Radon/Thoron and Progeny Concentrations in Dwellings: Influencing Factors and Lung Cancer Risk in the Rutile Bearing Area of Akonolinga, Cameroon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurement of Radon in Soil Gas
2.3. Gamma Spectrometry of Soil Samples
2.4. Measurement of Indoor Rn, Tn, and Progeny Concentrations
2.5. Total Annual Inhalation Effective Dose
2.6. Excess Lifetime Cancer Risk
3. Results and Discussion
3.1. Indoor Rn, Tn, and Progeny Concentrations and the Equilibrium Factor
3.2. Influence of Wall Distance
3.3. Influence of Building Materials
3.4. Analysis of Correlation Between Rn in Soil Gas and Indoor Rn Concentration, 226Ra-Rn, and 232Th-Tn
3.5. Evaluation of Total Inhalation Effective Dose Due to Rn, Tn, RnP and TnP
3.6. Correlations Between Radon, Thoron, EETC, and Annual Inhalation Effective Dose
3.7. Assessment of Excess Lifetime Cancer Risk (ELCR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanche, M.F.; Dairou, A.A.; Juscar, N.; Romarice, O.M.F.; Arsene, M.; Bernard, T.L.; Leroy, M.N.L. Assessment of land cover degradation due to mining activities using remote sensing and digital photogrammetry. Environ. Syst. Res. 2024, 13, 41. [Google Scholar] [CrossRef]
- Worlanyo, A.S.; Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2021, 1, 111623. [Google Scholar] [CrossRef]
- Wysocka, M.; Chalupnik, S. Correlation of Radon Concentration Level with Mining and Geological Conditions in Upper Silesia Region. J. Min. Sci. 2003, 39, 199–206. [Google Scholar] [CrossRef]
- Leshukov, T.; Legoshchin, K.; Larionov, A. Radon Hazard of the Zhurinsky Fault for the Population in the Kuznetsk Coal Basin: Primary Results. Sustainability 2023, 15, 16774. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, D. Survey of Radon and Thoron Concentration in Two Coal Mines in Hengyang City of Hunan Province. Radiat. Prot. 2007, 27, 308–313. (In Chinese) [Google Scholar]
- Francisca, D.D.; Iramina, W.S.; Ayres da Silva, A.L.M.; de Tomi, G. New Evaluation Method of Exposure to Radon Gas in Mining Environments. Minerals 2023, 13, 897. [Google Scholar] [CrossRef]
- UNSCEAR. Sources, Effects and Risks of Ionizing Radiation: 2017 Report to the General Assembly, Annex A; United Nations Publication: New York, NY, USA, 2018. [Google Scholar]
- Khan, M.S.A.; Tariq, M.; Rawat, R.B.S. Environmental monitoring of radon-thoron levels and their seasonal variation in some selected dwellings in and around Rampur city using solid state nuclear track detector (SSNTD). J. Eng. Res. Appl. 2014, 4, 151–157. [Google Scholar]
- Ramachandran, T.V.; Eappen, K.P.; Nair, R.N.; Mayya, Y.S.; Sadasivan, S. Radon-Thoron Levels and Inhalation Dose Distribution Patterns in India Dwellings. Available online: https://www.osti.gov/etdeweb/biblio/20567267 (accessed on 15 July 2023).
- Ibrahim, O.A. Measurements of radon gas concentration in surface soil in Baghdad city Iraqi. J. Phys. 2018, 16, 73–78. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Handbook on Indoor Radon: A Public Health Perspective; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Rani, S.; Kansal, S.; Singla, A.K.; Mehra, R. Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab, India. Environ. Geochem. Health 2021, 43, 5011–5024. [Google Scholar] [CrossRef]
- Shamsaddini, M.; Negarestani, A.; Malakootian, M.; Javid, N. Study of radon concentration of drinking water sources in adjacent areas of Sabzevaran fault. J. Radioanal. Nucl. Chem. 2020, 326, 1437–1446. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 100D: Radiation. 2012. Available online: https://publications.iarc.fr/121 (accessed on 31 October 2022).
- Chege, M.; Nyambura, C. Review of Radon and Thoron Research in Kenya: 1997–2017. Radiat. Prot. Dosim. 2019, 184, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Doi, M.; Kobayashi, S. Characterization of Japanese wooden houses with enhanced radon and thoron concentrations. Health Phys. 1994, 66, 274–282. [Google Scholar] [CrossRef]
- Joshi, V.; Dutt, S.; Yadav, M.; Mishra, R.; Ramola, R.C. Measurement of Radon, Thoron and Their Progeny Concentrations in the Dwellings of Pauri Garhwal, Uttarakhand, India. Radiat. Prot. Dosim. 2016, 171, 234–237. [Google Scholar] [CrossRef]
- Gierl, S.; Meisenberg, O.; Feistenauer, P.; Tschiersch, J. Thoron and thoron progeny measurements in German clay houses. Radiat. Prot. Dosim. 2014, 160, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Assessment of Thoron Contribution to Indoor Radon Exposure in Canada. Radiat. Environ. Biophys. 2022, 61, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Bineng, G.S.; Saïdou; Tokonami, S.; Hosoda, M.; Tchuente Siaka, Y.F.; Issa, H.; Suzuki, T.; Kudo, H.; Bouba, O. The Importance of Direct Progeny Measurements for Correct Estimation of Effective Dose Due to Radon and Thoron. Front. Public Health 2020, 8, 17. [Google Scholar] [CrossRef]
- Ngachin, M.; Garavaglia, M.; Giovani, C.; Nourreddine, A.; Kwato Njock, M.G.; Scruzzi, E.; Lagos, L. 226Ra, 232Th and 40K Contents and Radon Exhalation Rate from Materials Used for Construction and Decoration in Cameroon. J. Radiol. Prot. 2008, 28, 369–378. [Google Scholar] [CrossRef]
- Ele Abiama, P.; Owono Ateba, P.; Ben-Bolie, G.H.; Ekobena Fouda, H.P.; El Khoukhi, T. Radon–Thoron Discriminative Measurements in the High Natural Radiation Areas of Southwestern Cameroon. J. Environ. Radioact. 2015, 150, 242–246. [Google Scholar] [CrossRef]
- Akamba Mbembe, B.; Manga, A.; Mbida Mbembe, S.; Ele Abiama, P.; Ondo Meye, P.; Kofane, T.C.; Ben-Bolie, G.H. Indoor radon (222Rn) measurements and estimation of annual effective dose in Mvangan locality, South Cameroon. Radiat. Prot. Dosim. 2022, 20, 1565–1574. [Google Scholar] [CrossRef]
- Guembou Shouop, C.J.; Beyala Ateba, J.F.; Maya, J.; Mvondo, S.; Simo, A.; Ndontchueng Moyo, M. 222Rn and 220Rn Levels in Drinking Water, Emanation, and Exhalation Assessment, and the Related Health Implications in the U-Bearing Area of Poli-Cameroon. Environ. Geochem. Health 2024, 46, 355. [Google Scholar] [CrossRef]
- Haman, F.; Guembou Shouop, C.J.; Tiomene, D.F.; Bongue, D.; Degbe, P.L.; Nguelem Mekontso, E.J.; Ndontchueng Moyo, M.; Kwato Njock, M.G. Geant4 Monte Carlo Simulation of Human Exposure to Indoor 222Rn from Building Materials. J. Environ. Radioact. 2024, 280, 107562. [Google Scholar] [CrossRef] [PubMed]
- Patale, Z.; Guillaume Samuel, B.; Kranrod, C.; Modibo, O.B.; Didier, T.S.S.; Abba, H.Y.; Omori, Y.; Hosoda, M.; Saïdou; Paul, E.H.; et al. Contribution of Thoron and Its Progeny to the Effective Dose by Inhalation in the Uranium-Thorium Bearing Regions of Mayo Kebbi and Guéra in Chad. Health Phys. 2024, 127, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Bachirou, S.; Saïdou; Mishra, R.; Kranrod, C.; Hosoda, M.; Jalaluddin, S.; Sapra, B.K.; Kwato Njock, M.G.; Tokonami, S. Thoron exposure in the radon-thoron prone area of the Adamawa Region, Cameroon. Appl. Radiat. Isot. 2024, 213, 111498. [Google Scholar] [CrossRef] [PubMed]
- Djeufack, L.B.; Hamadou, I.; Kranrod, C.; Mishra, R.; Hosoda, M.; Sapra, B.K.; Saïdou; Tokonami, S. Effective dose assessment due to inhalation of 222Rn, 220Rn, and their progeny: Highlighting the major contribution of thoron in a thoron-prone area in Cameroon. Radiat. Environ. Biophys. 2024, 63, 357–369. [Google Scholar] [CrossRef]
- Ramola, R.C.; Prasad, M. Significance of thoron measurements in indoor environment. J. Environ. Radioact. 2020, 225, 1064. [Google Scholar] [CrossRef]
- Kovacs, T. Thoron Measurements in Hungary. Radiat. Prot. Dosim. 2010, 141, 328–334. [Google Scholar] [CrossRef]
- Sime, F.K.; Gondji, D.S.; Rosianna, I.; Nugraha, E.D.; Modibo, O.B.; Kranrod, C.; Omori, Y.; Akata, N.; Hosoda, M.; Saïdou; et al. Ecological and Health Risks from Trace Elements Contamination in Soils at the Rutile Bearing Area of Akonolinga, Cameroon. Appl. Sci. 2024, 14, 10538. [Google Scholar] [CrossRef]
- Metang, V.; Tassongwa, B.; Ngo Belnoun, R.; Kenzo, H.A.; Toussi, M.T.; Ngounouno, I.; Tchokonte, M.B.; Ndjigui, P.D. Petrography and Geochemistry of Metasedimentary Rocks from the Southwestern Portion of the Yaoundé Group in Cameroon: Provenance and Tectonic Implications. Earth Sci. 2022, 11, 232–249. Available online: https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=161&doi=10.11648/j.earth.20221105.11 (accessed on 30 October 2024).
- Toteu, S.F.; Penaye, J.; Poudjom, D.Y. Geodynamic Evolution of the Pan-African Belt in Central Africa with Special Reference to Cameroon. Can. J. Earth Sci. 2004, 41, 73–85. [Google Scholar] [CrossRef]
- Vicat, J.P. Esquisse Géologique du Cameroun. In Collection GEOCAM; Presses Universitaires de Yaoundé: Yaoundé, Cameroon, 1998; pp. 3–11. [Google Scholar]
- Nzesseu Nandjou, V.; Bineli Betsi, T.; Belinga Belinga, C.; Ekomane, E.; Kelepile, T. Rutile U-Pb Ages and Implications for the Extension of the Timing of the Eburnean Overprint in the Ntem Complex (Southern Cameroon) Portion of the Congo Craton. J. Afr. Earth Sci. 2025, 221, 105459. [Google Scholar] [CrossRef]
- Pereira, I.; Bruand, E.; Nicollet, C.; Koga, K.T.; Vitale Brovarone, A. Ti-Bearing Minerals: From the Ocean Floor to Subduction and Back. J. Petrol. 2023, 64, egad041. [Google Scholar] [CrossRef]
- Serge, A.B.M.; Didier, T.S.S.; Samuel, B.G.; Kranrod, C.; Omori, Y.; Hosoda, M.; Saïdou; Tokonami, S. Assessment of Radiological Risks due to Indoor Radon, Thoron and Progeny, and Soil Gas Radon in Thorium-Bearing Areas of the Centre and South Regions of Cameroon. Atmosphere 2023, 14, 1708. [Google Scholar] [CrossRef]
- Meying, A.; Ndougsa-Mbarga, T.; Manguelle-Dicoum, E. Evidence of Fractures from the Image of the Subsurface in the Akonolinga-Ayos Area (Cameroon) by Combining the Classical and the Bostick Approaches in the Interpretation of Audio-Magnetotelluric Data. J. Geol. Min. Res. 2009, 1, 159–171. [Google Scholar]
- MINTP, Data of Ministry of Publics Works Cameroon. 2024. Available online: http://sig.mintp.cm/ (accessed on 25 July 2024).
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- Zafrir, H.; Horin, Y.B.; Malik, U.; Chemo, C.; Zalevsky, Z. Novel Determination of Radon-222 Velocity in Deep Subsurface Rocks and the Feasibility of Using Radon as an Earthquake Precursor. J. Geophys. Res. Solid Earth 2016, 121, 6346–6364. [Google Scholar] [CrossRef]
- Miklyaev, P.S.; Kozlova, I.A.; Yarmoshenko, I.V.; Zhukovsky, M.V. High Seasonal Variations of the Radon Exhalation from Soil Surface in the Fault Zones of Baikal and the Caucasus. J. Environ. Radioact. 2020, 219, 106271. [Google Scholar] [CrossRef]
- Kozlova, I.A.; Miklyaev, P.S.; Zhukovsky, M.V. Feasibility of Application of Soil Radon Activity Concentration Variations in Studying Geodynamic Processes. Russ. Geol. Geophys. 2025, 66. [Google Scholar] [CrossRef]
- Markus 10. Measurements of Radon in Soil Version 1.3. 2011. Available online: https://www.radonmarket.com/Resources/Radonova/Markus10-en-v1.3.pdf (accessed on 5 September 2022).
- Gammadata. User’s guide MARKUS 10 Version 1.4: The Instrument for Determining the Radon Content in the Soil. 1996. Available online: https://www.radon-analytics.com/pdf/Datenblatt_Markus10.pdf (accessed on 5 September 2022).
- Eric, G.H.; Oumar, B.M.; Ayoba, N.; Joseph, E.N.N., II; Eka, D.N.; Chutima, K.; Yasutaka, O.; Masahiro, H.; Saïdou; Shinji, T. Radon in Soil Gas and Ambient Dose Equivalent Rate Measurements in Yaoundé, Cameroon. Radiat. Environ. Med. 2024, 13, 52–59. [Google Scholar] [CrossRef]
- Nguelem Mekontso, E.J.; Ndontchueng Moyo, M.; Motapon, O. Determination of 226Ra, 232Th, 40K, 235U and 238U Activity Concentration and Public Dose Assessment in Soil Samples from Bauxite Core Deposits in Western Cameroon. SpringerPlus 2016, 5, 1253. [Google Scholar] [CrossRef]
- Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.; Nourreddine, A. Radioactivity Level and Soil Radon Measurement of a Volcanic Area in Cameroon. J. Environ. Radioact. 2008, 99, 1056–1060. [Google Scholar] [CrossRef]
- IAEA. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments; Technical Reports Series no. 472; IAEA: Vienna, Austria, 2010. [Google Scholar]
- Oumar Bobbo, M.; Yang, G.; Saïdou; Tazoe, H.; Akata, N.; Kranrod, C.; Hosada, M.; Tokonami, S. Environmental radioactivity measurements in soil using inductively coupled plasma mass spectrometry and gamma-ray spectrometry in various areas in Cameroon. Int. J. Radioanal. Nucl. Chem. 2024, 333, 2557–2565. [Google Scholar] [CrossRef]
- Sanada, T. Measurement of Indoor Thoron Gas Concentrations Using a Radon–Thoron Discriminative Passive Type Monitor: Nationwide Survey in Japan. Int. J. Environ. Res. Public Health 2021, 18, 1299. [Google Scholar] [CrossRef]
- Pornnumpa, C.; Oyama, Y.; Iwaoka, K.; Hosoda, M.; Tokonami, S. Development of radon and thoron exposure systems at Hirosaki University. Radiat. Environ. Med. 2018, 7, 13–20. [Google Scholar] [CrossRef]
- Misdaq, M.A.; Ezzahery, H.; Lamine, J. Influence of the Building Material and Ventilation Rate on the Concentration of Radon, Thoron and Their Progenies in Dwelling Rooms Using SSNTD and Monte Carlo Simulation. J. Radioanal. Nucl. Chem. 2002, 252, 67–74. [Google Scholar] [CrossRef]
- Ismail, A.H.; Jaafar, M.S. Design and Construct Optimum Dosimeter to Detect Airborne Radon and Thoron Gas: Experimental Study. Nucl. Instrum. Methods Phys. Res. B 2011, 269, 437–441. [Google Scholar] [CrossRef]
- ISO 16641; Measurement of Radioactivity in the Environment—Air-Radon-220: Integrated Measurement Methods for the Determination of the Average Activity Concentration Using Passive Solid-State Nuclear Track Detectors. ISO: Geneva, Switzerland, 2014.
- UNSCEAR. Lung Cancer from Exposure to Radon. In United Nations Scientific Committee on the Effects of Atomic Radiation Report UNSCEAR Annex B; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Monica, S.; Visnu Prasad, A.K.; Soniya, S.R.; Jojo, P.J. Estimation of indoor and outdoor effective doses and lifetime cancer risk from gamma dose rates along the coastal regions of Kollam district, Kerala. Radiat. Prot. Environ. 2016, 39, 38–43. [Google Scholar] [CrossRef]
- ICRP (International Commission on radiological Protection). Radiological Protection Against Radon Exposure; Pergamon Press: Oxford, UK, 2014. [Google Scholar]
- Ndjana Nkoulou, J.E., II; Manga, A.; Saïdou; German, O.; Sainz-Fernandez, C.; Kwato Njock, M.G. Natural radioactivity in building materials, indoor radon measurements, and assessment of the associated risk indicators in some localities of the Centre Region, Cameroon. Environ. Sci. Pollut. Res. 2022, 29, 54842–54854. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Najafi, F.; Haghparast, A.; Hemati, L.; Sharafi, K.; Kurd, N. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran. Iran Red Crescent Med. J. 2016, 18, e25292. [Google Scholar] [CrossRef]
- Urosevic, V.; Nikezic, D.; Vulovic, S. A Theoretical Approach to Indoor Radon and Thoron Distribution. J. Environ. Radioact. 2008, 99, 1829–1833. [Google Scholar] [CrossRef]
- Frutos-Puerto, S.; Pinilla-Gil, E.; Andrade, E.; Reis, M.; Madruga, M.J.; Miró Rodríguez, C. Radon and Thoron Exhalation Rate, Emanation Factor and Radioactivity Risks of Building Materials of the Iberian Peninsula. PeerJ 2020, 8, e10331. [Google Scholar] [CrossRef]
- Sharma, N.; Virk, H.S. Exhalation Rate Study of Radon/Thoron in Some Building Materials. Radiat. Meas. 2001, 34, 467–469. [Google Scholar] [CrossRef]
- Chen, J.; Ford, K.L. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities. J. Environ. Radioact. 2017, 166, 152–156. [Google Scholar] [CrossRef]
- Dieu Souffit, G.; Jacob Valdes, M.; Bobbo Modibo, O.; Flore, T.S.Y.; Ateba Jean Felix, B.; Saïdou; Tokonami, S. Radon Risk Assessment and Correlation Study of Indoor Radon, Radium-226, and Radon in Soil at the Cobalt–Nickel Bearing Area of Lomié, Eastern Cameroon. Water Air Soil Pollut. 2022, 233, 196. [Google Scholar] [CrossRef]
- Singh, J.; Singh, H.; Singh, S.; Bajwa, B.S. Measurement of soil gas radon and its correlation with indoor radon around some areas of Upper Siwaliks. Int. J. Environ. Anal. Chem. 2010, 30, 63–71. [Google Scholar] [CrossRef]
- Shang, B.; Chen, B.; Gao, Y.; Wang, Y.; Cui, H.; Li, Z. Thoron levels in traditional Chinese residential dwellings. Radiat. Environ. Biophys. 2005, 44, 193–199. [Google Scholar] [CrossRef]
- Michael, F.; Parpottas, Y.; Tsertos, H. Gamma Radiation Measurements and Dose Rates in Commonly Used Building Materials in Cyprus. Radiat. Prot. Dosim. 2010, 142, 282–291. [Google Scholar] [CrossRef]
- Unscear. UNSCEAR 2008 Report Vol. I: Sources of Ionizing Radiation; United Nations Publications: New York, NY, USA, 2008. [Google Scholar]
- Bakhtin, M.; Ibrayeva, D.; Kashkinbayev, Y.; Aumalikova, M.; Altaeva, N.; Tazhedinova, A.; Shokabayeva, A.; Kazymbet, P. Environmental Monitoring in Uranium Deposit and Indoor Radon Survey in Settlements Located near Uranium Mining Area, South Kazakhstan. Atmosphere 2025, 16, 536. [Google Scholar] [CrossRef]
- Moshupya, P.; Abiye, T.; Mouri, H.; Levin, M.; Strauss, M.; Strydom, R. Assessment of Radon Concentration and Impact on Human Health in a Region Dominated by Abandoned Gold Mine Tailings Dams: A Case from the West Rand Region, South Africa. Geosciences 2019, 9, 466. [Google Scholar] [CrossRef]
- Amin, R. Assessment of concentration and exposure doses due to radon by using CR-39 plastic track detectors in the dwellings of Saudi Arabia. Adv. Appl. Sci. Res. 2015, 6, 42–48. [Google Scholar]
- Ramasamy, V.; Sundarrajan, M.; Paramasivam, K.; Meenakshisundaram, V.; Suresh, G. Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala. Appl. Radiat. Isot. 2013, 73, 21–31. [Google Scholar] [CrossRef]
- Aytas, S.; Yusan, S.; Aslani, M.A.A.; Karali, T.; Turkozu, D.A.; Gok, C.; Erenturk, S.; Gokce, M.; Oguz, K.F. Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2012, 47, 2163–2172. [Google Scholar] [CrossRef]
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef]
- Catelinois, O.; Rogel, A.; Laurier, D.; Billon, S.; Hémon, D.; Verger, P.; Tirmarche, M. Lung cancer attributable to indoor radon exposure in France: Impact of the risk models and uncertainty analysis. Environ. Health Perspect. 2006, 114, 1361–1366. [Google Scholar] [CrossRef]
- Baysson, H.; Tirmarche, M. Indoor radon exposure and lung cancer risk: A review of case-control studies. Rev. Epidemiol. Sante Publique 2004, 52, 161–171. [Google Scholar] [CrossRef] [PubMed]
Statistical Parameters | CRn (Bq m−3) | EERC (Bq m−3) | CTn (Bq m−3) | EETC (Bq m−3) | FTn |
---|---|---|---|---|---|
Min. | 22.5 ± 0.4 | 9.0 | 8.2 ± 0.6 | 0.2 ± 0.4 | 0.01 |
Max. | 65.7 ± 2.1 | 26.3 | 209.9 ± 4.4 | 23.5 ± 0.7 | 0.26 |
Median | 38.3 | 15.3 | 55.1 | 4.2 | 0.07 |
Mean | 39.5 ± 9 | 15.8 | 68.1 ± 2.9 | 5.0 ± 0.5 | 0.08 |
S.D. | 10.7 | 4.8 | 50.7 | 4.6 | 0.06 |
Distance Range from the Wall (cm) | Numbers of Houses | Tn Concentration Range (Bq m−3) | Average Tn Concentration (Bq m−3) |
---|---|---|---|
10–20 | 12 | 80–220 | 149 |
20–40 | 15 | 40–80 | 63 |
40–70 | 12 | 20–40 | 31 |
70–80 | 5 | ≤15 | 10 |
Building Material | Statistical Parameter | CRn (Bq m−3) | CTn (Bq m−3) | EETC (Bq m−3) | FTn |
---|---|---|---|---|---|
Cement | Min | 22.5 | 8.4 | 0.3 | 0.003 |
Max | 65.7 | 73.4 | 10.3 | 0.14 | |
AM ± SD | 39.9 ± 12.9 | 36.1 ± 19.7 | 2.8 ± 2 | 0.08 ± 0.05 | |
GM | 38 | 30.3 | 1.6 | 0.05 | |
Earthen | Min | 24.2 | 8.2 | 0.5 | 0.06 |
Max | 56.5 | 209.9 | 23.5 | 0.11 | |
AM ± SD | 39.2 ± 8.6 | 90.8 ± 54 | 6.6 ± 4.9 | 0.07 ± 0.05 | |
GM | 38.2 | 73 | 4.8 | 0.07 |
Statistical Parameter | ERn (mSv) | ERnP (mSv) | ETn (mSv) | ETnP (mSv) | ET (mSv) |
---|---|---|---|---|---|
Min | 0.03 | 0.43 | 0.01 | 0.09 | 0.57 |
Max | 0.06 | 1.24 | 0.12 | 4.94 | 6.03 |
Average | 0.03 | 0.69 | 0.04 | 1.09 | 1.89 |
ELCR (×10−4) | ||||
---|---|---|---|---|
Rn | Tn | RnP | TnP | |
Min | 0.06 | 0.20 | 4.40 | 3.60 |
Max | 0.15 | 4.80 | 62.0 | 197 |
Mean | 0.48 | 1.60 | 29.3 | 43.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayette, K.S.; Souffit, G.D.; Modibo, O.B.; Joseph Emmanuel, N.N.I.; Kranrod, C.; Hosoda, M.; Saïdou; Tokonami, S. Radon/Thoron and Progeny Concentrations in Dwellings: Influencing Factors and Lung Cancer Risk in the Rutile Bearing Area of Akonolinga, Cameroon. Atmosphere 2025, 16, 767. https://doi.org/10.3390/atmos16070767
Fayette KS, Souffit GD, Modibo OB, Joseph Emmanuel NNI, Kranrod C, Hosoda M, Saïdou, Tokonami S. Radon/Thoron and Progeny Concentrations in Dwellings: Influencing Factors and Lung Cancer Risk in the Rutile Bearing Area of Akonolinga, Cameroon. Atmosphere. 2025; 16(7):767. https://doi.org/10.3390/atmos16070767
Chicago/Turabian StyleFayette, Kitcha Sime, Gondji Dieu Souffit, Oumar Bobbo Modibo, Ndjana Nkoulou II Joseph Emmanuel, Chutima Kranrod, Masahiro Hosoda, Saïdou, and Shinji Tokonami. 2025. "Radon/Thoron and Progeny Concentrations in Dwellings: Influencing Factors and Lung Cancer Risk in the Rutile Bearing Area of Akonolinga, Cameroon" Atmosphere 16, no. 7: 767. https://doi.org/10.3390/atmos16070767
APA StyleFayette, K. S., Souffit, G. D., Modibo, O. B., Joseph Emmanuel, N. N. I., Kranrod, C., Hosoda, M., Saïdou, & Tokonami, S. (2025). Radon/Thoron and Progeny Concentrations in Dwellings: Influencing Factors and Lung Cancer Risk in the Rutile Bearing Area of Akonolinga, Cameroon. Atmosphere, 16(7), 767. https://doi.org/10.3390/atmos16070767