, A.; Martini, G.; Balazs, A.; Andersson, J.; Samaras, Z.; Dilara, P. Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions. Catalysts 2021, 11, 607. [Google Scholar] [CrossRef]
- Regulation (EU) 2024/1257 of the European Parliament and of the Council of 24 April 2024 on Type-Approval of Motor Vehicles and Engines and of Systems, Components and Separate Technical Units Intended for Such Vehicles, with Respect to Their Emissions and Battery Durability (Euro 7), Amending Regulation (EU) 2018/858 of the European Parliament and of the Council and Repealing Regulations (EC) No 715/2007 and (EC) No 595/2009 of the European Parliament and of the Council, Commission Regulation (EU) No 582/2011, Commission Regulation (EU) 2017/1151, Commission Regulation (EU) 2017/2400 and Commission Implementing Regulation (EU) 2022/1362Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/reg/2024/1257/oj/eng (accessed on 27 August 2025).
- Konstandopoulos, A.G.; Kostoglou, M.; Skaperdas, E.; Papaioannou, E.; Zarvalis, D.; Kladopoulou, E. Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging; SAE Technical Paper Series 2000-03-06; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Masoudi, M.; Konstandopoulos, A.G.; Nikitidis, M.S.; Skaperdas, E.; Zarvalis, D.; Kladopoulou, E.; Altiparmakis, C. Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters; SAE Technical Paper Series 2001-01-0911; SAE International: Warrendale, PA, USA, 2001. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Kladopoulou, E. The Optimum Cell Density for Wall-Flow Monolithic Filters: Effects of Filter Permeability, Soot Cake Structure and Ash Loading. Available online: https://www.sae.org/publications/technical-papers/content/2004-01-1133/ (accessed on 30 January 2023).
- Koltsakis, G.; Haralampous, O.; Depcik, C.; Ragone, J.C. Catalyzed Diesel Particulate Filter Modeling. Rev. Chem. Eng. 2013, 29, 1–61. [Google Scholar] [CrossRef]
- Yang, S.; Deng, C.; Gao, Y.; He, Y. Diesel Particulate Filter Design Simulation: A Review. Adv. Mech. Eng. 2016, 8, 1687814016637328. [Google Scholar] [CrossRef]
- Lao, C.T.; Akroyd, J.; Kraft, M. Modelling Treatment of Deposits in Particulate Filters for Internal Combustion Emissions. Prog. Energy Combust. Sci. 2023, 96, 101043. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Johnson, J.H. Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency. SAE Tech. Pap. 1989, 890405, 625–647. [Google Scholar] [CrossRef]
- Stewart, M.; Rector, D. A Mechanistic Model for Particle Deposition in Diesel Particluate Filters Using the Lattice-Boltzmann Technique. In Proceedings of the 28th International Conference on Advanced Ceramics and Composites A: Ceramic Engineering and Science Proceedings, Cocoa Beach, FL, USA, 25–30 January 2004; Available online: https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1002/9780470291184.ch63 (accessed on 5 May 2025).
- Nicolin, P.; Rose, D.; Kunath, F.; Boger, T. Modeling of the Soot Oxidation in Gasoline Particulate Filters. SAE Int. J. Engines 2015, 8, 1253–1260. [Google Scholar] [CrossRef]
- Wurzenberger, J.C.; Triebl, C.; Kutschi, S.; Poetsch, C. Particulate Matter Classification in Filtration and Regeneration-Plant Modeling for SiL and HiL Environment. SAE Int. J. Engines 2017, 10, 1749–1764. [Google Scholar] [CrossRef]
- Wurzenberger, J.C.; Kutschi, S.; Nikodem, A. Ash Transport and Deposition, Cake Formation and Segregation—A Modeling Study on the Impact of Ash on Particulate Filter Performance; SAE Technical Paper 2019-01–0988; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Saito, C.; Nakatani, T.; Miyairi, Y.; Yuuki, K.; Makino, M.; Kurachi, H.; Heuss, W.; Kuki, T.; Furuta, Y.; Kattouah, P.; et al. New Particulate Filter Concept to Reduce Particle Number Emissions; SAE Technical Paper 2011-01-0814; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Ito, Y.; Shimoda, T.; Aoki, T.; Yuuki, K.; Sakamoto, H.; Kato, K.; Thier, D.; Kattouah, P.; Ohara, E.; Vogt, C. Next Generation of Ceramic Wall Flow Gasoline Particulate Filter with Integrated Three Way Catalyst; SAE Technical Paper 2015-01-1073; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Lambert, C.; Chanko, T.; Dobson, D.; Liu, X.; Pakko, J. Gasoline Particle Filter Development. Emiss. Control Sci. Technol. 2017, 3, 105–111. [Google Scholar] [CrossRef]
- Joshi, A.; Johnson, T.V. Gasoline Particulate Filters—A Review. Emiss. Control Sci. Technol. 2018, 4, 219–239. [Google Scholar] [CrossRef]
- Boger, T.; Glasson, T.; Rose, D.; Ingram-Ogunwumi, R.; Wu, H. Next Generation Gasoline Particulate Filters for Uncatalyzed Applications and Lowest Particulate Emissions. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 3, 2452–2461. [Google Scholar] [CrossRef]
- Gong, J.; Rutland, C.J. PDF-Based Heterogeneous Multiscale Filtration Model. Environ. Sci. Technol. 2015, 49, 4963–4970. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Su, C.; Ou, Q.; Lyu, Q.; Pui, D.; Cunningham, M.J. Theoretical Framework of a Polydisperse Cell Filtration Model. Environ. Sci. Technol. 2020, 54, 11230–11236. [Google Scholar] [CrossRef]
- Wang, Y.; Ghosh, R.S.; Gong, J.; Nikodem, A.; Kutschi, S.; Zokoe, J.; Xue, E.J.; Wang, Z.; Honda, T.; Wells, A.; et al. Modeling the Filtration Performance of Ceramic Filters over Transient Cycles of Natural Gas and Diesel Engines. Appl. Energy 2023, 337, 120895. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Yu, H. Numerical Model of Filtration Efficiency Based on Fractal Characteristics of Particulate Matter and Particle Filter. Atmosphere 2023, 14, 1689. [Google Scholar] [CrossRef]
- Hu, Z.; Shen, J.; Gao, X.; Tan, P.; Lou, D. Impact Investigation of Structural Parameters and Inlet Exhaust Gas Boundary Conditions on Particles Trapping Efficiency of Carrier Wall in GPF Based on a Non-Homogeneous Dynamic Extended Capture Model. Energies 2025, 18, 2255. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, F.; He, C. Multi-Scale Non-Uniform Hierarchical Filtering Model Based on Fractal Theory. PLoS ONE 2025, 20, e0315423. [Google Scholar] [CrossRef]
- Nakamura, K.; Sugaya, Y.; Yamaguchi, K.; Kusaka, J.; Arndt, M.; Dardiotis, C. Characterization of Soot Loading and Filtration Efficiency of a Gasoline Particulate Filter with Photoacoustic Sensor and Particle Number Counting Systems. Atmosphere 2023, 14, 476. [Google Scholar] [CrossRef]
- Schindler, W.; Haisch, C.; Beck, H.A.; Niessner, R.; Jacob, E.; Rothe, D. A Photoacoustic Sensor System for Time Resolved Quantification of Diesel Soot Emissions; SAE Technical Paper 2004-01-0968; SAE International: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and Accuracy of a Particle Number Measurement System. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Addendum 15: United Nations Global Technical Regulation No. 15—Amendment 6—Appendix 1. Available online: https://unece.org/transport/documents/2021/01/standards/addendum-15-united-nations-global-technical-regulation-no-0 (accessed on 31 January 2023).
- Vlachos, N.D.; Konstandopoulos, A.G. Digital Materials Methods for DPF Development. SAE Trans. 2006, 115, 79–89. [Google Scholar]
- Karamitros, D.; Koltsakis, G. Model-Based Optimization of Catalyst Zoning on SCR-Coated Particulate Filters. Chem. Eng. Sci. 2017, 173, 514–524. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Arndt, M.; Schindler, W.; Bergmann, A.; Silvis, W.; Drossinos, Y. Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide. SAE Int. J. Engines 2012, 5, 379–399. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Schwelberger, M.; Kleinbach, T.; Roske, H.; Teti, E.; van den Bos, T.; Neils, P.; Delacroix, C.; Jakobsson, T.; et al. Particle Number Measurements Directly from the Tailpipe for Type Approval of Heavy-Duty Engines. Appl. Sci. 2019, 9, 4418. [Google Scholar] [CrossRef]
- ISO 8178-1:2020; Reciprocating Internal Combustion Engines—Exhaust Emission Measurement. Part 1: Test-Bed Measurement Systems of Gaseous and Particulate Emissions. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/79330.html (accessed on 27 August 2025).
- Konstandopoulos, A.G. Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing; SAE Technical Paper Series 2003-01-0846; SAE International: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef]
- Moore, R.H.; Ziemba, L.D.; Dutcher, D.; Beyersdorf, A.J.; Chan, K.; Crumeyrolle, S.; Raymond, T.M.; Thornhill, K.L.; Winstead, E.L.; Anderson, B.E. Mapping the Operation of the Miniature Combustion Aerosol Standard (Mini-CAST) Soot Generator. Aerosol Sci. Technol. 2014, 48, 467–479. [Google Scholar] [CrossRef]
- Ess, M.N.; Bertò, M.; Irwin, M.; Modini, R.L.; Gysel-Beer, M.; Vasilatou, K. Optical and Morphological Properties of Soot Particles Generated by the miniCAST 5201 BC Generator. Aerosol Sci. Technol. 2021, 55, 828–847. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Wang, X.; Horn, H.-G.; Spielvogel, J.; Gerhart, C.; Southgate, J.; Jing, L.; Kasper, M.; Drossinos, Y.; Krasenbrink, A. Calibration of Condensation Particle Counters for Legislated Vehicle Number Emission Measurements. Aerosol Sci. Technol. 2009, 43, 1164–1173. [Google Scholar] [CrossRef]
- Oo, H.M.; Karin, P.; Charoenphonphanich, C.; Chollacoop, N.; Hanamura, K. Physicochemical Characterization of Direct Injection Engines’s Soot Using TEM, EDS, X-Ray Diffraction and TGA. J. Energy Inst. 2021, 96, 181–191. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.-H.; Huang, Y.; Wang, L.; Zhao, Y.; Gao, J. Advances in Soot Particles from Gasoline Direct Injection Engines: A Focus on Physical and Chemical Characterisation. Chemosphere 2023, 311, 137181. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Rothamer, D.; Zelenyuk, A.; Stewart, M.; Bell, D. Experimental Investigation of the Effect of Inlet Particle Properties on the Capture Efficiency in an Exhaust Particulate Filter. J. Aerosol Sci. 2017, 113, 250–264. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Z.; Yin, Z.; Du, W.; Lv, E. Effect of Metallic GPF on the Micro Characteristics of Soot Particles of GDI Engine. Int. J Automot. Technol. 2021, 22, 1569–1578. [Google Scholar] [CrossRef]
Material | Cordierite |
Catalyst | Uncoated |
Cell structure | Square |
Cell density | 0.307 1/mm2 (198 1/inch2) |
Inlet/outlet channel width | 1.592 mm |
Wall thickness | 213 μm (8.4 mil) |
Wall porosity | 0.542 |
Wall pore diameter | 7.66 μm |
Experimental Conditions | Space Velocity (/h) | Gas Temperature (°C) | Soot Mass (μg/s) | SPN10 (Particles/s) | SPN23 (Particles/s) | Fraction of SPN10-SPN23 |
---|---|---|---|---|---|---|
CAST | 83,630 | R.T. | 0.789 | 2.521 × 1010 | 1.368 × 1010 | 0.46 |
3000 rpm/100 Nm | 146,961 | 750 | 5.098 | 3.413 × 1010 | 2.062 × 1010 | 0.40 |
3000 rpm/50 Nm | 64,122 | 622 | 7.878 | 3.293 × 1010 | 2.249 × 1010 | 0.32 |
2000 rpm/100 Nm | 84,689 | 654 | 7.198 | 3.656 × 1010 | 2.328 × 1010 | 0.36 |
2000 rpm/50 Nm | 34,538 | 518 | 4.297 | 1.385 × 1010 | 0.987 × 1010 | 0.29 |
1000 rpm/50 Nm | 16,024 | 389 | 3.870 | 1.586 × 1010 | 1.037 × 1010 | 0.35 |
Diffusion efficiency coefficient CD | 0.55 |
Interception efficiency coefficient CR,A | 3.0 |
Interception efficiency coefficient CR,B | 1 × 10−7 |
Slip factor ξ | 0.0115 |
PM mass threshold for attaining 100% filtration efficiency of cake layers q | 0.85 kg/m3 |
Percolation factor ψ | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, K.; Yamaguchi, K.; Kusaka, J. A New Filtration Model of a Particulate Filter for Accurate Estimation of Particle Number Emissions. Atmosphere 2025, 16, 1041. https://doi.org/10.3390/atmos16091041
Nakamura K, Yamaguchi K, Kusaka J. A New Filtration Model of a Particulate Filter for Accurate Estimation of Particle Number Emissions. Atmosphere. 2025; 16(9):1041. https://doi.org/10.3390/atmos16091041
Chicago/Turabian StyleNakamura, Kazuki, Kyohei Yamaguchi, and Jin Kusaka. 2025. "A New Filtration Model of a Particulate Filter for Accurate Estimation of Particle Number Emissions" Atmosphere 16, no. 9: 1041. https://doi.org/10.3390/atmos16091041
APA StyleNakamura, K., Yamaguchi, K., & Kusaka, J. (2025). A New Filtration Model of a Particulate Filter for Accurate Estimation of Particle Number Emissions. Atmosphere, 16(9), 1041. https://doi.org/10.3390/atmos16091041