Aerosol–PAR Interactions: Critical Insights from a Systematic Review (2021–2025)
Abstract
1. Introduction
2. Materials and Methods
2.1. Databases and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Selection Process
2.4. Data Analysis
3. Results
3.1. Descriptive Overview of Included Studies
3.1.1. Subject Area Distribution of Publications
3.1.2. Journal and Source Analysis
3.1.3. Geographic Distribution of Studies
3.2. Keyword Co-Occurrence Network Analysis
3.3. Thematic Categorization of Research Approaches
3.3.1. Effects of Aerosols on PAR and Vegetation Productivity
3.3.2. Radiative Transfer Modeling and Remote Sensing Methods
4. Discussion
4.1. Synthesis and Interpretation of Identified Research Trends
4.2. Critical Perspectives on Aerosol–PAR Interactions and Ecosystem Responses
4.2.1. Modulation of Direct and Diffuse Radiation: Nuances and Complexities
4.2.2. Implications for Photosynthetic Efficiency and Ecosystem Productivity
4.2.3. Regional Case Studies and the Tropical Biome Gap
4.3. Advances and Persistent Limitations in Radiative Transfer Modeling and Remote Sensing
4.3.1. Satellite Observations and Data Products: Progress and Challenges
4.3.2. Radiative Transfer Models and Machine Learning Applications: Synergies and Future Directions
4.3.3. Challenges in Field Validation and Ground Truthing: The Persistent Need for In Situ Data
4.4. Key Knowledge Gaps and Future Research Needs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreira, D.S.; Longo, K.M.; Freitas, S.R.; Yamasoe, M.A.; Mercado, L.M.; Rosário, N.E.; Gloor, E.; Viana, R.S.M.; Miller, J.B.; Gatti, L.V.; et al. Modeling the Radiative Effects of Biomass Burning Aerosols on Carbon Fluxes in the Amazon Region. Atmos. Chem. Phys. 2017, 17, 14785–14810. [Google Scholar] [CrossRef]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of Changes in Diffuse Radiation on the Global Land Carbon Sink. Nature 2009, 458, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Ezhova, E.; Ylivinkka, I.; Kuusk, J.; Komsaare, K.; Vana, M.; Krasnova, A.; Noe, S.; Arshinov, M.; Belan, B.; Park, S.-B.; et al. Direct Effect of Aerosols on Solar Radiation and Gross Primary Production in Boreal and Hemiboreal Forests. Atmos. Chem. Phys. 2018, 18, 17863–17881. [Google Scholar] [CrossRef]
- Rap, A.; Spracklen, D.V.; Mercado, L.; Reddington, C.L.; Haywood, J.M.; Ellis, R.J.; Phillips, O.L.; Artaxo, P.; Bonal, D.; Restrepo Coupe, N.; et al. Fires Increase Amazon Forest Productivity through Increases in Diffuse Radiation. Geophys. Res. Lett. 2015, 42, 4654–4662. [Google Scholar] [CrossRef]
- Strada, S.; Unger, N. Potential Sensitivity of Photosynthesis and Isoprene Emission to Direct Radiative Effects of Atmospheric Aerosol Pollution. Atmos. Chem. Phys. 2016, 16, 4213–4234. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of Diffuse Radiation for Terrestrial Ecosystem Productivity. J. Geophys. Res. Atmos. 2002, 107, ACL 2-1–ACL 2-23. [Google Scholar] [CrossRef]
- de Oliveira, V.A.; de Mello, C.R.; Beskow, S.; Viola, M.R.; Srinivasan, R. Modeling the Effects of Climate Change on Hydrology and Sediment Load in a Headwater Basin in the Brazilian Cerrado Biome. Ecol. Eng. 2019, 133, 20–31. [Google Scholar] [CrossRef]
- Sena, E.T.; Artaxo, P.; Correia, A.L. Spatial Variability of the Direct Radiative Forcing of Biomass Burning Aerosols and the Effects of Land Use Change in Amazonia. Atmos. Chem. Phys. 2013, 13, 1261–1275. [Google Scholar] [CrossRef]
- Cirino, G.G.; Souza, R.a.F.; Adams, D.K.; Artaxo, P. The Effect of Atmospheric Aerosol Particles and Clouds on Net Ecosystem Exchange in the Amazon. Atmos. Chem. Phys. 2014, 14, 6523–6543. [Google Scholar] [CrossRef]
- Artaxo, P.; Rizzo, L.V.; Brito, J.F.; Barbosa, H.M.J.; Arana, A.; Sena, E.T.; Cirino, G.G.; Bastos, W.; Martin, S.T.; Andreae, M.O. Atmospheric Aerosols in Amazonia and Land Use Change: From Natural Biogenic to Biomass Burning Conditions. Faraday Discuss. 2013, 165, 203–235. [Google Scholar] [CrossRef]
- Malavelle, F.F.; Haywood, J.M.; Jones, A.; Gettelman, A.; Clarisse, L.; Bauduin, S.; Allan, R.P.; Karset, I.H.H.; Kristjánsson, J.E.; Oreopoulos, L.; et al. Strong Constraints on Aerosol–Cloud Interactions from Volcanic Eruptions. Nature 2017, 546, 485–491. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, M.; Wang, L.; Ma, Y.; Gong, W. Influence of Aerosol on Photosynthetically Active Radiation Under Haze Conditions. J. Quant. Spectrosc. Radiat. Transf. 2023, 311, 108778. [Google Scholar] [CrossRef]
- Zoran, M.; Savastru, D.; Tautan, M.; Tenciu, D.; Stanciu, A. Spatiotemporal Analysis of Air Pollution and Climate Change Effects on Urban Green Spaces in Bucharest Metropolis. Atmosphere 2025, 16, 553. [Google Scholar] [CrossRef]
- Rodrigues, S.; Cirino, G.; Moreira, D.; Pozzer, A.; Palácios, R.; Lee, S.-C.; Imbiriba, B.; Nogueira, J.; Vitorino, M.I.; Vourlitis, G. Enhanced Net CO2 Exchange of a Semideciduous Forest in the Southern Amazon Due to Diffuse Radiation from Biomass Burning. Biogeosciences 2024, 21, 843–868. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Lozano, I.L.; Alados, I.; Guerrero-Rascado, J.L. A New Method to Estimate Aerosol Radiative Forcing on Photosynthetically Active Radiation. Atmos. Res. 2023, 291, 106819. [Google Scholar] [CrossRef]
- Ma, W.; Ding, J.; Wang, J.; Zhang, J. Effects of Aerosol on Terrestrial Gross Primary Productivity in Central Asia. Atmos. Environ. 2022, 288, 119294. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, H.; Wang, Y.; Li, S. Variation of Intra-Daily Instantaneous FAPAR Estimated from the Geostationary Himawari-8 AHI Data. Agric. For. Meteorol. 2021, 307, 108535. [Google Scholar] [CrossRef]
- Lozano, I.L.; Sánchez-Hernández, G.; Guerrero-Rascado, J.L.; Alados, I.; Foyo-Moreno, I. Aerosol Radiative Effects in Photosynthetically Active Radiation and Total Irradiance at a Mediterranean Site from an 11-Year Database. Atmos. Res. 2021, 255, 105538. [Google Scholar] [CrossRef]
- Schilliger, L.; Tetzlaff, A.; Bourgeois, Q.; Correa, L.F.; Wild, M. An Investigation on Causes of the Detected Surface Solar Radiation Brightening in Europe Using Satellite Data. J. Geophys. Res. Atmos. 2024, 129, e2024JD041101. [Google Scholar] [CrossRef]
- Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, I.-P.; Mamouri, R.-E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens. 2021, 13, 2319. [Google Scholar] [CrossRef]
- Franco, M.A.; Tavares, P.H.T.; Rizzo, L.V.; Morais, F.G.; Palácios, R.; Artaxo, P. AERONET Sun Photometer as a Didactic Tool for Understanding Aerosol Refractive Index in the Atmosphere: A Case Study for Central Amazon. Rev. Bras. Ensino Física 2025, 47, e20240341. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Wang, L.; Su, X.; Lu, Y. Effects of Different Types of Aerosols on Diffuse Radiation Based on Global AERONET. J. Geophys. Res. Atmos. 2025, 130, e2024JD042701. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Yung, Y.L.; Lv, D.; Hansen, J.; Penner, J.E.; Liao, H.; Ramaswamy, V.; Kahn, R.A.; Zhang, P.; et al. Scattering and Absorbing Aerosols in the Climate System. Nat. Rev. Earth Environ. 2022, 3, 363–379. [Google Scholar] [CrossRef]
- Luo, H.; Dong, L.; Chen, Y.; Zhao, Y.; Zhao, D.; Huang, M.; Ding, D.; Liao, J.; Ma, T.; Hu, M.; et al. Interaction between Aerosol and Thermodynamic Stability within the Planetary Boundary Layer during Wintertime over the North China Plain: Aircraft Observation and WRF-Chem Simulation. Atmos. Chem. Phys. 2022, 22, 2507–2524. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global Indirect Aerosol Effects: A Review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Quaas, J.; Ming, Y.; Menon, S.; Takemura, T.; Wang, M.; Penner, J.E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, O.; et al. Aerosol Indirect Effects—General Circulation Model Intercomparison and Evaluation with Satellite Data. Atmos. Chem. Phys. 2009, 9, 8697–8717. [Google Scholar] [CrossRef]
- Wang, S.-H.; Huang, H.-Y.; Lin, C.-H.; Pani, S.K.; Lin, N.-H.; Lee, C.-T.; Janjai, S.; Holben, B.N.; Chantara, S. Columnar Aerosol Types and Compositions over Peninsular Southeast Asia Based on Long-Term AERONET Data. Air Qual. Atmos. Health 2024, 17, 1193–1204. [Google Scholar] [CrossRef]
- Bian, H.; Lee, E.; Koster, R.D.; Barahona, D.; Chin, M.; Colarco, P.R.; Darmenov, A.; Mahanama, S.; Manyin, M.; Norris, P.; et al. The Response of the Amazon Ecosystem to the Photosynthetically Active Radiation Fields: Integrating Impacts of Biomass Burning Aerosol and Clouds in the NASA GEOS Earth System Model. Atmos. Chem. Phys. 2021, 21, 14177–14197. [Google Scholar] [CrossRef]
- Chamorro, K.; Álvarez, R.C.; Ahtty, M.C.; Quinga, M. Comprehensive Bibliometric Analysis of Advancements in Artificial Intelligence Applications in Medicine Using Scopus Database. Frankl. Open 2025, 10, 100212. [Google Scholar] [CrossRef]
- Bukar, U.A.; Sayeed, M.S.; Razak, S.F.A.; Yogarayan, S.; Amodu, O.A.; Mahmood, R.A.R. A Method for Analyzing Text Using VOSviewer. MethodsX 2023, 11, 102339. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Shu, Y.; Liu, S.; Wang, Z.; Xiao, J.; Shi, Y.; Peng, X.; Gao, H.; Wang, Y.; Yuan, W.; Yan, W.; et al. Effects of Aerosols on Gross Primary Production from Ecosystems to the Globe. Remote Sens. 2022, 14, 2759. [Google Scholar] [CrossRef]
- Gui, X.; Wang, L.; Su, X.; Yi, X.; Chen, X.; Yao, R.; Wang, S. Environmental Factors Modulate the Diffuse Fertilization Effect on Gross Primary Productivity across Chinese Ecosystems. Sci. Total Environ. 2021, 793, 148443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Boucher, O.; Ciais, P.; Li, L.; Bellouin, N. How to Reconstruct Aerosol-Induced Diffuse Radiation Scenario for Simulating GPP in Land Surface Models? An Evaluation of Reconstruction Methods with ORCHIDEE_DFv1.0_DFforc. Geosci. Model Dev. 2021, 14, 2029–2039. [Google Scholar] [CrossRef]
- Crivelari-Costa, P.M.; Lima, M.; La Scala, N., Jr.; Rossi, F.S.; Della-Silva, J.L.; Dalagnol, R.; Teodoro, P.E.; Teodoro, L.P.R.; Oliveira, G.d; Junior, J.F.d.O.; et al. Changes in Carbon Dioxide Balance Associated with Land Use and Land Cover in Brazilian Legal Amazon Based on Remotely Sensed Imagery. Remote Sens. 2023, 15, 2780. [Google Scholar] [CrossRef]
- Curado, L.F.A.; de Paulo, S.R.; da Silva, H.J.A.; Palácios, R.S.; Marques, J.B.; de Paulo, I.J.C.; Dalmagro, H.J.; Rodrigues, T.R. Effect of Biomass Burning Emission on Carbon Assimilation over Brazilian Pantanal. Theor. Appl. Climatol. 2024, 155, 999–1006. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Fang, P.; Liang, Y.; Wang, J.; Xiong, N. Vegetation Net Primary Productivity in Urban Areas of China Responded Positively to the COVID-19 Lockdown in Spring 2020. Sci. Total Environ. 2024, 916, 169998. [Google Scholar] [CrossRef]
- Bai, X.; Lin, X.; Xiao, Z.; Zhou, X.; Chen, J.; Xie, J.; Wang, C.; Shi, Y.; Chen, Y.; Chen, G.; et al. Impact of Decreased Aerosols during the COVID-19 Pandemic on Winter Wheat Gross Primary Productivity and Water Use Efficiency. J. Appl. Remote Sens. 2022, 16, 048507. [Google Scholar] [CrossRef]
- Zuo, X.; Wang, H. Impact of Aerosol Concentration Changes on Carbon Sequestration Potential of Rice in a Temperate Monsoon Climate Zone during the COVID-19: A Case Study on the Sanjiang Plain, China. Environ. Sci. Pollut. Res. 2024, 31, 29610–29630. [Google Scholar] [CrossRef]
- Quintanilla-Albornoz, M.; Miarnau, X.; Pelechá, A.; Casadesús, J.; García-Tejera, O.; Bellvert, J. Evaluation of Transpiration in Different Almond Production Systems with Two-Source Energy Balance Models from UAV Thermal and Multispectral Imagery. Irrig. Sci. 2025, 43, 29–49. [Google Scholar] [CrossRef]
- Boitard, P.; Coudert, B.; Lauret, N.; Queguiner, S.; Marais-Sicre, C.; Regaieg, O.; Wang, Y.; Gastellu-Etchegorry, J.-P. Calibration of DART 3D Model with UAV and Sentinel-2 for Studying the Radiative Budget of Conventional and Agro-Ecological Maize Fields. Remote Sens. Appl. Soc. Environ. 2023, 32, 101079. [Google Scholar] [CrossRef]
- Wang, N.; Yang, P.; Clevers, J.G.P.W.; Wieneke, S.; Kooistra, L. Decoupling Physiological and Non-Physiological Responses of Sugar Beet to Water Stress from Sun-Induced Chlorophyll Fluorescence. Remote Sens. Environ. 2023, 286, 113445. [Google Scholar] [CrossRef]
- Liu, C.; Calders, K.; Origo, N.; Terryn, L.; Adams, J.; Gastellu-Etchegorry, J.-P.; Wang, Y.; Meunier, F.; Armston, J.; Disney, M.; et al. Bitemporal Radiative Transfer Modeling Using Bitemporal 3D-Explicit Forest Reconstruction from Terrestrial Laser Scanning. Remote Sens. 2024, 16, 3639. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, H.; Liang, S.; Jia, A.; He, T.; Wang, D. A Machine Learning Method Trained by Radiative Transfer Model Inversion for Generating Seven Global Land and Atmospheric Estimates from VIIRS Top-of-Atmosphere Observations. Remote Sens. Environ. 2022, 279, 113132. [Google Scholar] [CrossRef]
- Regaieg, O.; Yin, T.; Malenovský, Z.; Cook, B.D.; Morton, D.C.; Gastellu-Etchegorry, J.-P. Assessing Impacts of Canopy 3D Structure on Chlorophyll Fluorescence Radiance and Radiative Budget of Deciduous Forest Stands Using DART. Remote Sens. Environ. 2021, 265, 112673. [Google Scholar] [CrossRef]
- Franco, M.A.d.M. Mudanças climáticas e os desafios enfrentados pela Amazônia. Cad. Astron. 2025, 6, 11–22. [Google Scholar] [CrossRef]
- Zhang, G.; Yin, G.; Zhang, Y.; Hu, J.; Li, Z.; Wang, C.; Ma, D.; Xie, J. An RTM-Driven Machine Learning Approach for Estimating High-Resolution FAPAR From LANDSAT 5/7/8/9 Surface Reflectance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 10225–10240. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Ruan, Y.; Tan, Y. Estimation of Aerosol Radiative Effects on Terrestrial Gross Primary Productivity and Water Use Efficiency Using Process-Based Model and Satellite Data. Atmos. Res. 2021, 247, 105245. [Google Scholar] [CrossRef]
- Wall, C.J.; Storelvmo, T.; Possner, A. Global Observations of Aerosol Indirect Effects from Marine Liquid Clouds. Atmos. Chem. Phys. 2023, 23, 13125–13141. [Google Scholar] [CrossRef]
- Herbert, R.J.; Williams, A.I.L.; Weiss, P.; Watson-Parris, D.; Dingley, E.; Klocke, D.; Stier, P. Regional Variability of Aerosol Impacts on Clouds and Radiation in Global Kilometer-Scale Simulations. Atmos. Chem. Phys. 2025, 25, 7789–7814. [Google Scholar] [CrossRef]
- Vella, R.; Forrest, M.; Pozzer, A.; Tsimpidi, A.P.; Hickler, T.; Lelieveld, J.; Tost, H. Influence of Land Cover Change on Atmospheric Organic Gases, Aerosols, and Radiative Effects. Atmos. Chem. Phys. 2025, 25, 243–262. [Google Scholar] [CrossRef]
- Wollenweber, M.; Schmitz, M.; Albaseer, S.S.; Schiwy, S.; Reininger, N.; Brack, W.; Oehlmann, J.; Curtius, J.; Vogel, A.L.; Hollert, H. Aquatic Ecosystems as a Final Receptor of Atmospheric Organic Particulate-Bound Pollutants: A Plea for the Integration of Aquatic Ecotoxicology into the Risk Assessment of Air Pollution. Environ. Sci. Eur. 2025, 37, 109. [Google Scholar] [CrossRef]
Item | Description |
---|---|
Search terms | TITLE-ABS-KEY ((“radiative transfer model” OR “aerosol optical depth”) AND “photosynthetically active radiation”) |
Databases | Scopus and Google Scholar |
Time frame | Last five years (2021–2025) |
Inclusion criteria | (a) Articles containing in the title, abstract, and keywords the descriptors “radiative transfer model” or “aerosol optical depth” and “photosynthetically active radiation” in English; (b) articles published within the last five years (2021 to 2025); (c) open-access articles available online in full. |
Exclusion criteria | (a) Articles without open-access availability; (b) articles published outside the defined time frame (2021 to 2025); (c) review articles, book chapters, data papers, and other document types not corresponding to research articles. |
Document type | Research articles |
Number of articles found | Scopus (67); Google Scholar (3) |
Articles included | 22 |
Analysis of selected data | Microsoft Excel; VOSviewer version 1.6.20 |
Category | References |
---|---|
(a) Effects of Aerosols on Radiation and Vegetation Productivity | Ma et al. [16]; Zhang et al. [17]; Shu et al. [32]; Gui et al. [33]; Zhang et al. [34]; Crivelari-Costa et al. [35]; Franco et al. [21]; Rodrigues et al. [14]; Curado et al. [36]; Lozano et al. [18]; Yuan et al. [12]; Li et al. [37]; Bai et al. [38]; Zuo and Wang [39]; Quintanilla-Albornoz et al. [40] |
(b) Radiative Modeling and Remote Sensing | Boitard et al. [41]; Wang et al. [42]; Liu et al. [43]; Zhang et al. [44]; Zhang et al. [22]; Foyo-Moreno et al. [15]; Regaieg et al. [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, H.M.; Curado, L.F.A.; Lima, A.M.d.S.; Barbosa, T.A.d.S.; Palácios, R.d.S.; Marques, J.B.; Machado, N.G.; Biudes, M.S. Aerosol–PAR Interactions: Critical Insights from a Systematic Review (2021–2025). Atmosphere 2025, 16, 1009. https://doi.org/10.3390/atmos16091009
de Oliveira HM, Curado LFA, Lima AMdS, Barbosa TAdS, Palácios RdS, Marques JB, Machado NG, Biudes MS. Aerosol–PAR Interactions: Critical Insights from a Systematic Review (2021–2025). Atmosphere. 2025; 16(9):1009. https://doi.org/10.3390/atmos16091009
Chicago/Turabian Stylede Oliveira, Hilma Magalhães, Leone Francisco Amorim Curado, André Matheus de Souza Lima, Thamiris Amorim dos Santos Barbosa, Rafael da Silva Palácios, João Basso Marques, Nadja Gomes Machado, and Marcelo Sacardi Biudes. 2025. "Aerosol–PAR Interactions: Critical Insights from a Systematic Review (2021–2025)" Atmosphere 16, no. 9: 1009. https://doi.org/10.3390/atmos16091009
APA Stylede Oliveira, H. M., Curado, L. F. A., Lima, A. M. d. S., Barbosa, T. A. d. S., Palácios, R. d. S., Marques, J. B., Machado, N. G., & Biudes, M. S. (2025). Aerosol–PAR Interactions: Critical Insights from a Systematic Review (2021–2025). Atmosphere, 16(9), 1009. https://doi.org/10.3390/atmos16091009