Estimation of PM2.5 Transport Fluxes in the North China Plain and Sichuan Basin: Horizontal and Vertical Perspectives
Abstract
1. Introduction
2. Data and Methods
2.1. Data Collection
2.2. Model Configuration
2.3. Model Performance Evaluation
2.4. Horizontal Transport Flux Within the ABL
2.5. ABL-FT PM2.5 Exchange Flux
3. Results and Discussion
3.1. Horizontal Transport Flux of Two Regions
3.2. Vertical Exchange Flux Between the ABL and the FT
3.2.1. Quantitative Evaluation of the Vertical Exchange Flux
3.2.2. Analysis on the Difference of Vertical Exchange Flux Results
3.3. PM2.5 Transport Budget Relationship Within the ABL
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Du, H.; Wang, Z.; Sun, Y.; Yang, W.; Li, J.; Tang, X.; Fu, P. Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain. Environ. Pollut. 2017, 223, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yao, L.; Wang, L.; Liu, Z.; Ji, D.; Tang, G.; Zhang, J.; Sun, Y.; Hu, B.; Xin, J. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 2014, 57, 14–25. [Google Scholar] [CrossRef]
- Kaser, L.; Patton, E.G.; Pfister, G.G.; Weinheimer, A.J.; Montzka, D.D.; Flocke, F.; Thompson, A.M.; Stauffer, R.M.; Halliday, H.S. The effect of entrainment through ABL growth on observed and modeled surface ozone in the Colorado Front Range. J. Geophys. Res. Atmos. 2017, 122, 6075–6093. [Google Scholar] [CrossRef]
- Parrish, D.D.; Aikin, K.C.; Oltmans, S.J.; Johnson, B.J.; Ives, M.; Sweeny, C. Impact of transported background ozone inflow on summertime air quality in a California ozone exceedance area. Atmos. Chem. Phys. 2010, 10, 10093–10109. [Google Scholar] [CrossRef]
- Pfister, G.G.; Walters, S.; Emmons, L.K.; Edwards, D.P.; Avise, J. Quantifying the contribution of inflow on surface ozone over California during summer 2008. J. Geophys. Res. Atmos. 2013, 118, 12282–12299. [Google Scholar] [CrossRef]
- Fast, J.D.; Berg, L.K.; Zhang, K.; Easter, R.C.; Ferrare, R.A.; Hair, J.W. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the two-column aerosol project. J. Geophys. Res. Atmos. 2016, 121, 9814–9848. [Google Scholar] [CrossRef]
- Lin, M.; Holloway, T.; Carmichael, G.R.; Fiore, A.M. Quantifying pollution inflow and outflow over East Asia in spring with regional and global models. Atmos. Chem. Phys. 2010, 10, 4221–4239. [Google Scholar] [CrossRef]
- Igel, A.L.; Ekman, A.M.L.; Leck, C.; Tjernström, M.; Savre, J.; Sedlar, J. The free troposphere as a potential source of arctic boundary layer aerosol particles. Geophys. Res. Lett. 2017, 44, 7053–7060. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, G.; Wang, M.; Liu, B.; Hu, B.; Chen, Q.; Wang, Y. Impact of residual layer transport on air pollution in Beijing, China. Environ. Pollut. 2021, 271, 116325. [Google Scholar] [CrossRef]
- Shupe, M.D.; Persson, P.O.G.; Brooks, I.M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C. Cloud and boundary layer interactions over the Arctic Sea ice in late summer. Atmos. Chem. Phys. 2013, 13, 9379–9399. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Huang, S. Synoptic pattern and planetary boundary layer structure associated with aerosol pollution during winter in Beijing, China. Sci. Total Environ. 2019, 682, 464–474. [Google Scholar] [CrossRef]
- Korhonen, H.; Carslaw, K.S.; Spracklen, D.V.; Mann, G.W.; Woodhouse, M.T. Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study. J. Geophys. Res. 2008, 113, D15204. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Yao, S.; Wang, X.; Wang, C. Insights into the temporal and spatial characteristics of PM2.5 transport flux across the district, city and region in the North China Plain. Atmos. Environ. 2019, 218, 117010. [Google Scholar] [CrossRef]
- Guan, P.; Wang, X.; Cheng, S.; Zhang, H. Temporal and spatial characteristics of PM2.5 transport fluxes of typical inland and coastal cities in China. J. Environ. Sci. 2021, 103, 229–245. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Yao, S.; Wang, X.; Zhang, J. Multiple perspectives for modeling regional PM2.5 transport across cities in the Beijing–Tianjin–Hebei region during haze episodes. Atmos. Environ. 2019, 212, 22–35. [Google Scholar] [CrossRef]
- Lv, Z.; Wei, W.; Cheng, S.; Han, X.; Wang, X. Mixing layer height estimated from AMDAR and its relationship with PMs and meteorological parameters in two cities in North China during 2014–2017. Atmos. Pollut. Res. 2020, 11, 443–453. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, S.; Lang, J.; Ren, Z.; Sun, C. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations. Sci. Total Env. 2018, 625, 155–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Cheng, S.; Guan, P.; Zhang, H.; Shan, C.; Fu, Y. Investigation on the difference of PM2.5 transport flux between the North China Plain and the Sichuan Basin. Atmos. Environ. 2022, 271, 118922. [Google Scholar] [CrossRef]
- Lang, J.; Tian, J.; Zhou, Y.; Li, K.; Chen, D.; Huang, Q.; Xing, X.; Zhang, Y.; Cheng, S. A high temporal-spatial resolution air pollutant emission inventory for agricultural machinery in China. Clean. Prod. 2018, 183, 1110–1121. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, X.; Lang, J.; Chen, D.; Cheng, S.; Wei, L.; Wei, X.; Liu, C. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China. Atmos. Chem. Phys. 2017, 17, 2839–2864. [Google Scholar] [CrossRef]
- Lu, M.; Tang, X.; Wang, Z.; Gbaguidi, A.; Liang, S.; Hu, K.; Wu, L.; Wu, H.; Huang, Z.; Shen, L. Source tagging modeling study of heavy haze episodes under complex regional transport processes over Wuhan megacity, Central China. Environ. Pollut. 2017, 231, 612–621. [Google Scholar] [CrossRef]
- Han, X.; Zhu, L.; Wang, S.; Meng, X.; Zhang, M.; Hu, J. Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015. Atmos. Chem. Phys. 2018, 18, 12207–12221. [Google Scholar] [CrossRef]
- Qiao, X.; Guo, H.; Wang, P.; Tang, Y.; Ying, Q.; Zhao, X.; Deng, W.; Zhang, H. Fine Particulate Matter and Ozone Pollution in the 18 Cities of the Sichuan Basin in Southwestern China: Model Performance and Characteristics. Aerosol Air Qual. Res. 2019, 19, 2308–2319. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, T.S.; Liu, J.G.; Lv, L.H. Evaluation of Boundary Layer Height Simulated by WRF Model Based on Lidar Data. Chin. J. Lasers 2019, 46, 0110002. [Google Scholar] [CrossRef]
- Hu, X.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. J. Appl. Meteorol. Climatol. 2010, 49, 1831–1844. [Google Scholar] [CrossRef]
- Jin, X.P.; Cai, X.H.; Li, Q.; Zhang, H.; Song, Y.; Wang, X.; Kang, L.; Zhu, T. Observational Evaluation of Estimated Air Exchange Flux Between Atmospheric Boundary Layer and Free Troposphere with WRF Model. J. Geophys. Res. Atmos. 2024, 129, e2023JD039676. [Google Scholar] [CrossRef]
- Sinclair, V.A.; Belcher, S.E.; Gray, S.L. Synoptic controls on boundary-layer characteristics. Bound.-Layer Meteorol. 2010, 134, 387–409. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Wang, X.Q.; Cheng, S.Y.; Tang, G.Q.; Fu, Y.B. Insights into multidimensional transport flux from vertical observation and numerical simulation in two cities in North China. J. Environ. Sci. 2023, 125, 831–842. [Google Scholar] [CrossRef]
- Jin, X.; Cai, X.; Huang, Q.; Wang, X.; Song, Y.; Zhu, T. Atmospheric Boundary Layer—Free Troposphere Air Exchange in the North China Plain and its Impact on PM2.5 Pollution. J. Geophys. Res. Atmos. 2021, 126, e2021JD034641. [Google Scholar] [CrossRef]
- Liao, T.; Wang, S.; Ai, J.; Gui, K.; Duan, B.; Zhao, Q.; Zhang, X.; Jiang, W.; Sun, Y. Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China). Sci. Total Environ. 2017, 584–585, 1056–1065. [Google Scholar] [CrossRef]
Parametric Scheme Category | Parametric Variable | Solution Selection |
---|---|---|
Projection scheme | map_proj | Lambert |
Nested scheme | feedback | Two-way feedback |
Microphysical scheme | mp_physics | Lin |
Shortwave radiation scheme | ra_sw_physics | Dudhia |
Longwave radiation scheme | ra_lw_physics | RRTM |
Land surface process scheme | sf_surface_physics | Noah |
Cumulus cloud parameterization scheme | cu_physics | Greel-3D |
Boundary layer scheme | bl_pbl_physics | YSU |
Parametric Scheme Category | Parametric Variable | Solution Selection |
---|---|---|
Projection scheme | map_proj | Lambert |
Nested scheme | feedback | Two-way feedback |
Microphysical scheme | mp_physics | WSM3 |
Shortwave radiation scheme | ra_sw_physics | Dudhia |
Longwave radiation scheme | ra_lw_physics | RRTM |
Land surface process scheme | sf_surface_physics | SLAB |
Cumulus cloud parameterization scheme | cu_physics | Greel-3D |
Boundary layer scheme | bl_pbl_physics | MYJ |
City-Meteorological Parameters | Date | COR | NMB | NME |
---|---|---|---|---|
Beijing-Temperature unit: k | January | 0.88 | −0.10% | 0.28% |
April | 0.81 | 0.30% | 0.48% | |
July | 0.73 | 0.80% | 0.93% | |
October | 0.94 | −0.20% | 0.38% | |
Beijing-RH unit: % | January | 0.83 | −12.33% | 18.49% |
April | 0.82 | −22.41% | 23.31% | |
July | 0.75 | −17.34% | 21.16% | |
October | 0.90 | −10.04% | 14.03% | |
Beijing-WS10 unit: m/s | January | 0.77 | 20.83% | 30.28% |
April | 0.62 | 28.32% | 36.12% | |
July | 0.51 | 33.56% | 43.86% | |
October | 0.78 | 31.05% | 41.33% | |
Chengdu-Temperature unit: k | January | 0.84 | −0.18% | 0.40% |
April | 0.74 | −0.51% | 0.93% | |
July | 0.68 | −0.87% | 1.04% | |
October | 0.89 | −0.26% | 0.30% | |
Chengdu-RH unit: % | January | 0.71 | −19.25% | 19.87% |
April | 0.70 | −21.53% | 25.77% | |
July | 0.68 | −24.18% | 35.93% | |
October | 0.75 | −14.46% | 14.68% | |
Chengdu-WS10 unit: m/s | January | 0.73 | 32.53% | 37.77% |
April | 0.66 | 35.87% | 45.24% | |
July | 0.50 | 46.31% | 56.22% | |
October | 0.67 | 37.89% | 40.98% |
City | Date | COR | NMB | NME |
---|---|---|---|---|
Beijing | January | 0.84 | −6.17% | 34.13% |
April | 0.72 | −10.30% | 35.48% | |
July | 0.68 | −12.80% | 38.93% | |
October | 0.89 | −1.54% | 30.68% | |
Shijiazhuang | January | 0.74 | −24.82% | 31.07% |
April | 0.70 | −27.41% | 33.34% | |
July | 0.64 | −30.43% | 36.61% | |
October | 0.72 | −21.60% | 40.77% | |
Chongqing | January | 0.69 | 14.29% | 32.29% |
April | 0.62 | −24.23% | 35.21% | |
July | 0.52 | −37.65% | 40.68% | |
October | 0.73 | −10.91% | 34.97% | |
Chengdu | January | 0.70 | −19.60% | 31.05% |
April | 0.64 | −21.51% | 33.39% | |
July | 0.55 | −24.78% | 38.83% | |
October | 0.71 | −22.29% | 34.79% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, X.; Wang, Z.; Li, J.; Jia, Y. Estimation of PM2.5 Transport Fluxes in the North China Plain and Sichuan Basin: Horizontal and Vertical Perspectives. Atmosphere 2025, 16, 1040. https://doi.org/10.3390/atmos16091040
Zhang Z, Wang X, Wang Z, Li J, Jia Y. Estimation of PM2.5 Transport Fluxes in the North China Plain and Sichuan Basin: Horizontal and Vertical Perspectives. Atmosphere. 2025; 16(9):1040. https://doi.org/10.3390/atmos16091040
Chicago/Turabian StyleZhang, Zhida, Xiaoqi Wang, Zheng Wang, Jing Li, and Yuanming Jia. 2025. "Estimation of PM2.5 Transport Fluxes in the North China Plain and Sichuan Basin: Horizontal and Vertical Perspectives" Atmosphere 16, no. 9: 1040. https://doi.org/10.3390/atmos16091040
APA StyleZhang, Z., Wang, X., Wang, Z., Li, J., & Jia, Y. (2025). Estimation of PM2.5 Transport Fluxes in the North China Plain and Sichuan Basin: Horizontal and Vertical Perspectives. Atmosphere, 16(9), 1040. https://doi.org/10.3390/atmos16091040