Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Definition of the MOD Across the YHRB Region
2.3. Methods
3. Results
3.1. Variability of the MOD over the YHRB Region
3.2. Role of the BKS Ice in the Variability of the MOD over the YHRB Region
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BKS | Barents–Kara Seas |
EASJ | East Asian Subtropical Jet Stream |
JJ | June–July |
MAM | March–April–May |
MOD | Meiyu onset date |
SIC | sea ice concentration |
SST | sea surface temperature |
WNPSH | Western North Pacific subtropical high |
YHRB | Yangtze–Huaihe River Basin |
References
- Ding, Y.; Liang, P.; Liu, Y.; Zhang, Y. Multiscale Variability of Meiyu and Its Prediction: A New Review. J. Geophys. Res. Atmos. 2020, 125, e2019JD031496. [Google Scholar] [CrossRef]
- Tao, S.; Chen, L. A Review of Recent Research on the East Asian Monsoon in China. Monsoon Meteorol. 1987, 24, 60–92. [Google Scholar]
- He, J.; Ju, J.; Wen, Z.; Lü, J.; Jin, Q. A Review of Recent Advances in Research on Asian Monsoon in China. Adv. Atmos. Sci. 2007, 24, 972–992. [Google Scholar] [CrossRef]
- Chen, X.; Wen, Z.; Song, Y.; Guo, Y. Causes of Extreme 2020 Meiyu-Baiu Rainfall: A Study of Combined Effect of Indian Ocean and Arctic. Clim. Dyn. 2022, 59, 3485–3501. [Google Scholar] [CrossRef]
- Guo, Q.; Hibino, K. Physical Responses of Baiu Extreme Precipitation to Future Warming: Examples of the 2018 and 2020 Western Japan Events. Weather Clim. Extrem. 2023, 39, 100547. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, H.D.; Wang, B. Interdecadal Variation of Changma (Korean Summer Monsoon Rainy Season) Retreat Date in Korea. Int. J. Climatol. 2020, 40, 1348–1360. [Google Scholar] [CrossRef]
- Choi, J.W.; Moon, I.J.; Khim, B.K. A Possible Relationship between Changma and Tropical Cyclone Genesis Frequency in the Western North Pacific Linked to the North Atlantic Oscillation. Int. J. Climatol. 2023, 43, 1367–1381. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, B.; Xu, X.; Yin, Z. Interdecadal Change in the Response of Winter North Atlantic Oscillation to the Preceding Autumn Sea Ice in the Barents-Kara Seas around the Early 1990s. Atmos. Res. 2024, 297, 107123. [Google Scholar] [CrossRef]
- Tong, M.; Zheng, Z.; Fu, Q. Characteristics of Meiyu Seen from Multiple Observational Analyses and Reanalyses. Earth Sp. Sci. 2021, 8, e2021EA001647. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Ding, Y.; Wu, Z. Towards Influence of Arabian Sea SST Anomalies on the Withdrawal Date of Meiyu over the Yangtze-Huaihe River Basin. Atmos. Res. 2021, 249, 105340. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, X.Q.; Tao, L.; Sun, L. Impact of Anomalous Eurasian Blocking Activities on the East Asian Meiyu Rainfall. Clim. Dyn. 2023, 61, 3127–3146. [Google Scholar] [CrossRef]
- Li, X.; Kawamura, R.; Ichiyanagi, K.; Yoshimura, K. Moisture Sources and Isotopic Composition of the 2020 Extraordinary and Persistent Meiyu Rainfall in the Yangtze River Valley Modulated by Large-Scale Circulations. Atmos. Res. 2024, 297, 107114. [Google Scholar] [CrossRef]
- Sun, T.; Yao, S.; Huang, Q.; Guo, Q.; Xia, Y.; Zhang, H. Possible Mechanism of the Mid-High-Latitude Synoptic-Scale Disturbances Impact on Meiyu Precipitation Anomalies. Atmos. Res. 2024, 298, 107137. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Singh, V.P.; Luo, M.; Xie, Z. Summer Extreme Precipitation in Eastern China: Mechanisms and Impacts. J. Geophys. Res. 2017, 122, 2766–2778. [Google Scholar] [CrossRef]
- Tseng, K.C.; Ho, Y.H. The Subseasoanl Predictability of the Western North Pacific Subtropical High and the 2020 Record-Breaking Event. npj Clim. Atmos. Sci. 2024, 7, 53. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P. An Objective Approach to Predict the Spatial Property of Anomalous Rain-Belt of Meiyu. Weather Clim. Extrem. 2022, 37, 100466. [Google Scholar] [CrossRef]
- Li, X.; Kawamura, R.; Ichiyanagi, K.; Yoshimura, K. Moisture Sources and Isotopic Composition of a Record-Breaking Heavy Meiyu-Baiu Rainfall in Southwestern Japan in Early July 2020. Atmos. Res. 2023, 286, 106693. [Google Scholar] [CrossRef]
- Liu, B.; Yan, Y.; Zhu, C.; Ma, S.; Li, J. Record-Breaking Meiyu Rainfall Around the Yangtze River in 2020 Regulated by the Subseasonal Phase Transition of the North Atlantic Oscillation. Geophys. Res. Lett. 2020, 47, e2020GL090342. [Google Scholar] [CrossRef]
- Liu, Y.; Luan, L.; Wu, G.; Ma, T. Impacts of the Surface Potential Vorticity Circulation over the Tibetan Plateau on the East Asian Monsoon in July. Atmosphere 2023, 14, 1038. [Google Scholar] [CrossRef]
- Wu, C.; Chou, M.D.; Fong, Y.H. Impact of the Himalayas on the Meiyu–Baiu Migration. Clim. Dyn. 2018, 50, 1307–1319. [Google Scholar] [CrossRef]
- Siew, P.Y.F.; Li, C.; Ting, M.; Sobolowski, S.P.; Wu, Y.; Chen, X. North Atlantic Oscillation in Winter Is Largely Insensitive to Autumn Barents-Kara Sea Ice Variability. Sci. Adv. 2021, 7, eabg4893. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zheng, Z.; Li, L.; Wu, S.; Liu, Y. Prediction Skill and Predictability of Precipitation during Meiyu and Rainy Season in North China Using ECMWF Subseasonal Forecasts. Clim. Dyn. 2023, 61, 5429–5441. [Google Scholar] [CrossRef]
- Hu, R.; Wang, L. Variation of High and Low Level Circulation of Meiyu in Jiangsu Province in Recent 30 Years. Atmosphere 2021, 12, 1258. [Google Scholar] [CrossRef]
- Wang, L.; Ning, L.; Chen, K.; Yan, M.; Liu, J.; Liu, Z.; Qin, Y.; Xue, J.; Li, C. Influence and Mechanism of Solar Radiation Intensity on the Interdecadal Variability of Strong Meiyu Events during Historical Periods. Sci. China Earth Sci. 2023, 66, 408–416. [Google Scholar] [CrossRef]
- Sampe, T.; Xie, S.P. Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet. J. Clim. 2010, 23, 113–134. [Google Scholar] [CrossRef]
- Du, Y.; Xie, Z.Q.; Miao, Q. Spatial Scales of Heavy Meiyu Precipitation Events in Eastern China and Associated Atmospheric Processes. Geophys. Res. Lett. 2020, 47, e2020GL087086. [Google Scholar] [CrossRef]
- Wang, S.; Chen, T.; Xie, Y.; Luo, J.J. Different Impacts of the Variations of Western and Eastern Portions of the East Asian Westerly Jet Stream on Southern China Rainfalls in Meiyu Season. Atmos. Res. 2024, 300, 107229. [Google Scholar] [CrossRef]
- Jiang, N.; Yan, Q.; Wang, H.; Li, H. Earlier Onset and Shortened Meiyu Season During the Last Interglacial Based on Dynamical Downscaling Simulations. Geophys. Res. Lett. 2022, 49, e2022GL101048. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, R.; Wen, Z.; Li, J.; Zhang, C.; Zhou, Z. Understanding the Role of SST Anomaly in Extreme Rainfall of 2020 Meiyu Season from an Interdecadal Perspective. Sci. China Earth Sci. 2021, 64, 1619–1632. [Google Scholar] [CrossRef]
- Wang, J.; Lü, J. Interdecadal Variation of the Warm Arctic-Cold Eurasia Mode and Its Association with North Atlantic Sea Surface Temperature. Chin. J. Atmos. Sci. 2021, 45, 915–930. [Google Scholar]
- Qiao, Y.; Nakamura, H.; Tomita, T. Warming of the Kuroshio Current Over the Last Four Decades Has Intensified the Meiyu-Baiu Rainband. Geophys. Res. Lett. 2024, 51, e2023GL107021. [Google Scholar] [CrossRef]
- Chen, X.; Dai, A.; Wen, Z.; Song, Y. Contributions of Arctic Sea-Ice Loss and East Siberian Atmospheric Blocking to 2020 Record-Breaking Meiyu-Baiu Rainfall. Geophys. Res. Lett. 2021, 48, e2021GL092748. [Google Scholar] [CrossRef]
- Wang, J.; Fu, N.; Liang, P.; Li, M. Possible Impact of Early Spring Arctic Sea Ice on Meiyu Cessation over the Yangtze–Huaihe River Basin. Atmosphere 2022, 13, 1293. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, H.; Dong, X. Impact of Antecedent Soil Moisture Anomalies over the Indo-China Peninsula on the Super Meiyu Event in 2020. J. Meteorol. Res. 2023, 37, 234–247. [Google Scholar] [CrossRef]
- Liu, G.; Wu, R.; Zhang, Y. Persistence of Snow Cover Anomalies over the Tibetan Plateau and the Implications for Forecasting Summer Precipitation over the Meiyu-Baiu Region. Atmos. Ocean. Sci. Lett. 2014, 7, 115–119. [Google Scholar] [CrossRef]
- Li, J.; Xie, T.; Tang, X.; Wang, H.; Sun, C.; Feng, J.; Zheng, F.; Ding, R. Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction. Adv. Atmos. Sci. 2022, 39, 625–642. [Google Scholar] [CrossRef]
- Hao, L.; Ding, Y.; Liu, Y. New Characteristics of Meiyu Precipitation Changes in the Middle and Lower Reaches of the Yangtze River since 2000. Front. Clim. 2024, 6, 1372460. [Google Scholar] [CrossRef]
- Qian, Y.; Hsu, P.; Fu, Z.; Liu, Y.; Li, Q. Decadal Change of Meiyu Onset over Yangtze River and Its Causes. Sustainability 2022, 14, 5085. [Google Scholar] [CrossRef]
- Yang, H.; Cui, C.; Wu, C.; Wang, Y.; Wang, X.; Zhou, W.; Wang, J. Analysis and Comparison of Water Vapor Transport Features and Circulation Anomalies during the Super-Strong Meiyu Period of 2020 and 1998*. Weather Clim. Extrem. 2024, 44, 100654. [Google Scholar] [CrossRef]
- Niu, R.; Zhai, P.; Tan, G. Anomalous Features of Extreme Meiyu in 2020 over the Yangtze-Huai River Basin and Attribution to Large-Scale Circulations. J. Meteorol. Res. 2021, 35, 799–814. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Mao, J. Climatological Intraseasonal Oscillation in the Middle–Upper Troposphere and Its Effect on the Northward Migration of the East Asian Westerly Jet and Rain Belt over Eastern China. Int. J. Climatol. 2021, 41, 5084–5099. [Google Scholar] [CrossRef]
- Sun, T.; Yao, S.; Huang, Q. The Atmospheric Quasi-Biweekly Oscillation during the Jiangnan Meiyu Onset Period. Front. Earth Sci. 2022, 10, 986830. [Google Scholar] [CrossRef]
- Wang, J.; He, J.; Liu, X.; Wu, B. Interannual Variability of the Meiyu Onset over Yangtze-Huaihe River Valley and Analyses of Its Previous Strong Influence Signal. Chin. Sci. Bull. 2009, 54, 687–695. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y. Teleconnection between the Indian Summer Monsoon Onset and the Meiyu over the Yangtze River Valley. Sci. China Ser. D Earth Sci. 2008, 51, 1021–1035. [Google Scholar] [CrossRef]
- Li, H.; He, S.; Fan, K.; Wang, H. Relationship between the Onset Date of the Meiyu and the South Asian Anticyclone in April and the Related Mechanisms. Clim. Dyn. 2019, 52, 209–226. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, H.; Cai, X. Physical Mechanism of Phased Variation of 2020 Extremely Heavy Meiyu in Middle and Lower Reaches of Yangtze River. J. Trop. Meteorol. 2022, 28, 273–285. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, Z.; He, J. Anomalous Meiyu Onset Averaged over the Yangtze River Valley. Theor. Appl. Climatol. 2008, 94, 81–95. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Sheng, C.; Ma, T. Influence of Boreal Spring Sea Surface Temperature Anomalies over the Tropical South Atlantic on the Meiyu Onset. Clim. Dyn. 2023, 60, 3613–3628. [Google Scholar] [CrossRef]
- Jin, X.; Ma, Y.; Liu, M.; Zhong, S. Evolution Characteristics of Impact Weather System and SST Signals during Years of Anomalous Meiyu Onset over the Yangtze-Huaihe River Basin. Front. Earth Sci. 2023, 11, 1110898. [Google Scholar] [CrossRef]
- Wen, D.; Gui, S.; Cao, J. Impact of May Atmospheric Latent Heating over the Southeast Asian Low-Latitude Highlands on Interannual Variability in the Meiyu Onset Date. Atmos. Res. 2024, 298, 107158. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets. Acta Geophys. Sin. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Yang, G.; Li, T. Moist Baroclinic Instability along the Subtropical Mei-Yu Front. J. Clim. 2023, 36, 805–822. [Google Scholar] [CrossRef]
- Chen, X.; Wen, Z.; Liu, J.; Mei, W.; Zhang, R.; Huang, S.; Guo, Y.; Li, J. Sea-Ice Loss in Eurasian Arctic Coast Intensifies Heavy Meiyu-Baiu Rainfall Associated with Indian Ocean Warming. npj Clim. Atmos. Sci. 2024, 7, 217. [Google Scholar] [CrossRef]
- Si, D.; Ding, Y.; Liu, Y. Decadal Northward Shift of the Meiyu Belt and the Possible Cause. Chin. Sci. Bull. 2009, 54, 4742–4748. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y. Numerical Study of the Impacts of Urban Expansion on Meiyu Precipitation over Eastern China. J. Meteorol. Res. 2016, 29, 237–256. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea Ice-Albedo Climate Feedback Mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Xie, T.; Zhou, Z.; Zhang, R.; Wu, B.; Zhang, P. Sea Ice Reduction in the Barents-Kara Sea Enhances June Precipitation in the Yangtze River Basin. Cryosphere 2025, 19, 1303–1312. [Google Scholar] [CrossRef]
- Lv, X.; Liu, N.; Lin, L.; Yang, L.; Li, Y.; Fan, L.; Chen, H.; Wang, Y.; Kong, B.; Zhang, Y.; et al. Causes of the Drastic Change in Sea Ice on the Southern Northwind Ridge in July 2019 and July 2020: From a Perspective from Atmospheric Forcing. Front. Earth Sci. 2022, 10, 993074. [Google Scholar] [CrossRef]
- Han, Y.; Si, D.; Lang, X.; Miao, J. Impact of Spring Barents Sea Ice on Summer Tibetan Plateau Precipitation. Adv. Atmos. Sci. 2025, 2023, 1527. [Google Scholar] [CrossRef]
- Zhou, B.; Song, Z.; Yin, Z.; Xu, X.; Sun, B.; Hsu, P.; Chen, H. Recent Autumn Sea Ice Loss in the Eastern Arctic Enhanced by Summer Asian-Pacific Oscillation. Nat. Commun. 2024, 15, 2798. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, J. Increase in Summer Precipitation over the Sichuan Basin in Recent Decades and Possible Causes. Int. J. Climatol. 2023, 43, 4269–4285. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, Y.; Wu, Q.; Yang, X.Q. The Linkage Between Arctic Sea Ice and Midlatitude Weather: In the Perspective of Energy. J. Geophys. Res. Atmos. 2018, 123, 11536–11550. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhao, X.; Hu, Y.; Zhou, F.; Lu, J. Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China. Atmosphere 2025, 16, 838. https://doi.org/10.3390/atmos16070838
Song Z, Zhao X, Hu Y, Zhou F, Lu J. Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China. Atmosphere. 2025; 16(7):838. https://doi.org/10.3390/atmos16070838
Chicago/Turabian StyleSong, Ziyi, Xuejie Zhao, Yuepeng Hu, Fang Zhou, and Jiahao Lu. 2025. "Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China" Atmosphere 16, no. 7: 838. https://doi.org/10.3390/atmos16070838
APA StyleSong, Z., Zhao, X., Hu, Y., Zhou, F., & Lu, J. (2025). Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China. Atmosphere, 16(7), 838. https://doi.org/10.3390/atmos16070838