The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Time Periods
2.2. VOC Measurements and Meteorological Data
2.3. Calculation of the Initial Concentrations of VOCs
2.4. OFP Calculation
2.5. Source Apportionment by the Positive Matrix Factorization (PMF)
3. Results and Discussion
3.1. Characteristics of VOCs During the Observation Period
3.2. Photochemical Loss of VOCs
3.3. VOC Source Apportionment
3.3.1. Source Identification Based on Observed Concentrations at HC
3.3.2. Source Identification Based on Observed Concentrations at XP
3.3.3. VOC Source Contribution Based on Observed Concentrations
3.3.4. Source Apportionment Based on Initial Concentrations
3.4. Contribution of Photochemical Loss to OFP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of Volatile Organic Compound Source Apportionment by Chemical Mass Balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.L.; Brauer, M.; Carmichael, G.; Costa, D.L.; et al. What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Ward-Caviness, C.K.; Murphy, B.N.; Appel, K.W.; Seltzer, K.M. Secondary Organic Aerosol Association with Cardiorespiratory Disease Mortality in the United States. Nat. Commun. 2021, 12, 7215. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.; Xu, Y.; Lv, D.; Xie, X.; Kleeman, M.; Xing, J.; Zhang, H.; Ying, Q. Source Contributions to Primary and Secondary Inorganic Particulate Matter during a Severe Wintertime PM2.5 Pollution Episode in Xi’an, China. Atmos. Environ. 2014, 97, 182–194. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, P.; Xu, K.; Li, C.; Yin, S.; Zhang, Y.; Ding, Y.; Zhang, C.; Wang, Z.; Zhai, R.; et al. Analysis of VOC Emissions and O3 Control Strategies in the Fenhe Plain Cities, China. J. Environ. Manag. 2023, 325, 116534. [Google Scholar] [CrossRef]
- Chen, T.; Huang, L.; Zhang, X.; Gao, R.; Li, H.; Fan, K.; Ma, D.; Ma, Z.; Xue, L.; Wang, W. Effects of Coal Chemical Industry on Atmospheric Volatile Organic Compounds Emission and Ozone Formation in a Northwestern Chinese City. Sci. Total Environ. 2022, 839, 156149. [Google Scholar] [CrossRef]
- Lv, D.; Lu, S.; He, S.; Song, K.; Shao, M.; Xie, S.; Gong, Y. Research on Accounting and Detection of Volatile Organic Compounds from a Typical Petroleum Refinery in Hebei, North China. Chemosphere 2021, 281, 130653. [Google Scholar] [CrossRef]
- Mozaffar, A.; Zhang, Y.-L. Atmospheric Volatile Organic Compounds (VOCs) in China: A Review. Curr. Pollut. Rep. 2020, 6, 250–263. [Google Scholar] [CrossRef]
- Xu, Z.; Zou, Q.; Jin, L.; Shen, Y.; Shen, J.; Xu, B.; Qu, F.; Zhang, F.; Xu, J.; Pei, X.; et al. Characteristics and Sources of Ambient Volatile Organic Compounds (VOCs) at a Regional Background Site, YRD Region, China: Significant Influence of Solvent Evaporation during Hot Months. Sci. Total Environ. 2023, 857, 159674. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, S.; Wang, X.; Zhang, Y.; Pei, C.; Chen, D.; Jiang, M.; Liao, T. Volatile Organic Compounds Monitored Online at Three Photochemical Assessment Monitoring Stations in the Pearl River Delta (PRD) Region during Summer 2016: Sources and Emission Areas. Atmosphere 2021, 12, 327. [Google Scholar] [CrossRef]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and Source Apportionment of VOCs Measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Cheng, B.; Zhang, Y.; Liu, X.; Qu, Y.; An, J.; Kong, L.; Zhang, Y.; Zhang, C.; et al. A Comprehensive Investigation on Volatile Organic Compounds (VOCs) in 2018 in Beijing, China: Characteristics, Sources and Behaviours in Response to O3 Formation. Sci. Total Environ. 2022, 806, 150247. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Ma, T.; Gao, Z.; Gao, J.; Wang, Z.; Xue, L.; Liu, H.; Liu, J. Characteristics and Sources of Volatile Organic Compounds during High Ozone Episodes: A Case Study at a Site in the Eastern Guanzhong Plain, China. Chemosphere 2021, 265, 129072. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, M.; Liu, X.; Zhang, Y.; Hui, L.; Kong, L.; Zhang, Y.; Zhang, C.; Qu, Y.; An, J.; et al. Characterization and Sources of Volatile Organic Compounds (VOCs) and Their Related Changes during Ozone Pollution Days in 2016 in Beijing, China. Environ. Pollut. 2020, 257, 113599. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, Y.; Ren, J.; You, G.; Zheng, X.; Liang, Y.; Simayi, M.; Hao, Y.; Xie, S. VOC Species Controlling O3 Formation in Ambient Air and Their Sources in Kaifeng, China. Env. Sci. Pollut. Res. 2023, 30, 75439–75453. [Google Scholar] [CrossRef]
- McKeen, S.A.; Liu, S.C. Hydrocarbon Ratios and Photochemical History of Air Masses. Geophys. Res. Lett. 1993, 20, 2363–2366. [Google Scholar] [CrossRef]
- De Gouw, J.A.; Middlebrook, A.M.; Warneke, C.; Goldan, P.D.; Kuster, W.C.; Roberts, J.M.; Fehsenfeld, F.C.; Worsnop, D.R.; Canagaratna, M.R.; Pszenny, A.A.P.; et al. Budget of Organic Carbon in a Polluted Atmosphere: Results from the New England Air Quality Study in 2002. J. Geophys. Res. 2005, 110, 2004JD005623. [Google Scholar] [CrossRef]
- Zou, Y. Source Apportionment and Ozone Formation Mechanism of VOCs Considering Photochemical Loss in Guangzhou, China. Sci. Total Environ. 2023, 903, 166191. [Google Scholar] [CrossRef]
- Wang, T.; Tao, J.; Li, Z.; Lu, X.; Liu, Y.; Zhang, X.; Wang, B.; Zhang, D.; Yin, S. Characteristic, Source Apportionment and Effect of Photochemical Loss of Ambient VOCs in an Emerging Megacity of Central China. Atmos. Res. 2024, 305, 107429. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, L.; Xu, K.; Wang, D.; Zhu, X. Characteristics of Atmospheric Volatile Organic Compounds and Photochemical Changes During an O3 Event in a County-Level City of Shaanxi Province, China. Water Air Soil. Pollut. 2023, 234, 58. [Google Scholar] [CrossRef]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Jiang, M. Characteristics, Source Apportionment and Contribution of VOCs to Ozone Formation in Wuhan, Central China. Atmos. Environ. 2018, 192, 55–71. [Google Scholar] [CrossRef]
- Yao, D.; Tang, G.; Wang, Y.; Yang, Y.; Wang, Y.; Liu, Y.; Yu, M.; Liu, Y.; Yu, H.; Liu, J.; et al. Oscillation Cumulative Volatile Organic Compounds on the Northern Edge of the North China Plain: Impact of Mountain-Plain Breeze. Sci. Total Environ. 2022, 821, 153541. [Google Scholar] [CrossRef]
- Xie, Y.; Cheng, C.; Wang, Z.; Wang, K.; Wang, Y.; Zhang, X.; Li, X.; Ren, L.; Liu, M.; Li, M. Exploration of O3-Precursor Relationship and Observation-Oriented O3 Control Strategies in a Non-Provincial Capital City, Southwestern China. Sci. Total Environ. 2021, 800, 149422. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Zhang, Y.; Lv, Z.; Wu, L.; Mao, H. Real-World Emission Characteristics of an Ocean-Going Vessel through Long Sailing Measurement. Sci. Total Environ. 2022, 810, 152276. [Google Scholar] [CrossRef]
- McKeen, S.A.; Liu, S.C.; Hsie, E.-Y.; Lin, X.; Bradshaw, J.D.; Smyth, S.; Gregory, G.L.; Blake, D.R. Hydrocarbon Ratios during PEM-WEST A: A Model Perspective. J. Geophys. Res. Atmos. 1996, 101, 2087–2109. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, J.; Li, H.; Li, L.; Xu, L.; Zhang, Y.; Wang, Z.; Wang, X.; Zhang, W.; Chen, Y.; et al. Comparative Study of Volatile Organic Compounds in Ambient Air Using Observed Mixing Ratios and Initial Mixing Ratios Taking Chemical Loss into Account—A Case Study in a Typical Urban Area in Beijing. Sci. Total Environ. 2018, 628–629, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Wang, Q.; Chen, N.; Zhu, B.; Yu, H. Quantification and Source Apportionment of Atmospheric Oxidation Capacity in Urban Atmosphere by Considering Reactive Chlorine Species and Photochemical Loss of VOCs. Sci. Total Environ. 2025, 959, 178201. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Cui, Y.; Guo, L.; Li, H.; Fan, J.; Li, Y.; Wang, Y.; Liu, K.; He, Q.; Wang, X. Spatial Characterization of HCHO and Reapportionment of Its Secondary Sources Considering Photochemical Loss in Taiyuan, China. Sci. Total Environ. 2023, 865, 161069. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hua, J.; He, Q.; Guo, L.; Wang, Y.; Wang, X. Comparison of Three Source Apportionment Methods Based on Observed and Initial HCHO in Taiyuan, China. Sci. Total Environ. 2024, 926, 171828. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, X.; Liu, Y.; Zhang, J.; Wang, H.; Sun, L.; Fang, T.; Mao, H.; Hu, J.; Wu, L.; et al. Source Apportionment of VOCs Based on Photochemical Loss in Summer at a Suburban Site in Beijing. Atmos. Environ. 2023, 293, 119459. [Google Scholar] [CrossRef]
- Zhang, J. The Impacts of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds: A Case Study in Northern China. Atmos. Environ. 2024, 333, 120671. [Google Scholar] [CrossRef]
- Stroud, C.A.; Roberts, J.M.; Goldan, P.D.; Kuster, W.C.; Murphy, P.C.; Williams, E.J.; Hereid, D.; Parrish, D.; Sueper, D.; Trainer, M.; et al. Isoprene and Its Oxidation Products, Methacrolein and Methylvinyl Ketone, at an Urban Forested Site during the 1999 Southern Oxidants Study. J. Geophys. Res. 2001, 106, 8035–8046. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F., Jr.; Kerr, J.A.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. J. Phys. Chem. Ref. Data 1992, 21, 1125. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- He, C.Q.; Zou, Y.; Lv, S.J.; Flores, R.M.; Yan, X.L.; Deng, T.; Deng, X.J. The Importance of Photochemical Loss to Source Analysis and Ozone Formation Potential: Implications from in-Situ Observations of Volatile Organic Compounds (VOCs) in Guangzhou, China. Atmos. Environ. 2024, 320, 120320. [Google Scholar] [CrossRef]
- Liu, B.; Gu, Y.; Wu, Y.; Dai, Q.; Song, S.; Feng, Y.; Hopke, P.K. Review of Source Analyses of Ambient Volatile Organic Compounds Considering Reactive Losses: Methods of Reducing Loss Effects, Impacts of Losses, and Sources. Atmos. Chem. Phys. 2024, 24, 12861–12879. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 Chemical Mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- He, Z.; Wang, X.; Ling, Z.; Zhao, J.; Guo, H.; Shao, M.; Wang, Z. Contributions of Different Anthropogenic Volatile Organic Compound Sources to Ozone Formation at a Receptor Site in the Pearl River Delta Region and Its Policy Implications. Atmos. Chem. Phys. 2019, 19, 8801–8816. [Google Scholar] [CrossRef]
- Shen, L.; Xiang, P.; Liang, S.; Chen, W.; Wang, M.; Lu, S.; Wang, Z. Sources Profiles of Volatile Organic Compounds (VOCs) Measured in a Typical Industrial Process in Wuhan, Central China. Atmosphere 2018, 9, 297. [Google Scholar] [CrossRef]
- Yang, M.; Li, F.; Huang, C.; Tong, L.; Dai, X.; Xiao, H. VOC Characteristics and Their Source Apportionment in a Coastal Industrial Area in the Yangtze River Delta, China. J. Environ. Sci. 2023, 127, 483–494. [Google Scholar] [CrossRef]
- Cao, X.; Xing, Q.; Hu, S.; Xu, W.; Xie, R.; Xian, A.; Xie, W.; Yang, Z.; Wu, X. Characterization, Reactivity, Source Apportionment, and Potential Source Areas of Ambient Volatile Organic Compounds in a Typical Tropical City. J. Environ. Sci. 2023, 123, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Liu, X.; Wang, G.; Shao, X.; Li, Z.; Nie, L.; Li, G. Sector-Based Volatile Organic Compounds Emission Characteristics from the Electronics Manufacturing Industry in China. Atmos. Pollut. Res. 2021, 12, 101097. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, L.; Liu, S.; Huang, Y.; Chen, L.; Cui, L.; Cao, J. Upward Trend and Formation of Surface Ozone in the Guanzhong Basin, Northwest China. J. Hazard. Mater. 2022, 427, 128175. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Jing, S.; Gao, Y.; Peng, Y.; Lou, S.; Cheng, T.; Tao, S.; Li, L.; Li, Y.; et al. Characteristics and Sources of Volatile Organic Compounds (VOCs) in Shanghai during Summer: Implications of Regional Transport. Atmos. Environ. 2019, 215, 116902. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Zhang, Z.; Zhang, Q.; Zhang, T.; Niu, X.; Huang, Y.; Cui, L.; Xu, H.; et al. Urban VOC Profiles, Possible Sources, and Its Role in Ozone Formation for a Summer Campaign over Xi’an, China. Env. Sci. Pollut. Res. 2019, 26, 27769–27782. [Google Scholar] [CrossRef]
- Mozaffar, A.; Zhang, Y.-L.; Fan, M.; Cao, F.; Lin, Y.-C. Characteristics of Summertime Ambient VOCs and Their Contributions to O3 and SOA Formation in a Suburban Area of Nanjing, China. Atmos. Res. 2020, 240, 104923. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, P.; Li, C.; Li, X.; Ma, W.; Yin, S.; Yu, Q.; Li, J.; Liu, X. Evolution and Variations of Atmospheric VOCs and O3 Photochemistry during a Summer O3 Event in a County-Level City, Southern China. Atmos. Environ. 2022, 272, 118942. [Google Scholar] [CrossRef]
- Huang, Y.; Ling, Z.H.; Lee, S.C.; Ho, S.S.H.; Cao, J.J.; Blake, D.R.; Cheng, Y.; Lai, S.C.; Ho, K.F.; Gao, Y.; et al. Characterization of Volatile Organic Compounds at a Roadside Environment in Hong Kong: An Investigation of Influences after Air Pollution Control Strategies. Atmos. Environ. 2015, 122, 809–818. [Google Scholar] [CrossRef]
- Zou, Y.; Charlesworth, E.; Wang, N.; Flores, R.M.; Liu, Q.Q.; Li, F.; Deng, T.; Deng, X.J. Characterization and Ozone Formation Potential (OFP) of Non-Methane Hydrocarbons under the Condition of Chemical Loss in Guangzhou, China. Atmos. Environ. 2021, 262, 118630. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, N.; Zhou, L.; Yang, F.; Qiu, Y.; Chen, J.; Han, L.; Li, J. Component Characteristics and Source Apportionment of Volatile Organic Compounds during Summer and Winter in Downtown Chengdu, Southwest China. Atmos. Environ. 2021, 258, 118485. [Google Scholar] [CrossRef]
- Chen, Z.-W.; Ting, Y.-C.; Huang, C.-H.; Ciou, Z.-J. Sources-Oriented Contributions to Ozone and Secondary Organic Aerosol Formation Potential Based on Initial VOCs in an Urban Area of Eastern Asia. Sci. Total Environ. 2023, 892, 164392. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Dai, W.; He, K.; Xu, H.; Zhang, Z.; Cui, L.; Li, X.; Huang, Y.; et al. Profiles and Source Apportionment of Nonmethane Volatile Organic Compounds in Winter and Summer in Xi’an, China, Based on the Hybrid Environmental Receptor Model. Adv. Atmos. Sci. 2021, 38, 116–131. [Google Scholar] [CrossRef]
- Pei, C.; Yang, W.; Zhang, Y.; Song, W.; Xiao, S.; Wang, J.; Zhang, J.; Zhang, T.; Chen, D.; Wang, Y.; et al. Decrease in Ambient Volatile Organic Compounds during the COVID-19 Lockdown Period in the Pearl River Delta Region, South China. Sci. Total Environ. 2022, 823, 153720. [Google Scholar] [CrossRef]
- Liu, B.; Liang, D.; Yang, J.; Dai, Q.; Bi, X.; Feng, Y.; Yuan, J.; Xiao, Z.; Zhang, Y.; Xu, H. Characterization and Source Apportionment of Volatile Organic Compounds Based on 1-Year of Observational Data in Tianjin, China. Environ. Pollut. 2016, 218, 757–769. [Google Scholar] [CrossRef]
- Wang, H.L.; Chen, C.H.; Wang, Q.; Huang, C.; Su, L.Y.; Huang, H.Y.; Lou, S.R.; Zhou, M.; Li, L.; Qiao, L.P.; et al. Chemical Loss of Volatile Organic Compounds and Its Impact on the Source Analysis through a Two-Year Continuous Measurement. Atmos. Environ. 2013, 80, 488–498. [Google Scholar] [CrossRef]
- Zhang, K.; Li, L.; Huang, L.; Wang, Y.; Huo, J.; Duan, Y.; Wang, Y.; Fu, Q. The Impact of Volatile Organic Compounds on Ozone Formation in the Suburban Area of Shanghai. Atmos. Environ. 2020, 232, 117511. [Google Scholar] [CrossRef]
- Bei, N.; Liang, J.; Li, X.; Wang, R. Worsening Summertime Ozone Pollution in the Guanzhong Basin, China from 2014 to 2018: Impacts of Synoptic Conditions and Anthropogenic Emissions. Atmos. Environ. 2022, 274, 118974. [Google Scholar] [CrossRef]
- Li, J.; Zhai, C.; Yu, J.; Liu, R.; Li, Y.; Zeng, L.; Xie, S. Spatiotemporal Variations of Ambient Volatile Organic Compounds and Their Sources in Chongqing, a Mountainous Megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Shen, Z.; Zhang, B.; Sun, J.; Zou, H.; Zhou, M.; Zhang, Z.; Xu, H.; Ho, S.S.H.; Cao, J. Emission Profiles of Volatile Organic Compounds from Various Geological Maturity Coal and Its Clean Coal Briquetting in China. Atmos. Res. 2022, 274, 106200. [Google Scholar] [CrossRef]
- Ma, D.; Jia, S.; Hu, Z.; Wang, X.; Li, L.; Tan, H.; ur Rahman, Z. Experimental Investigation of Water Washing Effect on High-Chlorine Coal Properties. Fuel 2022, 319, 123838. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Jin, X.; Che, D. Effect of Water Washing on Reactivities and NOx Emission of Zhundong Coals. J. Energy Inst. 2016, 89, 636–647. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Jing, S.; Wang, Y.; Cheng, T.; Tao, S.; Lou, S.; Qiao, L.; Li, L.; Chen, J. Characteristics and Sources of Atmospheric Volatile Organic Compounds (VOCs) along the Mid-Lower Yangtze River in China. Atmos. Environ. 2018, 190, 232–240. [Google Scholar] [CrossRef]
- Xiao, Y.; Logan, J.A.; Jacob, D.J.; Hudman, R.C.; Yantosca, R.; Blake, D.R. Global Budget of Ethane and Regional Constraints on U.S. Sources. J. Geophys. Res. Atmos. 2008, 113, D21306. [Google Scholar] [CrossRef]
- Song, M.; Li, X.; Yang, S.; Yu, X.; Zhou, S.; Yang, Y.; Chen, S.; Dong, H.; Liao, K.; Chen, Q.; et al. Spatiotemporal Variation, Sources, and Secondary Transformation Potential of Volatile Organic Compounds in Xi’an, China. Atmos. Chem. Phys. 2021, 21, 4939–4958. [Google Scholar] [CrossRef]
- Huang, Y.S.; Hsieh, C.C. Ambient Volatile Organic Compound Presence in the Highly Urbanized City: Source Apportionment and Emission Position. Atmos. Environ. 2019, 206, 45–59. [Google Scholar] [CrossRef]
- Liang, S.; Gao, S.; Wang, S.; Chai, W.; Chen, W.; Tang, G. Characteristics, Sources of Volatile Organic Compounds, and Their Contributions to Secondary Air Pollution during Different Periods in Beijing, China. Sci. Total Environ. 2023, 858, 159831. [Google Scholar] [CrossRef]
- Wu, F.; Yu, Y.; Sun, J.; Zhang, J.; Wang, J.; Tang, G.; Wang, Y. Characteristics, Source Apportionment and Reactivity of Ambient Volatile Organic Compounds at Dinghu Mountain in Guangdong Province, China. Sci. Total Environ. 2016, 548–549, 347–359. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Cheng, S.; Wang, K.; Cheng, L.; Zhu, J.; Zheng, H.; Duan, W. Emission Characteristics and Reactivity of Volatile Organic Compounds from Typical High-Energy-Consuming Industries in North China. Sci. Total Environ. 2022, 809, 151134. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Liu, Y.; Cui, Y.; Xue, Z.; Gao, Z.; Du, J. Characteristics and Ozone Formation Potential of Volatile Organic Compounds in Emissions from a Typical Chinese Coking Plant. J. Environ. Sci. 2020, 95, 183–189. [Google Scholar] [CrossRef]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Cheng, N. VOC Characteristics, Sources and Contributions to SOA Formation during Haze Events in Wuhan, Central China. Sci. Total Environ. 2019, 650, 2624–2639. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, X.; Wang, X.; Talifu, D.; Wang, G.; Zhang, Y.; Abulizi, A. Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment. Atmosphere 2019, 10, 641. [Google Scholar] [CrossRef]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Wang, N.; Wang, Y.; Liu, M. Ambient Volatile Organic Compounds and Their Effect on Ozone Production in Wuhan, Central China. Sci. Total Environ. 2016, 541, 200–209. [Google Scholar] [CrossRef]
- Cui, L.; Wu, D.; Wang, S.; Xu, Q.; Hu, R.; Hao, J. Measurement Report: Ambient Volatile Organic Compound (VOC) Pollution in Urban Beijing: Characteristics, Sources, and Implications for Pollution Control. Atmos. Chem. Phys. 2022, 22, 11931–11944. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Jing, S.; Peng, Y.; Gao, Y.; Yan, R.; Wang, Q.; Lou, S.; Cheng, T.; Huang, C. Strong Regional Transport of Volatile Organic Compounds (VOCs) during Wintertime in Shanghai Megacity of China. Atmos. Environ. 2021, 244, 117940. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Yang, T.; Dai, Q.; Zhang, Y.; Feng, Y.; Hopke, P.K. Effect of Photochemical Losses of Ambient Volatile Organic Compounds on Their Source Apportionment. Environ. Int. 2023, 172, 107766. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, T.; Kang, S.; Wang, F.; Zhang, H.; Xu, M.; Wang, W.; Bai, J.; Song, S.; Dai, Q.; et al. Changes in Factor Profiles Deriving from Photochemical Losses of Volatile Organic Compounds: Insight from Daytime and Nighttime Positive Matrix Factorization Analyses. J. Environ. Sci. 2025, 151, 627–639. [Google Scholar] [CrossRef]
- Cao, J.J.; Cui, L. Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review. JGR Atmos. 2021, 126, e2020JD034472. [Google Scholar] [CrossRef]
- Li, J.; Deng, S.; Li, G.; Lu, Z.; Song, H.; Gao, J.; Sun, Z.; Xu, K. VOCs Characteristics and Their Ozone and SOA Formation Potentials in Autumn and Winter at Weinan, China. Environ. Res. 2022, 203, 111821. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Li, Y.; Wu, R.; Xie, S. Characteristics of Volatile Organic Compounds, NO2, and Effects on Ozone Formation at a Site with High Ozone Level in Chengdu. J. Environ. Sci. 2019, 75, 334–345. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of Volatile Organic Compounds and Their Role in Ground-Level Ozone Formation in the Beijing-Tianjin-Hebei Region, China. Atmos. Environ. 2015, 113, 247–254. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Chen, N.; Niu, Z.; Zhang, Y.; Jiang, S.; Yan, Y.; Qi, S. Source Apportionment of Volatile Organic Compounds: Implications to Reactivity, Ozone Formation, and Secondary Organic Aerosol Potential. Atmos. Res. 2021, 249, 105344. [Google Scholar] [CrossRef]
- Yuan, Z.; Lau, A.K.H.; Shao, M.; Louie, P.K.K.; Liu, S.C.; Zhu, T. Source Analysis of Volatile Organic Compounds by Positive Matrix Factorization in Urban and Rural Environments in Beijing. J. Geophys. Res. Atmos. 2009, 114, D00G15. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, X.; Li, J.; Wang, F.; Liang, W.; Zhao, H.; Huang, B.; Wang, Z.; Feng, Y.; Shi, G. Quantitative Evidence from VOCs Source Apportionment Reveals O3 Control Strategies in Northern and Southern China. Environ. Int. 2023, 172, 107786. [Google Scholar] [CrossRef]
- Liu, H.; Wang, N.; Chen, D.; Tan, Q.; Song, D.; Huang, F. How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China. Atmosphere 2022, 13, 1534. [Google Scholar] [CrossRef]
City | Period | VOCsloss (ppbv) | VOCsloss/VOCsini (%) | Top3 Photochemical Loss Species | References | ||||
---|---|---|---|---|---|---|---|---|---|
VOCs | Alkanes | Alkenes | Alkyne | Aromatics | |||||
HC | summer | 3.6 | 7.1 | 1.0 | 22 | 0.85 | 7.0 | propene, isoprene, ethylene | This study |
XP | summer | 1.9 | 5.6 | 2.7 | 30 | / | 13 | isoprene, cis-2-pentene, 1-butene | This study |
Guangzhou | spring | 4.1 | 15 | 8.2 | 37 | 1.5 | 25 | m,p-xylene, isoprene, ethylene | [35] |
Guangzhou | summer | 5.1 | 16 | 6.6 | 37 | 1.5 | 20 | / | [18] |
Autumn | 4.5 | 18 | 8.6 | 42 | 2.2 | 28 | / | ||
Beijing | summer | 1.7 | 8.5 | 2.1 | 26 | 0.90 | 13 | isoprene, ethylene, propene | [30] |
Shanghai | annual | 12.2 | 35 | 2.5 | 39 | 10 | 31 | C8 aromatics, C2-C3 alkenes | [55] |
Shanghai | spring and summer | 11.7 | 45 | 32 | 66 | / | 42 | trans-2-butene, trans-2-pentene, ethylene | [56] |
Taiwan | summer | 3.7 | 13 | 3.5 | 45 | 1.2 | 13 | isoprene, 1,2,4-trimethylbenzene, toluene | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Xiong, Q.; Dong, Y.; Zhang, J.; Cao, L.; Zhu, M.; Wang, Q.; Gu, J. The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China. Atmosphere 2025, 16, 970. https://doi.org/10.3390/atmos16080970
Tao Y, Xiong Q, Dong Y, Zhang J, Cao L, Zhu M, Wang Q, Gu J. The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China. Atmosphere. 2025; 16(8):970. https://doi.org/10.3390/atmos16080970
Chicago/Turabian StyleTao, Yanan, Qi Xiong, Yawei Dong, Jiayin Zhang, Lei Cao, Min Zhu, Qiaoqiao Wang, and Jianwei Gu. 2025. "The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China" Atmosphere 16, no. 8: 970. https://doi.org/10.3390/atmos16080970
APA StyleTao, Y., Xiong, Q., Dong, Y., Zhang, J., Cao, L., Zhu, M., Wang, Q., & Gu, J. (2025). The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China. Atmosphere, 16(8), 970. https://doi.org/10.3390/atmos16080970