Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021
Abstract
1. Introduction
2. PMWE Observations by ESRAD During 1996–2021
2.1. ESRAD
2.2. ESRAD Data
2.3. PMWE Observations
2.4. Seasonal Variations of PMWE Occurrence Rate
2.5. Altitude–Diurnal Variation of PMWE Occurrence Rate
2.6. Solar and Geophysical Parameters
2.6.1. Data Overview
2.6.2. Dependence on Solar and Geophysical Parameters
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkwood, S.; Barabash, V.; Belova, E.; Nilsson, H.; Rao, N.; Stebel, K.; Osepian, A.; Chilson, P.B. Polar mesosphere winter echoes during solar proton events. Adv. Polar Up. Atmos. Res. 2002, 16, 111–125. [Google Scholar]
- Latteck, R.; Strelnikova, I. Extended observations of polar mesosphere winter echoes over Andøya (69°N) using MAARSY. J. Geophys. Res. Atmos. 2015, 120, 8216–8226. [Google Scholar] [CrossRef]
- Strelnikov BStaszak, T.; Latteck, R.; Renkwitz, T.; Strelnikova, I.; Lübken, F.J.; Baumgarten, G.; Fiedler, J.; Chau, J.L.; Stude, J.; Rapp, M.; et al. Sounding rocket project “PMWE” for investigation of polar mesosphere winter echoes. J. Atmos. Sol.-Terr. Phys. 2021, 218, 105596. [Google Scholar] [CrossRef]
- Rosinski, J.; Snow, R.H. Secondary Particulate Matter from Meteor Vapors. J. Atmos. Sci. 1961, 18, 736–745. [Google Scholar] [CrossRef]
- Hughes, D.W. Meteors and cosmic dust. Endeavour 1997, 21, 31–35. [Google Scholar] [CrossRef]
- Janches, D.; Heinselman, C.J.; Chau, J.L.; Chandran, A.; Woodman, R. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. J. Geophys. Res. 2006, 111, A07317. [Google Scholar] [CrossRef]
- Mathews, J.D.; Briczinski, S.J.; Meisel, D.D.; Heinselman, C.J. Radio and meteor science outcomes from comparisons of meteor radar observations at AMISR Poker Flat, Søndrestrøm, and Arecibo. Earth Moon Planets 2008, 102, 365–372. [Google Scholar] [CrossRef]
- Kirkwood, S.; Osepian, A.; Belova, E.; Lee, Y.S. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica. Ann. Geophys. 2015, 33, 609–622. [Google Scholar] [CrossRef]
- Singer, W.; von Zahn, U.; Weiß, J. Diurnal and annual variations of meteor rates at the arctic circle. Atmos. Chem. Phys. 2004, 4, 1355–1363. [Google Scholar] [CrossRef]
- Stude, J.; Aufmhoff, H.; Schlager, H.; Rapp, M.; Baumann, C.; Arnold, F.; Strelnikov, B. Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere—Detection of meteor smoke particles. Atmos. Chem. Phys. 2025, 25, 383–396. [Google Scholar] [CrossRef]
- Nishiyama, T.; Sato, K.; Nakamura, T.; Tsutsumi, M.; Sato, T.; Tanaka, Y.M.; Nishimura, K.; Tomikawa, Y.; Kohma, M. Simultaneous observations of polar mesosphere winter echoes and cosmic noise absorptions in a common volume by the PANSY radar (69.0°S, 39.6°E). J. Geophys. Res. Space Phys. 2018, 123, 5019–5032. [Google Scholar] [CrossRef]
- Lübken, F.J.; Singer, W.; Latteck, R.; Strelnikova, I. Radar measurements of turbulence, electron densities, and absolute reflectivities during polar mesosphere winter echoes (PMWE). Adv. Space Res. 2007, 40, 758–764. [Google Scholar] [CrossRef]
- Havnes, O.; Kassa, M. On the sizes and observable effects of dust particles in polar mesospheric winter echoes. J. Geophys. Res. Atmos. 2009, 114, D09209. [Google Scholar] [CrossRef]
- Belova, E.; Kawnine, M.; Häggström, I.; Sergienko, T.; Kirkwood, S.; Tjulin, A. Tristatic observation of polar mesosphere winter echoes with the EISCAT VHF radar on 8 January 2014: A case study. Earth Planets Space 2018, 70, 110. [Google Scholar] [CrossRef] [PubMed]
- Brattli, A.; Blix, T.A.; Lie-Svendsen, O.; Hoppe, U.P.; Lübken, F.J.; Rapp, M.; Singer, W.; Latteck, R.; Friedrich, M. Rocket measurements of positive ions during polar mesosphere winter echo conditions. Atmos. Chem. Phys. 2006, 6, 5515–5524. [Google Scholar] [CrossRef]
- Meredith, N.P.; Horne, R.B.; Lam, M.M.; Denton, M.H.; Borovsky, J.E.; Green, J.C. Energetic electron precipitation during high-speed solar wind stream driven storms. J. Geophys. Res. 2011, 116, A05223. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Hajra, R.; Echer, E.; Lakhina, G.S. Comment on “First Observation of Mesosphere Response to the Solar Wind High-Speed Streams” by W. Yi et al. J. Geophys. Res. Space Phys. 2019, 124, 8165–8168. [Google Scholar] [CrossRef]
- Belova, E.; Barabash, V.; Godin, O.A.; Kero, J.; Näsholm, S.P.; Vorobeva, E.; Le Pichon, A. High-speed Echoes in the Polar Winter Mesosphere: Infrasound as a Probable Cause. Adv. Space Res. 2023, 72, 3181–3201. [Google Scholar] [CrossRef]
- Ecklund, W.L.; Balsley, B.B. Long-term observations of the arctic mesosphere with the MST radar at Poker Flat, Alaska. J. Geophys. Res. 1981, 86, 7775–7780. [Google Scholar] [CrossRef]
- Balsley, B.B.; Ecklund, W.L.; Fritts, D.C. VHF echoes from the high-latitude mesosphere and lower thermosphere: Observations and interpretations. J. Atmos. Sci. 1983, 40, 2451–2466. [Google Scholar] [CrossRef]
- Kirkwood, S.; Chilson, P.; Belova, E.; Dalin, P.; Häggström, I.; Rietveld, M.; Singer, W. Infrasound—The cause of strong Polar Mesosphere Winter Echoes? Ann. Geophys. 2006, 24, 475–491. [Google Scholar] [CrossRef]
- Zeller, O.; Zecha, M.; Bremer, J.; Latteck, R.; Singer, W. Mean characteristics of mesosphere winter echoes at mid- and high latitudes. J. Atmos. Sol. Terr. Phys. 2006, 68, 1087–1104. [Google Scholar] [CrossRef]
- Renkwitz, T.; Latteck, R.; Strelnikova, I.; Johnsen, M.G.; Chau, J.L. Characterization of polar mesospheric VHF radar echoes during solar minimum winter 2019/2020. Part I: Ionization. J. Atmos. Sol.-Terr. Phys. 2021, 221, 105684. [Google Scholar] [CrossRef]
- Hall, C.M.; Manson, A.H.; Meek, C.M.; Nozawa, S. Isolated lower mesospheric echoes seen by medium frequency radar at 70° N, 19° E. Atmos. Chem. Phys. 2006, 6, 5307–5314. [Google Scholar] [CrossRef]
- La Hoz, C.; Havnes, O. Artificial modification of polar mesospheric winter echoes with an RF heater: Do charged dust particles play an active role? J. Geophys. Res. 2008, 113, D19205. [Google Scholar] [CrossRef]
- Morris, R.J.; Klekociuk, A.R.; Holdsworth, D.A. First observations of Southern Hemisphere polar mesosphere winter echoes including conjugate occurrences at ≈ 69°S latitude. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Nishiyama, T.; Sato, K.; Nakamura, T.; Tsutsumi, M.; Sato, T.; Kohma, M.; Nishimura, K.; Tomikawa, Y.; Ejiri, M.K.; Tsuda, T.T. Height and time characteristics of seasonal and diurnal variations in PMWE based on 1-year observations by the PANSY radar (69.0°S, 39.6°E). Geophys. Res. Lett. 2015, 42, 2100–2108. [Google Scholar] [CrossRef]
- Kohma, M.; Sato, K.; Nishimura, K.; Tsutsumi, M.; Sato, T. A statistical analysis of the energy dissipation rate estimated from the PMWE spectral width in the Antarctic. J. Geophys. Res.: Atmos. 2020, 125, e2020JD032745. [Google Scholar] [CrossRef]
- Latteck, R.; Bremer, J. Long-term variations of polar mesospheric summer echoes observed at Andøya (69°N). J. Atmos. Sol. Terr. Phys. 2017, 163, 31–37. [Google Scholar] [CrossRef]
- Latteck, R.; Singer, W.; Rapp, M.; Vandepeer, B.; Renkwitz, T.; Zecha, M.; Stober, G. MAARSY—The new MST radar on Andøya: System description and first results. Radio Sci. 2012, 47, RS1006. [Google Scholar] [CrossRef]
- Latteck, R.; Renkwitz, T.; Chau, J.L. Two decades of long-term observations of polar mesospheric echoes at 69°N. J. Atmos. Sol.-Terr. Phys. 2021, 216, 105576. [Google Scholar] [CrossRef]
- Tanaka, Y.M.; Nishiyama, T.; Kadokura, A.; Ozaki, M.; Miyoshi, Y.; Shiokawa, K.; Oyama, S.L.; Kataoka, R.; Tsutsumi, M.; Nishimura, K.; et al. Direct comparison between magnetospheric plasma waves and polar mesosphere winter echoes in both hemispheres. J. Geophys. Res. Space Phys. 2019, 124, 9626–9639. [Google Scholar] [CrossRef]
- Chilson, P.B.; Kirkwood, S.; Nilsson, A. The Esrange MST radar: A brief introduction and procedure for range validation using balloons. Radio Sci. 1999, 34, 427–436. [Google Scholar] [CrossRef]
- Kirkwood, S.; Belova, E.; Satheesan, K.; Narayana Rao, T.; Rajendra Prasad, T.; Satheesh Kumar, S. Fresnel scatter revisited—comparison of 50 MHz radar and radiosondes in the Arctic, the Tropics and Antarctica. Ann. Geophys. 2010, 28, 1993–2005. [Google Scholar] [CrossRef]
- NASA. Goddard Space Flight Center, Space Physics Data Facility, OMNI Web Plus. Available online: https://omniweb.gsfc.nasa.gov/ (accessed on 7 April 2025).
- Hoffmann, P.; Becker, E.; Singer, W.; Placke, M. Seasonal variation of mesospheric waves at northern middle and high latitudes. J. Atmos. Sol. Terr. Phys. 2010, 72, 1068–1079. [Google Scholar] [CrossRef]
- Kirkwood, S. Polar mesosphere winter echoes—A review of recent results. Adv. Space Res. 2007, 40, 751–757. [Google Scholar] [CrossRef]
- Rapp, M. Charging of mesospheric aerosol particles: The role of photodetachment and photoionization from meteoric smoke and ice particles. Ann. Geophys. 2009, 27, 2417–2422. [Google Scholar] [CrossRef]
- Latteck, R.; Murphy, D.J. Climatological comparison of polar mesosphere summer echoes over the Arctic and Antarctica at 69°. Ann. Geophys. 2024, 42, 55–68. [Google Scholar] [CrossRef]
- Macotela, E.L.; Clilverd, M.A.; Manninen, J.; Thomson, N.R.; Newnham, D.A.; Raita, T. The effect of ozone shadowing on the D-region ionosphere during sunrise. J. Geophys. Res. Space Phys. 2019, 124, 3729–3742. [Google Scholar] [CrossRef]
- Turco, R.P.; Sechrist, C.F., Jr. An investigation of the ionospheric D region at sunrise: 3, time variations of negative-ion and electron densities. Radio Sci. 1972, 7, 725–737. [Google Scholar] [CrossRef]
- Havnes, O.; La Hoz, C.; Rietveld, M.T.; Kassa, M.; Baroni, G.; Biebricher, A. Dust charging and density conditions deduced from observations of PMWE modulated by artificial electron heating. J. Geophys. Res. 2011, 116, D24203. [Google Scholar] [CrossRef]
- Staszak, T.; Strelnikov, B.; Latteck, R.; Renkwitz, T.; Friedrich, M.; Baumgarten, G.; Lübken, F.J. Turbulence generated small-scale structures as PMWE formation mechanism: Results from a rocket campaign. J. Atmos. Sol.-Terr. Phys. 2021, 217, 105559. [Google Scholar] [CrossRef]
- Lübken, F.J.; Strelnikov, B.; Rapp, M.; Singer, W.; Latteck, R.; Brattli, A.; Hoppe, U.P.; Friedrich, M. The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes. Atmos. Chem. Phys. 2006, 6, 13–24. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
Mode | fca_1200 | fca_600c | fca_4500 | fca_900 |
---|---|---|---|---|
Period of usage | 17 December 1996—2 May 1997 | 20 May 1997–29 August 1999 | 20 October 1999—16 December 2015 | 25 March 2016—31 January 2021 |
Pulse repetition frequency, Hz | 1024 | 1024/1300 | 1300 | 1300 |
Code | none | 8-bit complementary | 8-bit complementary | none |
Height resolution, m | 600 | 600 | 600 | 600 |
Start height, m | 5000 | 4800 | 4800 | 1050 |
Stop height, m | 99,200 | 99,600 | 99,600 | 100,650 |
Number of coherent integrations (long) | 1024 | 512 | 640 | 1280 |
1 Kp Index | 2 Solar Wind Speed | 3 Proton Flux | 4 Short X-Ray Flux | 5 Number of Sample Days | 6 Number of PMWE Days | 7 % of PMWE Days |
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 527 | 72 | 14 |
0 | 0 | 0 | 1 | 28 | 1 | 4 |
0 | 0 | 1 | 0 | 6 | 0 | 0 |
0 | 0 | 1 | 1 | 9 | 4 | 44 |
0 | 1 | 0 | 0 | 88 | 25 | 28 |
0 | 1 | 0 | 1 | 8 | 0 | 0 |
0 | 1 | 1 | 0 | 2 | 1 | 50 |
0 | 1 | 1 | 1 | 0 | 0 | - |
1 | 0 | 0 | 0 | 271 | 80 | 30 |
1 | 0 | 0 | 1 | 28 | 10 | 36 |
1 | 0 | 1 | 0 | 8 | 5 | 63 |
1 | 0 | 1 | 1 | 4 | 3 | 75 |
1 | 1 | 0 | 0 | 548 | 321 | 59 |
1 | 1 | 0 | 1 | 34 | 21 | 62 |
1 | 1 | 1 | 0 | 25 | 20 | 80 |
1 | 1 | 1 | 1 | 13 | 12 | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belova, E.; Persson, S.N.; Barabash, V.; Kirkwood, S. Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021. Atmosphere 2025, 16, 898. https://doi.org/10.3390/atmos16080898
Belova E, Persson SN, Barabash V, Kirkwood S. Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021. Atmosphere. 2025; 16(8):898. https://doi.org/10.3390/atmos16080898
Chicago/Turabian StyleBelova, Evgenia, Simon Nils Persson, Victoria Barabash, and Sheila Kirkwood. 2025. "Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021" Atmosphere 16, no. 8: 898. https://doi.org/10.3390/atmos16080898
APA StyleBelova, E., Persson, S. N., Barabash, V., & Kirkwood, S. (2025). Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021. Atmosphere, 16(8), 898. https://doi.org/10.3390/atmos16080898