Research on Temperature Prediction of Passion Fruit Planting Bases in Southwest Fujian Province
Abstract
1. Introduction
2. Data Sources and Research Methods
2.1. Research Area
2.2. Phenological Period Division of Passion Fruit
2.3. BP Model
2.4. Stepwise Regression Model
2.5. Error Analysis
2.6. Model Effect Verification
3. Results and Analysis
3.1. Correlation of Temperatures Between Meteorological Elements at National Stations and Passion Fruit Station
3.2. Simulation Results of BP and Regression Model
3.3. BP and Regression Model Predict Daily Temperature Changes
3.4. High and Low Temperature Simulation by BP and Regression Model
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, D. Passion fruit and its cultivation techniques. For. By-Prod. Spec. China 2004, 5, 1–2. [Google Scholar]
- Francisco, C.L.; Chagas, I.M.B.; Sant’Ana, C.T.; de Jesus, O.N.; Zuculoto, M.; Filho, A.M.M.; Carneiro, J.C.S. Pulp Characterization and Sensory Evaluation of the Nectar of New Hybrids of Passion Fruit (Passiflora Edulis). Appl. Fruit Sci. 2025, 67, 264. [Google Scholar] [CrossRef]
- Arshad, M.T.; Basher, N.S.; Ibrahim, N.A.; Ikram, A.; Maqsood, S.; Rasheed, A.; Naveed, F.; Waqar, M.; Raza, A.; Noreen, S.; et al. Nutritional, Pharmacological and Industrial Applications of Mangosteen and Passion Fruit: A Review. Food Sci. Nutr. 2025, 13, e70574. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lu, L.; Zhang, W.; Chi, M.; Shen, M.; An, C.; Chen, S.; Wang, X.; Liu, R.; Qin, Y.; et al. Comprehensive characterization and expression analysis of enzymatic antioxidant gene families in passion fruit (Passiflora edulis). iScience 2023, 26, 108329. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wei, F. Impacts of adverse meteorological conditions on golden passion fruit production. Fujian Sci. Technol. Trop. Crops 2018, 43, 34–36. [Google Scholar]
- Wang, W.; Zheng, D.; Lin, L. Effects of high temperature and drought on passion fruit and countermeasures. Fujian Sci. Technol. Trop. Crops 2022, 47, 47–49. [Google Scholar]
- Lin, Q.; Su, J.; Wang, M.; Shi, G.; Wu, Y.; Li, L.; Niu, X. Preliminary report on the unfluence of meteorological factors on fruit setting rate of passion fruit. Fujian Sci. Technol. Trop. Crops 2019, 44, 18–21. [Google Scholar]
- Wang, H.; Zhao, J.; Lai, M.; Zhang, Y.; Qiu, W.; Li, Y.; Tu, H.; Ling, Q.; Fu, X. Differential gene expression analysis and physiological response characteristics of passion fruit (Passiflora edulis) buds under high-temperature stress. PeerJ 2023, 11, e14839. [Google Scholar] [CrossRef]
- Cen, M. Introduction performance and cultivation techniques of golden passion fruit. J. Smart Agric. 2021, 1, 65–67. [Google Scholar]
- Castaeda-Miranda, A.; Víctor, M.C. Smart frost control in greenhouses by neural networks models. Comput. Electron. Agric. 2017, 137, 102–114. [Google Scholar] [CrossRef]
- Mou, S.; Shao, P.; Shi, Y.; Yuan, S.; Su, L. Study on Temperature Disaster Indicators of Passion Fruit in Southwest Fujian, China. J. Geosci. Environ. Prot. 2024, 12, 1–12. [Google Scholar] [CrossRef]
- Feng, G. China Climate Change Blue Book released. China Environ. Superv. 2022, 8, 75–77. [Google Scholar]
- Qu, M.; Shen, L.; Zeng, Z.; Yang, B.; Zhong, H.; Yang, X.; Lu, X. Prolonged wind droughts in a warming climate threaten global wind power security. Nat. Clim. Change 2025, 1–8, (prepublish). [Google Scholar] [CrossRef]
- dos Santos, J.C.B.; da Paes, J.S.; de Freitas, D.R.; da Sant’Ana, L.C.S.; dos Reis, D.M.; do Carmo, S.V.B.; de Ribas, N.S.; da Silva, R.S.; Picanço, M.C. Global levels of potential risk of Tagosodes orizicolus (Hemiptera: Delphacidae) in the present and future due to climate change. Crop Prot. 2025, 197, 107334. [Google Scholar] [CrossRef]
- Gao, Q.L.; Xue, X.; Duan, A.W. Research on Temperature Characteristics and Variation Patterns in Sunlight Greenhouse. J. Irrig. Drain. 2003, 270, 50–53. [Google Scholar]
- Deng, Q.L. Research on Non stationary Temperature Change Prediction Model Based on Improved Autoregressive Theory. Sci. Technol. Inf. 2024, 22, 241–244. [Google Scholar]
- Shi, M.; Wei, Q.; Le, Z.; Wang, J.; Zhang, Y.; Zhou, P.; Zhang, J. Hourly Temperature Simulation and Dynamic Forecast in Daylight Greenhouses with Different Wall Materials Based on Genetic Algorithm Optimization of BP Neural Network. Chin. J. Agric. Meteorol. 2025, 46, 483–498. [Google Scholar]
- Huang, L.; Wang, Z.; Zhang, L.; Wang, T.; Zhou, Z. Research on Ground Temperature Prediction Model in Summer Strawberry Greenhouses Based on Linear Stepwise Regression. Agric. Disaster Res. 2023, 13, 112–114. [Google Scholar]
- Liu, R.; Yuan, S.; Han, L. Evaluation and Analysis on the Temperature Prediction Model for Bailing Mushroom in Jizhou, Tianjin. Agriculture 2022, 12, 2044. [Google Scholar] [CrossRef]
- Shahsavari, R.M. Determination of Duration of Developmental Stages of Sofea Safflower Cultivar by Temperature and Day Length. Pizhūhishhā-yi zirā̒ī-i Īrān 2012, 10, 555–569. [Google Scholar]
- Zhang, G.; Ding, X.; He, F.; Yi, Y.; Li, T.; Ren, J.; Zhou, J.; Qi, F. Construction of greenhouse air temperature prediction model based on LSTM-AT. Trans. Chin. Soc. Agric. Eng. 2024, 40, 194–201. [Google Scholar]
- Ihsan, U.; Mehmet, B. Daily air temperature forecasting using LSTM-CNN and GRU-CNN models. Acta Geophys. 2023, 72, 2107–2126. [Google Scholar]
- Shan, D. Temperature Prediction Based on Deep Learning. Ph.D. Thesis, Fujian Normal University, Fuzhou, China, 2018. [Google Scholar]
- Xu, Y.; Guo, J. Temperature prediction method based on BP neural network algorithm and time series model. J. Zhengzhou Railw. Vocat. Tech. Coll. 2023, 35, 24–27. [Google Scholar]
- Jin, Z.; Fu, G.; Huang, H.; Pan, Y.; Yang, Z.; Li, R. Simulation and forecast of air temperature inside the greenhouse planted Myrica rubra based on BP neural network. Chin. J. Agrometeorol. 2011, 32, 362–367. [Google Scholar]
- Fan, Y.; Song, Z.; Yang, X.; Liu, H. Method for Fitting Temperature Changes during Fanning Process in Southern Mountainous Areas of Sichuan Using BP Neural Network. Res. Plateau Mt. Area Meteorol. 2024, 44, 95–101. [Google Scholar]
- Zhu, X.; Li, H.; Xu, J.; Wang, J.; Nyambura, S.M.; Feng, X.; Luo, W. Prediction of cooling effect of constant temperature community bin based on BP neural network. Int. J. Biometeorol. 2023, 67, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Ji, Y.; Wu, G. Research on Temperature Prediction Model in Greenhouse Based on Improved SVR. J. Phys. Conf. Ser. 2021, 1802, 042001. [Google Scholar] [CrossRef]
- Kamal, P.; Bhaskar, B.; Sandipan, K. An Efficient Decision-Making Approach for Short Term Indoor Room Temperature Forecasting in Smart Environment: Evidence from India. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 733–774. [Google Scholar] [CrossRef]
- de Jesus Silva, J.; Junghans, T.G.; da Silva Ledo, C.A.; de Lima Silva, F.; de Souza, E.H.; Hongyu, K.; Duarte Souza, F.V. Cryopreservation and germinative behavior of Passiflora spp. seeds. 3Biotech 2022, 12, 276. [Google Scholar] [CrossRef]
- Zhang, W. Breeding of a new passion fruit cultivar ‘Fujian Passion Fruit No. 2’. China Fruits 2022, 9, 62–63+109+64. [Google Scholar]
Phenological Period | Budding | Flowering and Fruiting | Overwintering |
---|---|---|---|
Data | 3.21~4.10 | 4.11~11.20 | 11.21~3.20 |
Regional | Meteorological Elements of National Stations | |||
---|---|---|---|---|
Air Pressure | Instantaneous Wind | Atmospheric Temperature | Relative Humidity | |
Long yan | −0.68 ** | −0.15 ** | 0.65 ** | −0.07 ** |
San ming | −0.73 ** | −0.18 ** | 0.71 ** | −0.04 ** |
Zhang zhou | −0.68 ** | 0.04 ** | 0.64 ** | 0.31 ** |
Regional | Phenological Phase | MSE0 (°C) | RMSE0 (°C) | MSE1 (°C) | RMSE1 (°C) |
---|---|---|---|---|---|
Longyan | Budding | 3.0 | 3.9 | 5.0 | 7.2 |
Flower and fruit | 3.1 | 3.9 | 5.0 | 6.7 | |
overwintering | 3.0 | 3.9 | 4.7 | 6.7 | |
Sanming | Budding | 2.6 | 3.5 | 4.4 | 6.1 |
Flower and fruit | 3.3 | 4.1 | 4.7 | 6.3 | |
overwintering | 2.8 | 3.7 | 4.0 | 5.8 | |
Zhangzhou | Budding | 3.2 | 4.1 | 4.7 | 6.5 |
Flower and fruit | 3.4 | 4.3 | 5.3 | 6.7 | |
overwintering | 3.0 | 3.9 | 5.8 | 7.3 |
Regional | Phenological Phase | MSE0 (°C) | RMSE0 (°C) | MSE1 (°C) | RMSE1 (°C) |
---|---|---|---|---|---|
Longyan | Budding | 3.7 | 4.8 | 4.5 | 6.4 |
Flower and fruit | 3.5 | 4.3 | 5.0 | 6.7 | |
overwintering | 3.5 | 4.5 | 4.4 | 6.3 | |
Sanming | Budding | 3.5 | 4.6 | 4.4 | 6.2 |
Flower and fruit | 3.8 | 4.6 | 4.7 | 6.2 | |
overwintering | 3.3 | 4.3 | 4.0 | 5.8 | |
Zhangzhou | Budding | 3.6 | 4.6 | 4.8 | 6.3 |
Flower and fruit | 3.8 | 4.7 | 5.4 | 6.7 | |
overwintering | 3.4 | 4.4 | 5.9 | 7.5 |
Regional | Phenological Phase | Equations | R |
---|---|---|---|
Longyan | Sprout | y = 338.04 − 0.34 × x1 − 0.20 × x2 + 0.48 × x3 + 0.11 × x4 | 0.4 |
Flower and fruit | y = 193.23 − 0.20 × x1 − 0.23 × x2 + 0.56 × x3 + 0.12 × x4 | 0.3 | |
overwintering | y = 113.59 − 0.13 × x1 − 0.05 × x2 + 0.71 × x3 + 0.17 × x4 | 0.4 | |
Sanming | Sprout | y = 318.56 − 0.32 × x1 − 0.36 × x2 + 0.32 × x3 + 0.09 × x4 | 0.4 |
Flower and fruit | y = 237.48 − 0.24 × x1 − 0.51 × x2 + 0.56 × x3 + 0.10 × x4 | 0.5 | |
overwintering | y = 42.17 − 0.05 × x1 − 0.19 × x2 + 0.47 × x3 + 0.15 × x4 | 0.5 | |
Zhangzhou | Sprout | y = 360.28 − 0.35 × x1 − 0.19 × x2 + 0.32 × x3 + 0.09 × x4 | 0.3 |
Flower and fruit | y = 127.42 − 0.14 × x1 + 0.21 × x2 + 0.72 × x3 + 0.19 × x4 | 0.5 | |
overwintering | y = 80.56 − 0.09 × x1 + 0.24 × x2 + 0.72 × x3 + 0.18 × x4 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, S.; Yuan, S.; Shi, Y.; Han, L.; Yang, K.; Li, H. Research on Temperature Prediction of Passion Fruit Planting Bases in Southwest Fujian Province. Atmosphere 2025, 16, 961. https://doi.org/10.3390/atmos16080961
Mou S, Yuan S, Shi Y, Han L, Yang K, Li H. Research on Temperature Prediction of Passion Fruit Planting Bases in Southwest Fujian Province. Atmosphere. 2025; 16(8):961. https://doi.org/10.3390/atmos16080961
Chicago/Turabian StyleMou, Shiyun, Shujie Yuan, Yuchen Shi, Lin Han, Kai Yang, and Hongyi Li. 2025. "Research on Temperature Prediction of Passion Fruit Planting Bases in Southwest Fujian Province" Atmosphere 16, no. 8: 961. https://doi.org/10.3390/atmos16080961
APA StyleMou, S., Yuan, S., Shi, Y., Han, L., Yang, K., & Li, H. (2025). Research on Temperature Prediction of Passion Fruit Planting Bases in Southwest Fujian Province. Atmosphere, 16(8), 961. https://doi.org/10.3390/atmos16080961