Carbon Flux Estimation for Potato Production: A Literature-Based Study
Abstract
1. Introduction
2. Methods
3. Results
3.1. Soil Preparation
3.2. Seed Preparation
3.3. Planting
3.4. Growing
3.4.1. Irrigation
3.4.2. Fertilization
3.4.3. Crop Protection
3.4.4. Transportation
3.4.5. Greenhouse Gas Sequestration
3.5. Harvest
3.6. Storage
3.6.1. Storage Operations
3.6.2. Storage Tuber Respiration
3.7. Scenarios
4. Discussion
4.1. Cross-Study Patterns
4.2. Environmental Factors
4.3. Farming Inputs
4.4. Growing Types
4.5. Limitations
4.6. Mitigation
4.7. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Government of Prince Edward Island. Path to Net Zero. Available online: https://www.princeedwardisland.ca/en/information/environment-energy-and-climate-action/path-to-net-zero (accessed on 20 December 2024).
- Government of Prince Edward Island. Prince Edward Island 50th Annual Statistical Review 2023; Department of Finance, P.E.I. Statistics Bureau: Charlottetown, PE, Canada, 2024. [Google Scholar]
- Haverkort, A.J.; Hillier, J.G. Cool Farm Tool—Potato: Model Description and Performance of Four Production Systems. Potato Res. 2011, 54, 355–369. [Google Scholar] [CrossRef]
- Quan, N.; Lee, S.; Chopra, C.; Nesic, Z.; Porto, P.; Pow, P.; Jassal, R.S.; Smukler, S.; Krzic, M.; Knox, S.H.; et al. Estimating Net Carbon and Greenhouse Gas Balances of Potato and Pea Crops on a Conventional Farm in Western Canada. J. Geophys. Res. Biogeosciences 2023, 128, e2022JG007113. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-15789-6. [Google Scholar]
- Warfield, L.; Konijnenburg, J.; Lippa, K.; Lee, G.D.; Minnich, L.; Williams, J. Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices: As Adopted by the 108th National Conference on Weights and Measures; National Institute of Standards and Technology (U.S.): Gaithersburg, MD, USA, 2023; p. NIST HB 44-2024. [Google Scholar]
- National Institute of Standards and Technology. Atomic Weights and Isotopic Compositions for All Elements. Available online: https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&all=all&ascii=html (accessed on 13 December 2024).
- Soethoudt, H.; Castelein, B. Food Loss-Reducing Intervention Strategies for Potato Smallholders in Kenya—A Positive Business Case With Reduced Greenhouse Gas Emissions. Agronomy 2021, 11, 1857. [Google Scholar] [CrossRef]
- Biswas, J.C.; Haque, M.M.; Ishtiaque, S.; Akhter, S.; Rahman, M.M.; Kim, P.J. Carbon Footprint and Emission Reduction Strategies During Potato Cultivation. Agric. Res. 2024, 13, 814–823. [Google Scholar] [CrossRef]
- Kumar, R.; Bhardwaj, A.; Singh, L.; Singh, G. Organic Potato Production: A Step Towards Sustainable Agriculture (Life Cycle Assessment Based Study). Potato J. 2022, 49, 149–158. [Google Scholar]
- Kumar, R.; Bhardwaj, A.; Singh, L.P.; Singh, G. Quantifying Ecological Impacts: A Comparative Life Cycle Assessment of Conventional and Organic Potato Cultivation. Ecol. Model. 2023, 486, 110510. [Google Scholar] [CrossRef]
- Moudrý, J.; Jelínková, Z.; Jarešová, M.; Plch, R.; Moudrý, J.; Konvalina, P. Assessing Greenhouse Gas Emissions from Potato Production and Processing in the Czech Republic. Outlook Agric. 2013, 42, 179–183. [Google Scholar] [CrossRef]
- Svubure, O.; Struik, P.; Haverkort, A.; Steyn, J. Carbon Footprinting of Potato (Solanum tuberosum L.) Production Systems in Zimbabwe. Outlook Agric. 2018, 47, 3–10. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Pan, Z.; Xu, H.; Gao, L.; Zhao, P.; Dong, Z.; Zhang, J.; Cui, G.; Wang, S.; et al. N2O Emission Characteristics and Its Affecting Factors in Rain-Fed Potato Fields in Wuchuan County, China. Int. J. Biometeorol. 2017, 61, 911–919. [Google Scholar] [CrossRef]
- Ruser, R.; Schilling, R.; Steindl, H.; Flessa, H.; Beese, F. Soil Compaction and Fertilization Effects on Nitrous Oxide and Methane Fluxes in Potato Fields. Soil Sci. Soc. Am. J. 1998, 62, 1587–1595. [Google Scholar] [CrossRef]
- Martínez-Maldonado, F.E.; Castaño-Marín, A.M.; Góez-Vinasco, G.A.; Marin, F.R. Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique. Water 2021, 13, 3223. [Google Scholar] [CrossRef]
- Martínez-Maldonado, F.E.; Castaño-Marín, A.M.; Góez-Vinasco, G.A.; Marin, F.R. Carbon and Water Vapor Exchanges Coupling for Different Irrigated and Rainfed Conditions on Andean Potato Agroecosystems. Theor. Appl. Climatol. 2024, 155, 7609–7628. [Google Scholar] [CrossRef]
- Buysse, P.; Bodson, B.; Debacq, A.; De Ligne, A.; Heinesch, B.; Manise, T.; Moureaux, C.; Aubinet, M. Carbon Budget Measurement Over 12 Years at a Crop Production Site in the Silty-Loam Region in Belgium. Agric. For. Meteorol. 2017, 246, 241–255. [Google Scholar] [CrossRef]
- Aubinet, M.; Moureaux, C.; Bodson, B.; Dufranne, D.; Heinesch, B.; Suleau, M.; Vancutsem, F.; Vilret, A. Carbon Sequestration by a Crop Over a 4-Year Sugar Beet/ Winter Wheat/Seed Potato/Winter Wheat Rotation Cycle. Agric. For. Meteorol. 2009, 149, 407–418. [Google Scholar] [CrossRef]
- Haile-Mariam, S.; Collins, H.P.; Higgins, S.S. Greenhouse Gas Fluxes from an Irrigated Sweet Corn (Zea mays L.)–Potato (Solanum tuberosum L.) Rotation. J. Environ. Qual. 2008, 37, 759–771. [Google Scholar] [CrossRef]
- Flessa, H.; Ruser, R.; Schilling, R.; Loftfield, N.; Munch, J.C.; Kaiser, E.A.; Beese, F. N2O and CH4 Fluxes in Potato Fields: Automated Measurement, Management Effects and Temporal Variation. Geoderma 2002, 105, 307–325. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Ghahderijani, M.; Sefeedpari, P. Energy Consumption and CO2 Emissions Analysis of Potato Production Based on Different Farm Size Levels in Iran. J. Clean. Prod. 2012, 33, 183–191. [Google Scholar] [CrossRef]
- Żyłowski, T.; Kozyra, J. Environmental Efficiency of Root Crop Cultivation. Ann. Pol. Assoc. Agric. Agribus. Econ. 2020, XXII, 208–217. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Wang, S.; Cheng, Z.; Li, Z.; Xu, T.; Zhou, X.; Chen, W.; Hong, J. Promoting Sustainable Potato Production—Insights from an Integrated Life Cycle Environmental–Economic Assessment. Agric. Syst. 2024, 219, 104029. [Google Scholar] [CrossRef]
- Timpanaro, G.; Branca, F.; Cammarata, M.; Falcone, G.; Scuderi, A. Life Cycle Assessment to Highlight the Environmental Burdens of Early Potato Production. Agronomy 2021, 11, 879. [Google Scholar] [CrossRef]
- Taysom, T.W.; LeMonte, J.J.; Ransom, C.J.; Stark, J.C.; Hopkins, A.P.; Hopkins, B.G. Polymer Coated Urea in ‘Russet Burbank’ Potato: Yield and Tuber Quality. Am. J. Potato Res. 2023, 100, 451–463. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Potatoes 2022 Summary 09/27/2023; United States Department of Agriculture: Washington, DC, USA, 2023. [Google Scholar]
- Copp, L.J.; Blenkinsop, R.W.; Yada, R.Y.; Marangoni, A.G. The Relationship Between Respiration and Chip Color During Long-Term Storage of Potato Tubers. Am. J. Potato Res. 2000, 77, 279–287. [Google Scholar] [CrossRef]
- Pedrosa, V.M.D.; Izidoro, M.; Paythosh, S.; Dungan, R.S.; Olsen, N.; Spear, R.; De Almeida Teixeira, G.H. The Relationship Between Respiration Rate and Quality Parameters of Russet Potatoes During Long-Term Storage. Am. J. Potato Res. 2025, 102, 93–105. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Q.; Hu, S.; Xiao, G.; Zhang, L.; Han, L.; Yue, P.; Wang, J.; Qi, Y.; Ye, P. Crop Yield and Carbon Sink Potential with Precipitation in Maize and Potato Cropland Ecosystems Over the Summertime Monsoon Transition Zone of China. Soil Use Manag. 2023, 39, 742–756. [Google Scholar] [CrossRef]
- Lohila, A.; Aurela, M.; Regina, K.; Laurila, T. Soil and Total Ecosystem Respiration in Agricultural Fields: Effect of Soil and Crop Type. Plant Soil 2003, 251, 303–317. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Kinay, P.; Dau, Q. Climate Change Impacts on Potato Storage. Foods 2024, 13, 1119. [Google Scholar] [CrossRef]
- Sadra, S.; Mohammadi, G.; Mondani, F. Effects of Cover Crops and Nitrogen Fertilizer on Greenhouse Gas Emissions and Net Global Warming Potential in a Potato Cropping System. J. Agric. Food Res. 2024, 18, 101256. [Google Scholar] [CrossRef]
- Suleau, M.; Moureaux, C.; Dufranne, D.; Buysse, P.; Bodson, B.; Destain, J.-P.; Heinesch, B.; Debacq, A.; Aubinet, M. Respiration of Three Belgian Crops: Partitioning of Total Ecosystem Respiration in Its Heterotrophic, Above- and Below-Ground Autotrophic Components. Agric. For. Meteorol. 2011, 151, 633–643. [Google Scholar] [CrossRef]
- Economou, F.; Papamichael, I.; Voukkali, I.; Loizia, P.; Klontza, E.; Lekkas, D.F.; Vincenzo, N.; Demetriou, G.; Navarro-Pedreño, J.; Zorpas, A.A. Life Cycle Assessment of Potato Production in Insular Communities Under Subtropical Climatic Conditions. Case Stud. Chem. Environ. Eng. 2023, 8, 100419. [Google Scholar] [CrossRef]
- Jhang, S.-R.; Chen, Y.-Y.; Shiau, Y.-J.; Lee, C.-W.; Chen, W.-N.; Chang, C.-C.; Chiang, C.-F.; Guo, H.-Y.; Wang, P.-K.; Chou, C.C.-K. Denitrifiers and Nitrous Oxide Emissions from a Subtropical Vegetable Cropland. ACS Earth Space Chem. 2022, 6, 2024–2031. [Google Scholar] [CrossRef]
- Singh, P. Greenhouse Gas Emission from Potato Crop. Potato J. 2022, 49, 100–103. [Google Scholar]
- Chizen, C.J.; Krzic, M.; Black, T.A.; Jassal, R.S.; Smukler, S.M. Nitrous Oxide Emissions from Productive and Degraded Potato Fields in the Fraser Valley Delta of British Columbia. Can. J. Soil Sci. 2022, 102, 1000–1004. [Google Scholar] [CrossRef]
- Maldonado, M.; Ernesto, F. Assessing Carbon Dynamics of Irrigated and Rainfed Potato (Solanum tuberosum L.) Cropping Systems in the Andean Hillside Landscape. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2023. [Google Scholar]
- Fu, Z.; Ciais, P.; Bastos, A.; Stoy, P.C.; Yang, H.; Green, J.K.; Wang, B.; Yu, K.; Huang, Y.; Knohl, A.; et al. Sensitivity of Gross Primary Productivity to Climatic Drivers During the Summer Drought of 2018 in Europe. Philos. Trans. R. Soc. B 2020, 375, 20190747. [Google Scholar] [CrossRef]
- Fleisher, D.H.; Timlin, D.J.; Reddy, V.R. Elevated Carbon Dioxide and Water Stress Effects on Potato Canopy Gas Exchange, Water Use, and Productivity. Agric. For. Meteorol. 2008, 148, 1109–1122. [Google Scholar] [CrossRef]
- Yakovleva, N.; Flynn, A. The Food Supply Chain and Innovation: A Case Study of Potatoes. Waterstones: Cardiff, UK, 2004; ISBN 1-904393-35-7. [Google Scholar]
- Elsgaard, L.; Görres, C.-M.; Hoffmann, C.C.; Blicher-Mathiesen, G.; Schelde, K.; Petersen, S.O. Net Ecosystem Exchange of CO2 and Carbon Balance for Eight Temperate Organic Soils Under Agricultural Management. Agric. Ecosyst. Environ. 2012, 162, 52–67. [Google Scholar] [CrossRef]
- Parajuli, R.; Matlock, M.D.; Thoma, G. Cradle to Grave Environmental Impact Evaluation of the Consumption of Potato and Tomato Products. Sci. Total Environ. 2021, 758, 143662. [Google Scholar] [CrossRef]
- Petersen, S.O.; Hoffmann, C.C.; Schäfer, C.-M.; Blicher-Mathiesen, G.; Elsgaard, L.; Kristensen, K.; Larsen, S.E.; Torp, S.B.; Greve, M.H. Annual Emissions of CH4 and N2O, and Ecosystem Respiration, from Eight Organic Soils in Western Denmark Managed by Agriculture. Biogeosciences 2012, 9, 403–422. [Google Scholar] [CrossRef]
- Fouli, Y.; Hurlbert, M.; Kröbel, R. Greenhouse Gas Emissions from Canadian Agriculture: Estimates and Measurements. Sch. Public Policy Publ. 2021, 14, 1–32. [Google Scholar] [CrossRef]
- Mattsson, B.; Wallén, E. Environmental Life Cycle Assessment (LCA) of Organic Potatoes. Acta Hortic. 2003, 619, 427–435. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Yu, X.; Hou, H.; Fang, Y.; Ma, Y.; Zhang, G. Maize-Potato Rotation Maintains Soil Water Balance and Improves Productivity. Agron. J. 2021, 113, 645–656. [Google Scholar] [CrossRef]
Count | FLUXsoil_preparation (kg CO2 eq ha−1 season−1) | FLUXsoil_preparation (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 14.477 | 0.670 | Scenario 4; plowing by hired machinery | 2021 | Kenya | [8] |
2 | 19.028 | 1.069 | Scenario 3; plowing by hired machinery | 2021 | Kenya | [8] |
3 | 161.410 | 7.653 | 80% power tiller, 20% tractor; hoeing at 10–20 days after emergency and second topdressing | 2024 | Bangladesh | [9] |
4 | 220.273 | 12.004 | Organic potato; 1 plowing, 1 harrowing by rotary cultivator | 2022 | India | [10] |
5 | 221.548 | 9.061 | Conventional potato; 1 plowing, 1 harrowing by rotary cultivator | 2023 | India | [11] |
6 | 221.548 | 12.073 | Organic potato; 1 plowing, 1 harrowing by rotary cultivator | 2023 | India | [11] |
7 | 555.000 | 37.000 | Organic potato; 1 harrowing by rotary harrow, 1 plowing, 1 cultivating, 5 rounds of hoeing | 2013 | Czech Republic | [12] |
8 | 560.000 | 70.000 | Plot “A1 resettlement” | 2018 | Zimbabwe | [13] |
9 | 816.000 | 48.000 | Plot “Communal area” | 2018 | Zimbabwe | [13] |
10 | 1092.000 | 39.000 | Plot “large-scale commercial”; 2 applications of ridging, 1 harrowing, 1 roller harrowing, 1 planting furrow opening | 2018 | Zimbabwe | [13] |
11 | 1127.000 | 49.000 | Plot “A2 resettlement”; 2 applications of ridging, 1 harrowing, 1 roller harrowing, 1 planting furrow opening | 2018 | Zimbabwe | [13] |
12 | 1166.000 | 53.000 | Conventional potato; 1 harrowing by rotary harrow, 1 plowing, 1 cultivating, 5 rounds of hoeing | 2013 | Czech Republic | [12] |
Count | FLUXseed_preparation (kg CO2 eq ha−1 season−1) | FLUXseed_preparation (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 114.080 | 5.409 | 3% boric acid | 2024 | Bangladesh | [9] |
2 | 149.600 | 3.400 | Starch potato; 2 chemical mixture treatments | 2011 | Netherlands | [3] |
3 | 227.500 | 6.500 | Organic potato; no chemical mixture treatment | 2011 | Netherlands | [3] |
4 | 253.500 | 3.900 | Table potato; 1 chemical mixture treatment | 2011 | Netherlands | [3] |
5 | 528.000 | 24.000 | Conventional potato | 2013 | Czech Republic | [12] |
6 | 555.000 | 14.800 | Seed potato; 2 chemical mixture treatments | 2011 | Netherlands | [3] |
7 | 555.000 | 37.000 | Organic potato | 2013 | Czech Republic | [12] |
Count | FLUXplanting (kg CO2 eq ha−1 season−1) | FLUXplanting (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 28.954 | 1.340 | Scenario 4, mechanized (hired) | 2021 | Kenya | [8] |
2 | 33.600 | 1.593 | Seed rate: 1.5 t ha−1 | 2024 | Bangladesh | [9] |
3 | 423.427 | 23.075 | Organic potato; seed rate: 2.5 t/ha | 2022 | India | [10] |
4 | 427.105 | 17.469 | Conventional potato; seed rate: 2.5 t ha−1 | 2023 | India | [11] |
5 | 427.105 | 23.275 | Organic potato; seed rate: 2.5 t ha−1 | 2023 | India | [11] |
Count | FLUXirrigation (kg CO2 eq ha−1 season−1) | FLUXirrigation (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 0.000 | 0.000 | Seed potato; no irrigation | 2011 | Netherlands | [3] |
2 | 17.600 | 0.400 | Starch potato; 120 m3/ha; rain gun | 2011 | Netherlands | [3] |
3 | 70.000 | 2.000 | Organic potato; 400 m3/ha; rain gun | 2011 | Netherlands | [3] |
4 | 71.500 | 1.100 | Table potato; 400 m3/ha; rain gun | 2011 | Netherlands | [3] |
5 | 160.147 | 6.550 | Conventional potato; 889.2 m3 freshwater ha−1; grid electricity, low voltage | 2023 | India | [11] |
6 | 213.530 | 11.637 | Organic potato; 1185.6 m3 freshwater ha−1; grid electricity, low voltage | 2023 | India | [11] |
7 | 254.635 | 13.877 | Organic potato; freshwater: 1150.6 m3 ha−1; low-voltage grid electricity | 2022 | India | [10] |
8 | 999.920 | 47.412 | 3 rounds of irrigation | 2024 | Bangladesh | [9] |
9 | 1173.000 | 51.000 | Plot “A2 resettlement”; 100% area irrigated; rain gun; grid electricity use, no diesel use; 4650 m3/ha water applied; 30 m pumping depth | 2018 | Zimbabwe | [13] |
10 | 2044.000 | 73.000 | Plot “Large-scale”; 100% area irrigated; rain gun; grid electricity use, no diesel use; 5500 m3/ha water applied; 43 m pumping depth | 2018 | Zimbabwe | [13] |
Count | FLUXfertilization (kg CO2 eq ha−1 season−1) | FLUXfertilization (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 210.000 | 14.000 | Organic potato; fertilizer (kg/ha): N-organic: 20,000; 1 fertilizer spreading by broadcaster | 2013 | Czech Republic | [12] |
2 | 211.400 | 11.520 | Organic potato; fertilizer (kg/ha): solid cattle manure: 21,000 | 2022 | India | [10] |
3 | 281.505 | 15.341 | Organic potato; fertilizer (kg/ha): solid cattle manure: 21,187.5, 1 liquid manure application | 2023 | India | [11] |
4 | 774.082 | 93.263 | Reference scenario; fertilizer (kg/ha): diammonium phosphate: 150 | 2021 | Kenya | [8] |
5 | 814.000 | 37.000 | Conventional potato; fertilizer (kg/ha): N-organic: 20,000, N-mineral: 90, P-mineral: 35, K-mineral: 120; 3 rounds of spreading by broadcaster | 2013 | Czech Republic | [12] |
6 | 920.500 | 26.300 | Organic potato; 2 rounds of manure spreading; organic inputs (t/ha): sheep manure: 7.5, compost: 5, pig slurry: 16 | 2011 | Netherlands | [3] |
7 | 1058.688 | 43.300 | Conventional potato; fertilizer (kg/ha): P fertilizer: 300, K fertilizer: 185, N fertilizer: 125; fertilizer application: 2–3 splits, two-thirds of N and all P and K at planting | 2023 | India | [11] |
8 | 1203.521 | 67.614 | Scenario 3; fertilizer (kg/ha): diammonium phosphate: 500 | 2021 | Kenya | [8] |
9 | 1204.700 | 74.826 | Scenario 2; fertilizer (kg/ha): diammonium phosphate: 500 | 2021 | Kenya | [8] |
10 | 1230.545 | 56.970 | Scenario 4; fertilizer (kg/ha): NPK (16:8:22): 500 | 2021 | Kenya | [8] |
11 | 1826.350 | 86.598 | Fertilizer (kg/ha): urea: 263, TSP: 135, MoP: 250 | 2024 | Bangladesh | [9] |
12 | 1936.000 | 44.000 | Starch potato; mean applications: fertilizer: 2, manure: 2.5, slurry: 1; fertilizer (kg/ha): N-mineral: 75, K2O-mineral: 50; organic inputs (t/ha): pig slurry: 26, green manure: 20 | 2011 | Netherlands | [3] |
13 | 2167.500 | 57.800 | Seed potato; mean applications: fertilizer: 2, manure: 0.2; fertilizer (kg/ha): N-mineral: 127.5, P2O5-mineral: 100, K2O-mineral: 265; organic inputs (t/ha): pig slurry: 3 | 2011 | Netherlands | [3] |
14 | 3230.500 | 49.700 | Table potato; mean applications: fertilizer: 3, manure: 0.5; fertilizer (kg/ha): N-mineral: 190, P2O5-mineral: 52, K2O-mineral: 115; organic inputs (t/ha): poultry manure: 3 | 2011 | Netherlands | [3] |
Count | FLUXcrop_protection (kg CO2 eq ha−1 season−1) | FLUXcrop_protection (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 0.000 | 0.000 | Organic potato; no spraying | 2011 | Netherlands | [3] |
2 | 17.542 | 0.956 | Organic potato; chemicals: water: 250 L/ha, buttermilk: 7.5 kg/ha | 2023 | India | [11] |
3 | 29.035 | 1.188 | Conventional potato; chemical: water: 30 L/ha, mancozeb: 3.5 kg/ha | 2023 | India | [11] |
4 | 41.749 | 2.275 | Organic potato; chemicals: water: 250 L/ha, buttermilk: 7.5 kg/ha | 2022 | India | [10] |
5 | 59.886 | 7.215 | Reference scenario; 3 sprays of Ridomil/Mancozeb | 2021 | Kenya | [8] |
6 | 66.000 | 3.000 | Conventional potato; chemicals (kg/ha): herbicides: 1.5, fungicides: 8, insecticides: 0.2 | 2013 | Czech Republic | [12] |
7 | 81.748 | 5.077 | Scenario 2; 4 sprays of Ridomil/Mancozeb | 2021 | Kenya | [8] |
8 | 152.009 | 7.037 | Scenario 4; 8 weeks of mixed sprays | 2021 | Kenya | [8] |
9 | 174.660 | 8.282 | 5 sprays (1250 g spray−1) | 2024 | Bangladesh | [9] |
10 | 218.822 | 12.293 | Scenario 3; 11 sprays at different stages | 2021 | Kenya | [8] |
11 | 328.000 | 41.000 | Plot “A1 resettlement”; 9–14 biocide applications (average: 11) | 2018 | Zimbabwe | [13] |
12 | 331.500 | 5.100 | Table potato; 14 sprayings | 2011 | Netherlands | [3] |
13 | 431.200 | 9.800 | Starch potato; 17 sprayings | 2011 | Netherlands | [3] |
14 | 607.500 | 16.200 | Seed potato; 9.5 sprayings | 2011 | Netherlands | [3] |
15 | 612.000 | 36.000 | Plot “Communal area”; 11–28 biocide applications (average: 18) | 2018 | Zimbabwe | [13] |
16 | 713.000 | 31.000 | Plot “A2 resettlement”; 14–41 biocide applications (average: 22) | 2018 | Zimbabwe | [13] |
17 | 728.000 | 26.000 | Plot “Large-scale commercial”; 10–33 biocide applications (average: 25) | 2018 | Zimbabwe | [13] |
Count | FLUXtransportation (kg CO2 eq ha−1 season−1) | FLUXtransportation (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 4.000 | 0.500 | Plot “A1 resettlement” | 2018 | Zimbabwe | [13] |
2 | 8.500 | 0.500 | Plot “Communal area” | 2018 | Zimbabwe | [13] |
3 | 11.200 | 0.400 | Plot “Large-scale commercial” | 2018 | Zimbabwe | [13] |
4 | 11.500 | 0.500 | Plot “A2 resettlement” | 2018 | Zimbabwe | [13] |
Count | FLUXecosystem_CO2 (kg CO2 eq ha−1 season−1) | FLUXecosystem_CO2 (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | −13,433.860 | −537.354 | Irrigated | 2021 | Colombia | [16] |
2 | −11,431.607 | −457.264 | Full-irrigation | 2024 | Colombia | [17] |
3 | −11,359.784 | −1514.638 | Seed potato in 2006 | 2017 | Belgium | [18] |
4 | −8794.671 | −1136.262 | Seed potato in 2014 | 2017 | Belgium | [18] |
5 | −7695.337 | −971.633 | Seed potato in 2010 | 2017 | Belgium | [18] |
6 | −5276.803 | −152.509 | With flux footprint correction | 2023 | Canada | [4] |
7 | −633.949 | −28.816 | Deficit-irrigation | 2024 | Colombia | [17] |
8 | 11.360 | 0.431 | Seed potato | 2008 | Belgium | [19] |
9 | 4602.000 | 70.790 | Average in 2005 | 2008 | US | [20] |
10 | 5668.898 | 286.308 | Rainfed | 2021 | Colombia | [16] |
11 | 5754.000 | 82.801 | Average in 2006 | 2008 | US | [20] |
12 | 6860.210 | 346.475 | Rainfed | 2024 | Colombia | [17] |
Count | FLUXecosystem_CH4 (kg CO2 eq ha−1 season−1) | FLUXecosystem_CH4 (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | −12.624 | −0.314 | Seed potato in 1998 | 2002 | Germany | [21] |
2 | −11.748 | −0.297 | Seed potato in 1997 | 2002 | Germany | [21] |
3 | −6.854 | −0.099 | Average of conventional and reduced till treatments in 2005 | 2008 | US | [20] |
4 | −4.768 | −0.073 | Average of conventional and reduced till treatments in 2006 | 2008 | US | [20] |
5 | 167.209 | 4.833 | Goldrush Russet, with flux footprint correction | 2023 | Canada | [4] |
Count | FLUXecosystem_N2O (kg CO2 eq ha−1 season−1) | FLUXecosystem_N2O (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 248.430 | 3.821 | Average of conventional and reduced till treatments in 2006 | 2008 | US | [20] |
2 | 253.890 | 3.654 | Average of conventional and reduced till treatments in 2005 | 2008 | US | [20] |
3 | 1389.599 | 35.141 | Seed potato in 1997 | 2002 | Germany | [21] |
4 | 1732.710 | 43.137 | Seed potato in 1998 | 2002 | Germany | [21] |
5 | 4374.664 | 126.435 | With flux footprint correction | 2023 | Canada | [4] |
Count | FLUXcultivation_energy (kg CO2 eq ha−1 season−1) | FLUXcultivation_energy (kg CO2 eq t−1 season−1) | Practice | Publication year | Location | Source |
---|---|---|---|---|---|---|
1 | 207.000 | 9.000 | Plot “A2 resettlement” | 2018 | Zimbabwe | [13] |
2 | 211.446 | 11.523 | Organic potato | 2022 | India | [10] |
3 | 219.738 | 11.975 | Conventional potato | 2023 | India | [11] |
4 | 219.738 | 11.975 | Organic potato | 2023 | India | [11] |
5 | 224.000 | 8.000 | Plot “Large-scale commercial” | 2018 | Zimbabwe | [13] |
6 | 303.901 | 11.958 | Large farms (>5 ha) | 2012 | Iran | [22] |
7 | 317.178 | 14.287 | Medium farms (1–5 ha) | 2012 | Iran | [22] |
8 | 357.076 | 19.334 | Small farms (<1 ha) | 2012 | Iran | [22] |
9 | 360.149 | 9.949 | Efficient farms | 2020 | Poland | [23] |
10 | 402.715 | 15.312 | Inefficient farms | 2020 | Poland | [23] |
11 | 406.916 | 10.917 | Average of 26 provinces | 2024 | China | [24] |
12 | 621.900 | 19.434 | Conventional early potato | 2021 | Italy | [25] |
13 | 635.720 | 25.429 | Organic early potato | 2021 | Italy | [25] |
Count | FLUXharvest (kg CO2 eq ha−1 season−1) | FLUXharvest (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 14.477 | 0.670 | Scenario 4; mechanized (hired) | 2021 | Kenya | [8] |
2 | 30.240 | 1.434 | Manually, about 60 man-days ha−1 | 2024 | Bangladesh | [9] |
3 | 95.063 | 5.181 | Organic potato | 2022 | India | [10] |
4 | 96.722 | 5.271 | Organic potato; 1 haulm cutting | 2023 | India | [11] |
5 | 111.146 | 4.546 | Conventional potato; 1 haulm cutting | 2023 | India | [11] |
Count | FLUXstorage_operations (kg CO2 eq ha−1 season−1) | FLUXstorage_operations (kg CO2 eq t−1 season−1) | Practice | Publication Year | Location | Source |
---|---|---|---|---|---|---|
1 | 96.800 | 2.200 | Starch potato; 33% stored for 4 months | 2011 | Netherlands | [3] |
2 | 607.500 | 16.200 | Seed potato; 70% stored for 8 months | 2011 | Netherlands | [3] |
3 | 669.500 | 10.300 | Table potato; 100% stored for 6 months | 2011 | Netherlands | [3] |
4 | 780.500 | 22.300 | Organic potato; 100% stored for 6 months | 2011 | Netherlands | [3] |
Cultivar | Number of Observations | Mean | Range | Standard Deviation | Standard Error of the Mean | Source |
---|---|---|---|---|---|---|
Dakota Russet | 21 | 197.902 | [152.065, 310.288] | 34.433 | 7.514 | [29] |
Russet Burbank | 21 | 236.266 | [148.894, 356.335] | 50.304 | 10.977 | [29] |
Ivory Russet | 21 | 245.680 | [190.392, 405.001] | 47.127 | 10.283 | [29] |
Rainier Russet | 21 | 268.570 | [206.062, 419.891] | 48.521 | 10.588 | [29] |
Monona | 106 | 409.857 | [63.687, 988.276] | 175.723 | 17.068 | [28] |
Snowden | 107 | 453.971 | [154.005, 1056.513] | 243.189 | 23.510 | [28] |
Stage | Carbon Flux | Number of Observations | Mean | Range | Standard Deviation | Standard Error of the Mean |
---|---|---|---|---|---|---|
Cultivation | FLUXecosystem_CO2 | 12 | −2977.462 | [−13,433.860, 6860.210] | 7580.528 | 2188.310 |
FLUXecosystem_CH4 | 5 | 26.243 | [−12.624, 167.209] | 78.871 | 35.272 | |
FLUXecosystem_N2O | 5 | 1599.859 | [248.430, 4374.664] | 1688.149 | 754.963 | |
FLUXcultivation_energy | 13 | 345.191 | [207.000, 635.720] | 145.516 | 40.359 | |
FLUXsoil_preparation | 12 | 514.524 | [14.477, 1166.000] | 437.568 | 126.315 | |
FLUXseed_preparation | 7 | 340.383 | [114.080, 555.000] | 198.000 | 74.837 | |
FLUXplanting | 5 | 268.038 | [28.954, 427.105] | 216.144 | 96.662 | |
FLUXirrigation | 10 | 500.433 | [0.000, 2044.000] | 682.786 | 215.916 | |
FLUXfertilization | 14 | 1219.225 | [210.000, 3230.500] | 842.083 | 225.056 | |
FLUXcrop_protection | 17 | 270.156 | [0.000, 728.000] | 257.833 | 62.534 | |
FLUXtransportation | 4 | 8.800 | [4.000, 11.500] | 3.473 | 1.736 | |
FLUXharvest | 5 | 69.530 | [14.477, 111.146] | 43.868 | 19.619 | |
Storage | FLUXstorage_operations | 4 | 538.575 | [96.800, 780.500] | 303.087 | 151.543 |
FLUXstorage_tuber_respiration | 297 | 376.891 | [63.687, 1056.513] | 202.384 | 11.744 |
Stage | Carbon Flux | Number of Observations | Mean | Range | Standard Deviation | Standard Error of the Mean |
---|---|---|---|---|---|---|
Cultivation | FLUXecosystem_CO2 | 12 | −334.306 | [−1514.638, 346.475] | 597.265 | 172.416 |
FLUXecosystem_CH4 | 5 | 0.810 | [−0.314, 4.833] | 2.252 | 1.007 | |
FLUXecosystem_N2O | 5 | 42.438 | [3.654, 126.435] | 50.261 | 22.477 | |
FLUXcultivation_energy | 13 | 13.776 | [8.000, 25.429] | 4.960 | 1.376 | |
FLUXsoil_preparation | 12 | 28.211 | [0.670, 70.000] | 23.714 | 6.846 | |
FLUXseed_preparation | 7 | 13.573 | [3.400, 37.000] | 12.733 | 4.813 | |
FLUXplanting | 5 | 13.350 | [1.340, 23.275] | 11.096 | 4.962 | |
FLUXirrigation | 10 | 20.698 | [0.000, 73.000] | 26.395 | 8.347 | |
FLUXfertilization | 14 | 48.445 | [11.520, 93.263] | 26.316 | 7.033 | |
FLUXcrop_protection | 17 | 12.495 | [0.000, 41.000] | 13.009 | 3.155 | |
FLUXtransportation | 4 | 0.475 | [0.400, 0.500] | 0.050 | 0.025 | |
FLUXharvest | 5 | 3.420 | [0.670, 5.271] | 2.197 | 0.982 | |
Storage | FLUXstorage_operations | 4 | 12.750 | [2.200, 22.300] | 8.571 | 4.286 |
FLUXstorage_tuber_respiration | 297 | 15.064 | [2.841, 47.130] | 10.083 | 0.585 |
Carbon Flux | Scenario | ||
---|---|---|---|
Scenario 1: Worst | Scenario 2: Best | Scenario 3: Average | |
FLUXeco-CO2 | 6860.210 kg CO2 eq ha−1 season−1 | −13,433.860 kg CO2 eq ha−1 season−1 | −2977.462 kg CO2 eq ha−1 season−1 |
FLUXeco-CH4 | 167.209 kg CO2 eq ha−1 season−1 | −12.624 kg CO2 eq ha−1 season−1 | 26.243 kg CO2 eq ha−1 season−1 |
FLUXeco-N2O | 4374.664 kg CO2 eq ha−1 season−1 | 248.430 kg CO2 eq ha−1 season−1 | 1599.859 kg CO2 eq ha−1 season−1 |
FLUXsoil_preparation | 1166.000 kg CO2 eq ha−1 season−1 (1 plowing, 1 harrowing, 5 rounds of hoeing) | 14.477 kg CO2 eq ha−1 season−1 | 514.524.000 kg CO2 eq ha−1 season−1 |
FLUXseed_preparation | 555.000 kg CO2 eq ha−1 season−1 (2 chemical mixture treatments) | 114.080 kg CO2 eq ha−1 season−1 (3% boric acid) | 340.383 kg CO2 eq ha−1 season−1 |
FLUXplanting | 427.105 kg CO2 eq ha−1 season−1 (seed rate 2.5 t ha−1) | 28.954 kg CO2 eq ha−1 season−1 | 268.038 kg CO2 eq ha−1 season−1 |
FLUXirrigation | 2044.000 kg CO2 eq ha−1 season−1 (100% area irrigated; rain gun; grid electricity use, no diesel use; 5500 m3/ha water applied; 43 m pumping depth) | 0.000 kg CO2 eq ha−1 season−1 (no irrigation) | 500.433 kg CO2 eq ha−1 season−1 |
FLUXfertilization | 3230.500 kg CO2 eq ha−1 season−1 (mean applications: fertilizer: 3, manure: 0.5; fertilizer (kg/ha): N-mineral: 190, P2O5-mineral: 52, K2O-mineral: 115; organic inputs (t/ha): poultry manure: 3) | 210.000 kg CO2 eq ha−1 season−1 (20,000 kg/ha N-organic) | 1219.225 kg CO2 eq ha−1 season−1 |
FLUXcrop_protection | 728.000 kg CO2 eq ha−1 season−1 (25 biocide applications) | 0.000 kg CO2 eq ha−1 season−1 | 270.156 kg CO2 eq ha−1 season−1 |
FLUXtransportation | 11.500 kg CO2 eq ha−1 season−1 | 4.000 kg CO2 eq ha−1 season−1 | 8.800 kg CO2 eq ha−1 season−1 |
FLUXharvest | 111.146 kg CO2 eq ha−1 season−1 | 14.477 kg CO2 eq ha−1 season−1 | 69.530 kg CO2 eq ha−1 season−1 |
FLUXcultivation_inputs | 7637.531 kg CO2 eq ha−1 season−1 | 178.988 kg CO2 eq ha−1 season−1 | 2845.898 kg CO2 eq ha−1 season−1 |
FLUXstorage_operations | 780.500 kg CO2 eq ha−1 season−1 | 96.800 kg CO2 eq ha−1 season−1 | 538.575 kg CO2 eq ha−1 season−1 |
FLUXstorage_tuber_respiration | 1056.513 kg CO2 ha−1 season−1 | 63.687 kg CO2 ha−1 season−1 | 376.891 kg CO2 ha−1 season−1 |
FLUXproduction | 13,874.816 kg CO2 eq ha−1 season−1 | −12,830.567 kg CO2 eq ha−1 season−1 | −90.703 kg CO2 eq ha−1 season−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, X.; Awais, M. Carbon Flux Estimation for Potato Production: A Literature-Based Study. Atmosphere 2025, 16, 764. https://doi.org/10.3390/atmos16070764
Zhang S, Wang X, Awais M. Carbon Flux Estimation for Potato Production: A Literature-Based Study. Atmosphere. 2025; 16(7):764. https://doi.org/10.3390/atmos16070764
Chicago/Turabian StyleZhang, Shu, Xiuquan Wang, and Muhammad Awais. 2025. "Carbon Flux Estimation for Potato Production: A Literature-Based Study" Atmosphere 16, no. 7: 764. https://doi.org/10.3390/atmos16070764
APA StyleZhang, S., Wang, X., & Awais, M. (2025). Carbon Flux Estimation for Potato Production: A Literature-Based Study. Atmosphere, 16(7), 764. https://doi.org/10.3390/atmos16070764