Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Method Descriptions
2.3. Reginal Ionospheric Model over China
2.3.1. SH RIM
2.3.2. Poly RIM
2.4. Accuracy Evaluation Method
3. Results
3.1. Accuracy Assessment of Inner Coincidence
3.2. Evaluation of Exterior Coincidence Accuracy
3.3. Accuracy Evaluation of Receiver DCBs Estimation
4. Discussion
5. Conclusions
- (1)
- Employing single GPS observations, G_SH RIM and G_Poly RIM exhibit comparable accuracy, demonstrating negligible discrepancies in their bias and STD values. Both models maintain an average bias relative to IGS GIM confined within 2 TECu, while more pronounced deviations are predominantly concentrated along geographical boundaries such as China’s northwestern and southwestern regions.
- (2)
- For GR_SH RIM, integrating GPS and GLONASS observations, both the average bias and STD compared to GIM exhibit a marked increase. Similarly, the average bias of GR_Poly RIM relative to IGS GIM also rises, while its average STD undergoes a notable reduction.
- (3)
- The G_SH RIM, when calculating the DCBs of GPS receivers using single GPS observations, demonstrates superior stability compared to the G_Poly RIM. Incorporating GLONASS observations exerts minimal impact on the DCBs of GPS resolved by the SH function, whereas for the Poly model, combined observations substantially diminish the STD of DCBs for both GPS and GLONASS receivers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Z.M.; Yi, J.J. Principles and Applications of GPS Satellite Surveying; Surveying and Mapping Press: Beijing, China, 1997. [Google Scholar]
- Hegarty, C.J.; Chatre, E. Evolution of the Global Navigation Satellite System (GNSS). Proc. IEEE 2009, 96, 1902–1917. [Google Scholar] [CrossRef]
- Zhang, B.C. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci. 2016, 51, 972–988. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, J.; Hu, F. Ionosphere Total Electron Content Modeling and Multi-Type Differential Code Bias Estimation Using Multi-Mode and Multi-Frequency Global Navigation Satellite System Observations. Remote Sens. 2023, 15, 4607. [Google Scholar] [CrossRef]
- Schaer, S.; Beutler, G.; Mervart, L.; Rothacher, M.; Wild, U. Global and regional ionosphere models using the GPS double difference phase observable. In Proceedings of the 1995 IGS Workshop, Potsdam, Germany, 15–17 May 1995. [Google Scholar]
- Jin, S.; Occhipinti, G.; Jin, R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Sci. Rev. 2015, 147, 54–64. [Google Scholar] [CrossRef]
- Gao, Y.; Liao, X.; Liu, Z.Z. Ionosphere modeling using carrier smoothed ionosphere observations from a regional GPS network. Geomatica 2002, 56, 97–106. [Google Scholar]
- Brunini, C.; Azpilicueta, F.J. Accuracy assessment of the GPS-based slant total electron content. J. Geodesy 2009, 83, 773–785. [Google Scholar] [CrossRef]
- Feltens, J. The international GPS service (IGS) ionosphere working group. Adv. Space Res. 2003, 31, 635–644. [Google Scholar] [CrossRef]
- Venkata, R.D.; Sarma, A.D. Modeling of low-latitude ionosphere using GPS data with SHF model. IEEE Trans. Geosci. Remote Sens. 2012, 50, 972–980. [Google Scholar] [CrossRef]
- Guo, J.M.; Lin, H. Investigation of ionosphere TEC distribution in China region by GIM model. Geo Spat. Inf. Sci. 2005, 8, 197–200. [Google Scholar]
- Li, K.; Zhang, D.; Zeng, Y.; Tian, Y.; Dai, G.; Liu, Z.; Yang, G.; Sun, S.; Li, G.; Hao, Y. Revisiting the ionospheric disturbances over low latitude region of China during super typhoon hato. Space Weather Int. J. Res. Appl. 2024, 22, e2023SW003694. [Google Scholar] [CrossRef]
- Xiang, Y.; Yuan, Y.B.; Li, Z.S.; Wang, N.B. Analysis and validation of different global ionospheric maps (GIMs) over China. Adv. Space Res. 2015, 55, 199–210. [Google Scholar] [CrossRef]
- Liu, A.; Wang, N.; Li, Z.; Wang, Z.; Yuan, H. Assessment of NeQuick and IRI-2016 models during different geomagnetic activities in global scale: Comparison with GPS-TEC, dSTEC, Jason-TEC and GIM. Adv. Space Res. 2019, 63, 3978–3992. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Zhang, Q.; Zhao, Q. A Comparison of a GNSS-GIM and the IRI-2020 model over China under different ionospheric conditions. Space Weather. 2023, 21, e2023SW003646. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric time-delay algorithms for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System; Astronomical Institute, University of Berne: Bern, Switzerland, 1999. [Google Scholar]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Q.L. Evaluation and analysis of the global ionosphere maps from Wuhan University IGS Ionosphere Associate Analysis Center. Chin. J. Geophys. 2019, 62, 4493–4505. (In Chinese) [Google Scholar]
- Chen, P.; Chen, J. Analysis of global ionospheric grid model integrated GPS/GLONASS. J. Geod. Geodyn. 2014, 34, 70–74. [Google Scholar]
- Ren, X.; Zhang, X.; Xie, W.; Li, X. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Sci. Rep. 2016, 6, 33499. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Mylnikova, A.A.; Kunitsyn, V.E.; Padokhin, A.M. Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere. Geomagn. Aeron. 2015, 55, 763–769. [Google Scholar] [CrossRef]
- Xiong, B.; Wan, W.; Yu, Y.; Hu, L. Investigation of ionospheric TEC over China based on GNSS data. Adv. Space Res. 2016, 58, 867–877. [Google Scholar] [CrossRef]
- Aa, E.; Huang, W.; Yu, S.; Liu, S.; Shi, L.; Gong, J.; Chen, Y. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation. J. Geophys. Res. Space Phys. 2015, 120, 5049–5061. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, S.; Mekik, C.; Feng, J. Evaluation of regional ionospheric grid model over China from dense GPS observations. Geod. Geodyn. 2016, 7, 361–368. [Google Scholar] [CrossRef]
- Wang, Y.; Le, H.; Liu, L.; Chen, Y.; Xiong, B.; Zhang, R.; Liu, B.; Li, W. Mapping the ionosphere over East Asia based on ground-based GNSS TEC data in 2010–2023. Space Weather. 2025, 23, e2025SW004343. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.; Dong, X.; Ou, M.; Zhi, Y.; Xu, B.; Zhou, C. A regional ionospheric TEC map assimilation method considering temporal scale during geomagnetic storms. Remote Sens. 2025, 17, 951. [Google Scholar] [CrossRef]
- Niu, Z.; Ma, Z.; Chen, X.; Zhang, Z.; Wang, Q.; You, X.Z.; Sun, J. Crustal movement observation network of China. J. Geod. Geodyn. 2002, 22, 88–93. [Google Scholar]
- Yuan, Y.; Li, Z.; Wang, N.; Zhang, B.; Li, H.; Li, M.; Huo, X.; Ou, J. Monitoring the ionosphere based on the crustal movement observation network of china. J. Geod. Geodyn. 2015, 6, 8. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, F.Y. Modeling of the regional ionosphere in China based on the combined CMONOC and IGS GPS data. Chin. J. Radio Sci. 2024, 39, 777–784. (In Chinese) [Google Scholar]
- Li, Z.; Wang, N.; Wang, L.; Liu, A.; Zhang, K. Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP. J. Geod. 2019, 93, 1659–1671. [Google Scholar] [CrossRef]
- Zhang, X.H.; Li, Z.H.; Cai, C.S. Study on regional ionospheric model using dual-frequency GPS measurements. Geomat. Inf. Sci. Wuhan Univ. 2001, 26, 140–143. [Google Scholar]
- Jin, R.; Jin, S.; Feng, G. M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut. 2012, 16, 541–548. [Google Scholar] [CrossRef]
- Zhu, F.; Yang, J.; Qing, Y.; Li, X. Assessment and analysis of the global ionosphere maps over China based on CMONOC GNSS data. Front. Earth Sci. 2023, 11, 1095754. [Google Scholar] [CrossRef]
- Lin, J.; Li, X.; Gu, S.; Lou, Y.; Qing, Y. Spatiotemporal accuracy evaluation and errors analysis of global VTEC maps using a simulation technique. GPS Solut. 2023, 27, 6. [Google Scholar] [CrossRef]
- Conte, J.F.; Azpilicueta, F.; Brunini, C. Accuracy assessment of the GPS-TEC calibration constants by means of a simulation technique. J. Geod. 2011, 85, 707–714. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Ma, Y.; Zheng, N. Accuracy and consistency of different global ionospheric maps released by IGS ionosphere associate analysis centers. Adv. Space Res. 2019, 65, 163–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.B.; Li, Z.S.; Liu, A.; Li, A. Accuracy Analysis of Real-Time Global Ionospheric Maps from CAS, CNES, NRCan and UPC. J. Geod. Geodyn. 2022, 42, 1095–1100. [Google Scholar]
- Liu, J.; Wang, Z.; Zhang, H.; Zhu, W. Comparison and consistency research of regional ionospheric TEC models based on GPS measurements. Geomat. Inf. Sci. Wuhan Univ. 2008, 33, 479–483. [Google Scholar]
- Han, L.; Wang, J.X.; Wang, M.H. Difference Analysis and Improvement of Ionospheric TEC Modeling of GPS and GLONASS. J. Tongji Univ. 2019, 047, 560–567. [Google Scholar]
- Liu, A.; Li, Z.; Wang, N.; Yuan, C.; Yuan, H. Analysis of the short-term temporal variation of differential code bias in GNSS receiver. Measurement 2020, 153, 107448. [Google Scholar] [CrossRef]
- Zhong, J.; Lei, J.; Dou, X.; Yue, X. Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solute 2016, 20, 313–319. [Google Scholar] [CrossRef]
- Chen, C.; Pavlov, I.; Padokhin, A.; Yasyukevich, Y.; Demyanov, V.; Danilchuk, E.; Vesnin, A. Galileo and BeiDou AltBOC Signals and their perspectives for inospheric TEC studies. Sensors 2024, 24, 6472. [Google Scholar] [CrossRef] [PubMed]
- Kotulak, K.; Wang, N.; Krankowski, A.; Li, Z.; Flisek, P.; Froń, A.; Liu, A.; Zakharenkova, I.; Cherniak, I.; Liu, L.; et al. ‘ARTEMIS: Advanced Methodology Development for Real-Time Multi- Constellation (BDS, Galileo and GPS) Ionosphere Services’ Project Real-Time Ionospheric Services- Efficiency and Implementation. Remote Sens. 2025, 17, 350. [Google Scholar] [CrossRef]
- Wang, N.; Li, Z.; Duan, B.; Hugentobler, U.; Wang, L. GPS and GLONASS observable-specific code bias estimation: Comparison of solutions from the IGS and MGEX networks. J. Geod. 2020, 94, 74. [Google Scholar] [CrossRef]
- Zhang, R.; Song, W.W.; Yao, Y.B.; Shi, C.; Lou, Y.D.; Yi, W.T. Modeling regional ionospheric delay with ground-based beidou and gps observations in China. GPS Solut. 2015, 19, 649–658. [Google Scholar] [CrossRef]
- Guo, C.J.; Wu, Y.F. Inversion Accuracy Analysis of Ionospheric VTEC Based on Data Fusion. Acta Astron. Sin. 2019, 60, 221–229. [Google Scholar]
RIM | G_SH | GR_SH | G_Poly | GR_Poly |
---|---|---|---|---|
Observation | GPS | GPS+GLONASS | GPS | GPS+GLONASS |
Data type | Phase smoothing pseudo-range | Phase smooth pseudo-range | Phase smooth pseudo-range | Phase smooth pseudo-range |
Sampling rate | 30 s | 30 s | 30 s | 30 s |
Cutoff angle | 20° | 20° | 20° | 20° |
Earth radius | 6371 km | 6371 km | 6371 km | 6371 km |
MF function | MSLM | MSLM | MSLM | MSLM |
VTEC model | SH function | SH function | Poly function | Poly function |
Spatiotemporal resolution | 5° × 2.5° × 1 h | 5° × 2.5° × 1 h | 5° × 2.5° × 1 h | 5° × 2.5° × 1 h |
Modeling results | RIM + | RIM + | RIM + | RIM + |
RIM | G_SH | GR_SH | G_Poly | GR_Poly | ||||
---|---|---|---|---|---|---|---|---|
Statistic | Bias | STD | Bias | STD | Bias | STD | Bias | STD |
1 January | −1.59 | 2.02 | −1.60 | 1.87 | −1.47 | 2.76 | −1.89 | 1.62 |
2 January | −1.19 | 1.66 | −1.33 | 1.62 | −1.39 | 1.88 | −1.64 | 1.82 |
3 January | −1.58 | 1.83 | −1.95 | 1.43 | −1.74 | 1.68 | −2.11 | 1.61 |
4 January | −1.60 | 2.05 | −1.99 | 1.94 | −1.55 | 1.88 | −2.65 | 1.83 |
5 January | −2.16 | 2.14 | −2.93 | 2.26 | −2.12 | 2.08 | −2.86 | 1.88 |
6 January | −1.63 | 1.92 | −2.83 | 1.88 | −1.56 | 2.16 | −2.67 | 1.61 |
7 January | −1.42 | 2.08 | −2.27 | 2.17 | −1.47 | 2.24 | −2.40 | 2.10 |
Mean | −1.60 | 1.96 | −2.15 | 1.90 | −1.62 | 2.10 | −2.32 | 1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.-Y.; Zhou, C. Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations. Atmosphere 2025, 16, 988. https://doi.org/10.3390/atmos16080988
Zhu F-Y, Zhou C. Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations. Atmosphere. 2025; 16(8):988. https://doi.org/10.3390/atmos16080988
Chicago/Turabian StyleZhu, Fu-Ying, and Chen Zhou. 2025. "Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations" Atmosphere 16, no. 8: 988. https://doi.org/10.3390/atmos16080988
APA StyleZhu, F.-Y., & Zhou, C. (2025). Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations. Atmosphere, 16(8), 988. https://doi.org/10.3390/atmos16080988