Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus
Abstract
1. Introduction
2. Observational Dataset
3. Methods
3.1. Radiative Transfer Model
3.2. Calculation of CO2 and H2O Absorption
3.3. Fitting Algorithm and Variable Parameters
3.4. H2O VMR Retrieval Uncertainties
3.5. Surface Emissivity Uncertainty
4. Results
4.1. Water Vapor Volume Mixing Ratio at Altitudes of 10–16 km
4.2. H2O Spatial Distribution
4.3. Long-Term Trends
5. Discussion
5.1. Water Vapor Spectroscopy Prospects
5.2. Comparison with Previous Observations of H2O
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IR, NIR | Infrared, Near-infrared |
SPICAV | SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus |
VEx | Venus Express |
AOTF | Acousto-optical tunable filter |
VIRA | Venus International Reference Atmosphere |
FOV | Field of view |
VMR | Volume mixing ratio |
STD | Standard deviation |
References
- Donahue, T.M.; Hoffman, J.H.; Hodges, R.R.; Watson, A.J. Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen. Science 1982, 216, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, A.; Korablev, O.; Vandaele, A.-C.; Bertaux, J.-L.; Belyaev, D.; Mahieux, A.; Neefs, E.; Wilquet, W.V.; Drummond, R.; Montmessin, F.; et al. HDO and H2O Vertical Distributions and Isotopic Ratio in the Venus Mesosphere by Solar Occultation at Infrared Spectrometer on Board Venus Express. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Gérard, J.-C.; Bougher, S.W.; López-Valverde, M.A.; Pätzold, M.; Drossart, P.; Piccioni, G. Aeronomy of the Venus Upper Atmosphere. Space Sci. Rev. 2017, 212, 1617–1683. [Google Scholar] [CrossRef]
- Wilson, C.F.; Marcq, E.; Gillmann, C.; Widemann, T.; Korablev, O.; Mueller, N.T.; Lefèvre, M.; Rimmer, P.B.; Robert, S.; Zolotov, M.Y. Possible Effects of Volcanic Eruptions on the Modern Atmosphere of Venus. Space Sci. Rev. 2024, 220, 31. [Google Scholar] [CrossRef]
- Bullock, M.; Grinspoon, D. The Recent Evolution of Climate on Venus. Icarus 2001, 150, 19–37. [Google Scholar] [CrossRef]
- Allen, D.A.; Crawford, J.W. Cloud Structure on the Dark Side of Venus. Nature 1984, 307, 222–224. [Google Scholar] [CrossRef]
- Pollack, J.B.; Dalton, J.B.; Grinspoon, D.; Wattson, R.B.; Freedman, R.; Crisp, D.; Allen, D.A.; Bezard, B.; DeBergh, C.; Giver, L.P.; et al. Near-Infrared Light from Venus’ Nightside: A Spectroscopic Analysis. Icarus 1993, 103, 1–42. [Google Scholar] [CrossRef]
- Drossart, P.; Bézard, B.; Encrenaz, T.; Lellouch, E.; Roos, M.; Taylor, F.W.; Collard, A.D.; Calcutt, S.B.; Pollack, J.; Grinspoon, D.H.; et al. Search for Spatial Variations of the H2OAbundance in the Lower Atmosphere of Venus from NIMS-Galileo. Planet. Space Sci. 1993, 41, 495–504. [Google Scholar] [CrossRef]
- de Bergh, C.; Bézard, B.; Crisp, D.; Maillard, J.P.; Owen, T.; Pollack, J.; Grinspoon, D. Water in the Deep Atmosphere of Venus from High-Resolution Spectra of the Night Side. Adv. Space Res. 1995, 15, 79–88. [Google Scholar] [CrossRef]
- Meadows, V.S.; Crisp, D. Ground-Based near-Infrared Observations of the Venus Nightside: The Thermal Structure and Water Abundance near the Surface. J. Geophys. Res. Planets 1996, 101, 4595–4622. [Google Scholar] [CrossRef]
- Bézard, B.; Tsang, C.C.C.; Carlson, R.W.; Piccioni, G.; Marcq, E.; Drossart, P. Water Vapor Abundance near the Surface of Venus from Venus Express/VIRTIS Observations. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Bailey, J. A Comparison of Water Vapor Line Parameters for Modeling the Venus Deep Atmosphere. Icarus 2009, 201, 444–453. [Google Scholar] [CrossRef]
- Haus, R.; Arnold, G. Radiative Transfer in the Atmosphere of Venus and Application to Surface Emissivity Retrieval from VIRTIS/VEX Measurements. Planet. Space Sci. 2010, 58, 1578–1598. [Google Scholar] [CrossRef]
- Bézard, B.; Fedorova, A.; Bertaux, J.-L.; Rodin, A.; Korablev, O. The 1.10- and 1.18-Μm Nightside Windows of Venus Observed by SPICAV-IR Aboard Venus Express. Icarus 2011, 216, 173–183. [Google Scholar] [CrossRef]
- Chamberlain, S.; Bailey, J.; Crisp, D.; Meadows, V. Ground-Based near-Infrared Observations of Water Vapor in the Venus Troposphere. Icarus 2013, 222, 364–378. [Google Scholar] [CrossRef]
- Fedorova, A.; Bézard, B.; Bertaux, J.-L.; Korablev, O.; Wilson, C. The CO2 Continuum Absorption in the 1.10- and 1.18-Μm Windows on Venus from Maxwell Montes Transits by SPICAV IR Onboard Venus Express. Planet. Space Sci. 2015, 113–114, 66–77. [Google Scholar] [CrossRef]
- Arney, G.; Meadows, V.; Crisp, D.; Schmidt, S.J.; Bailey, J.; Robinson, T. Spatially Resolved Measurements of H2O, HCl, CO, OCS, SO2, Cloud Opacity, and Acid Concentration in the Venus near-Infrared Spectral Windows. J. Geophys. Res. Planets 2014, 119, 1860–1891. [Google Scholar] [CrossRef]
- Carlson, R.W.; Baines, K.H.; Encrenaz, T.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, J.B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; et al. Galileo Infrared Imaging Spectroscopy Measurements at Venus. Science 1991, 253, 1541–1548. [Google Scholar] [CrossRef]
- Bezard, B.; de Bergh, C.; Crisp, D.; Maillard, J.-P. The Deep Atmosphere of Venus Revealed by High-Resolution Nightside Spectra. Nature 1990, 345, 508–511. [Google Scholar] [CrossRef]
- Iwagami, N.; Ohtsuki, S.; Tokuda, K.; Ohira, N.; Kasaba, Y.; Imamura, T.; Sagawa, H.; Hashimoto, G.L.; Takeuchi, S.; Ueno, M.; et al. Hemispheric Distributions of HCl above and below the Venus’ Clouds by Ground-Based 1.7 Μm Spectroscopy. Planet. Space Sci. 2008, 56, 1424–1434. [Google Scholar] [CrossRef]
- Bell, J.F.; Crisp, D.; Lucey, P.G.; Ozoroski, T.A.; Sinton, W.M.; Willis, S.C.; Campbell, B.A. Spectroscopic Observations of Bright and Dark Emission Features on the Night Side of Venus. Science 1991, 252, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Marcq, E.; Encrenaz, T.; Bézard, B.; Birlan, M. Remote Sensing of Venus’ Lower Atmosphere from Ground-Based IR Spectroscopy: Latitudinal and Vertical Distribution of Minor Species. Planet. Space Sci. 2006, 54, 1360–1370. [Google Scholar] [CrossRef]
- Marcq, E.; Bézard, B.; Drossart, P.; Piccioni, G.; Reess, J.M.; Henry, F. A Latitudinal Survey of CO, OCS, H2O, and SO2 in the Lower Atmosphere of Venus: Spectroscopic Studies Using VIRTIS-H. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Tsang, C.C.C.; Wilson, C.F.; Barstow, J.K.; Irwin, P.G.J.; Taylor, F.W.; McGouldrick, K.; Piccioni, G.; Drossart, P.; Svedhem, H. Correlations between Cloud Thickness and Sub-cloud Water Abundance on Venus. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Barstow, J.K.; Tsang, C.C.C.; Wilson, C.F.; Irwin, P.G.J.; Taylor, F.W.; McGouldrick, K.; Drossart, P.; Piccioni, G.; Tellmann, S. Models of the Global Cloud Structure on Venus Derived from Venus Express Observations. Icarus 2012, 217, 542–560. [Google Scholar] [CrossRef]
- Haus, R.; Kappel, D.; Arnold, G. Lower Atmosphere Minor Gas Abundances as Retrieved from Venus Express VIRTIS-M-IR Data at 2.3 µm. Planet. Space Sci. 2015, 105, 159–174. [Google Scholar] [CrossRef]
- Marcq, E.; Bézard, B.; Reess, J.-M.; Henry, F.; Érard, S.; Robert, S.; Montmessin, F.; Lefèvre, F.; Lefèvre, M.; Stolzenbach, A.; et al. Minor Species in Venus’ Night Side Troposphere as Observed by VIRTIS-H/Venus Express. Icarus 2023, 405, 115714. [Google Scholar] [CrossRef]
- Ignatiev, N.I.; Moroz, V.I.; Moshkin, B.E.; Ekonomov, A.P.; Gnedykh, V.I.; Grigoriev, A.V.; Khatuntsev, I.V. Water Vapor in the Lower Atmosphere of Venus: A New Analysis of Optical Spectra Measured by Entry Probes. Planet. Space Sci. 1997, 45, 427–438. [Google Scholar] [CrossRef]
- Korablev, O.; Fedorova, A.; Bertaux, J.-L.; Stepanov, A.V.; Kiselev, A.; Kalinnikov, Y.K.; Titov, A.Y.; Montmessin, F.; Dubois, J.P.; Villard, E.; et al. SPICAV IR Acousto-Optic Spectrometer Experiment on Venus Express. Planet. Space Sci. 2012, 65, 38–57. [Google Scholar] [CrossRef]
- Evdokimova, D.; Fedorova, A.; Ignatiev, N.; Zharikova, M.; Korablev, O.; Montmessin, F.; Bertaux, J.-L. Cloud opacity variations from nighttime observations in Venus transparency windows. Atmosphere 2025, 16, 572. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically Stable Algorithm for Discrete-Ordinate-Method Radiative Transfer in Multiple Scattering and Emitting Layered Media. Appl. Opt. 1988, 27, 2502. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Stamnes, S.; Jin, Z.; Laszlo, I.; Tsay, S.-C.; Wiscombe, W.J.; Stamnes, K. Improved Discrete Ordinate Solutions in the Presence of an Anisotropically Reflecting Lower Boundary: Upgrades of the DISORT Computational Tool. J. Quant. Spectrosc. Radiat. Transf. 2015, 157, 119–134. [Google Scholar] [CrossRef]
- Seiff, A.; Schofield, J.T.; Kliore, A.J.; Taylor, F.W.; Limaye, S.S.; Revercomb, H.E.; Sromovsky, L.A.; Kerzhanovich, V.V.; Moroz, V.I.; Marov, M.Y. Models of the Structure of the Atmosphere of Venus from the Surface to 100 Kilometers Altitude. Adv. Space Res. 1985, 5, 3–58. [Google Scholar] [CrossRef]
- Saunders, R.S.; Spear, A.J.; Allin, P.C.; Austin, R.S.; Berman, A.L.; Chandlee, R.C.; Clark, J.; Decharon, A.V.; De Jong, E.M.; Griffith, D.G.; et al. Magellan Mission Summary. J. Geophys. Res. Planets 1992, 97, 13067–13090. [Google Scholar] [CrossRef]
- Ford, P.G.; Pettengill, G.H. Venus Topography and Kilometer-scale Slopes. J. Geophys. Res. Planets 1992, 97, 13103–13114. [Google Scholar] [CrossRef]
- Haus, R.; Kappel, D.; Tellmann, S.; Arnold, G.; Piccioni, G.; Drossart, P.; Häusler, B. Radiative Energy Balance of Venus Based on Improved Models of the Middle and Lower Atmosphere. Icarus 2016, 272, 178–205. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Hashimoto, G.L.; Roos-Serote, M.; Sugita, S.; Gilmore, M.S.; Kamp, L.W.; Carlson, R.W.; Baines, K.H. Felsic Highland Crust on Venus Suggested by Galileo Near-Infrared Mapping Spectrometer Data. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Kappel, D.; Haus, R.; Arnold, G. Error Analysis for Retrieval of Venus’ IR Surface Emissivity from VIR-TIS/VEX Measurements. Planet. Space Sci. 2015, 113–114, 49–65. [Google Scholar] [CrossRef]
- Gilmore, M.; Treiman, A.; Helbert, J.; Smrekar, S. Venus Surface Composition Constrained by Observation and Experiment. Space Sci. Rev. 2017, 212, 1511–1540. [Google Scholar] [CrossRef]
- De Bergh, C.; Bézard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.; Lutz, B.L. Deuterium on Venus: Observations From Earth. Science 1991, 251, 547–549. [Google Scholar] [CrossRef]
- Luginin, M.; Fedorova, A.; Belyaev, D.; Montmessin, F.; Korablev, O.; Bertaux, J.-L. Scale Heights and Detached Haze Layers in the Mesosphere of Venus from SPICAV IR Data. Icarus 2018, 311, 87–104. [Google Scholar] [CrossRef]
- Sneep, M.; Ubachs, W. Direct Measurement of the Rayleigh Scattering Cross Section in Various Gases. J. Quant. Spectrosc. Radiat. Transf. 2005, 92, 293–310. [Google Scholar] [CrossRef]
- Hargreaves, R.J.; Gordon, I.E.; Huang, X.; Toon, G.C.; Rothman, L.S. Updating the Carbon Dioxide Line List in HITEMP. J. Quant. Spectrosc. Radiat. Transf. 2025, 333, 109324. [Google Scholar] [CrossRef]
- Barber, R.J.; Tennyson, J.; Harris, G.J.; Tolchenov, R.N. A High-Accuracy Computed Water Line List. Mon. Not. R. Astron. Soc. 2006, 368, 1087–1094. [Google Scholar] [CrossRef]
- Lavrentieva, N.N.; Voronin, B.A.; Fedorova, A.A. H216O Line List for the Study of Atmospheres of Venus and Mars. Opt. Spectrosc. 2015, 118, 11–18. [Google Scholar] [CrossRef]
- Voronin, B.A.; Tennyson, J.; Tolchenov, R.N.; Lugovskoy, A.A.; Yurchenko, S.N. A High Accuracy Computed Line List for the HDO Molecule. Mon. Not. R. Astron. Soc. 2010, 402, 492–496. [Google Scholar] [CrossRef]
- Lavrentieva, N.N.; Voronin, B.A.; Naumenko, O.V.; Bykov, A.D.; Fedorova, A.A. Linelist of HD16O for Study of Atmosphere of Terrestrial Planets (Earth, Venus and Mars). Icarus 2014, 236, 38–47. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Cady-Pereira, K.E.; Mascio, J.; Gordon, I.E. The Inclusion of the MT_CKD Water Vapor Continuum Model in the HITRAN Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2023, 306, 108645. [Google Scholar] [CrossRef]
- Clough, S.A.; Kneizys, F.X.; Davies, R.W. Line Shape and the Water Vapor Continuum. Atmos. Res. 1989, 23, 229–241. [Google Scholar] [CrossRef]
- Koroleva, A.O.; Kassi, S.; Mondelain, D.; Campargue, A. The Water Vapor Foreign Continuum in the 8100–8500 Cm−1 Spectral Range. J. Quant. Spectrosc. Radiat. Transf. 2023, 296, 108432. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Fedorova, A.A.; Trokhimovsky, S.; Korablev, O.; Montmessin, F. Viking Observation of Water Vapor on Mars: Revision from up-to-Date Spectroscopy and Atmospheric Models. Icarus 2010, 208, 156–164. [Google Scholar] [CrossRef]
- Helbert, J.; Maturilli, A.; Dyar, M.D.; Alemanno, G. Deriving Iron Contents from Past and Future Venus Surface Spectra with New High-Temperature Laboratory Emissivity Data. Sci. Adv. 2021, 7, eaba9428. [Google Scholar] [CrossRef] [PubMed]
- Snels, M.; Stefani, S.; Piccioni, G.; Bèzard, B. Carbon Dioxide Absorption at High Densities in the 1.18 μm Nightside Transparency Window of Venus. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 464–471. [Google Scholar] [CrossRef]
- Palmer, K.F.; Williams, D. Optical Constants of Sulfuric Acid; Application to the Clouds of Venus? Appl. Opt. 1975, 14, 208–219. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Tyler, G.L.; Ford, P.G.; Campbell, D.B.; Elachi, C.; Pettengill, G.H.; Simpson, R.A. Magellan: Electrical and Physical Properties of Venus’ Surface. Science 1991, 252, 265–270. [Google Scholar] [CrossRef]
- Ekonomov, A.P.; Golovin, Y.M.; Moshkin, B.E. Visible Radiation Observed near the Surface of Venus: Results and Their Interpretation. Icarus 1980, 41, 65–75. [Google Scholar] [CrossRef]
- Fakhardji, W.; Tran, H.; Pirali, O.; Hartmann, J.-M. The H2O–CO2 Continuum around 3.1, 5.2 and 8.0 μm: New Measurements and Validation of a Previously Proposed χ Factor. Icarus 2023, 389, 115217. [Google Scholar] [CrossRef]
- Tran, H.; Turbet, M.; Hanoufa, S.; Landsheere, X.; Chelin, P.; Ma, Q.; Hartmann, J.-M. The CO2–Broadened H2O Continuum in the 100–1500 Cm−1 Region: Measurements, Predictions and Empirical Model. J. Quant. Spectrosc. Radiat. Transf. 2019, 230, 75–80. [Google Scholar] [CrossRef]
- Stolzenbach, A.; Lefèvre, F.; Lebonnois, S.; Määttänen, A. Three-Dimensional Modeling of Venus Photochemistry and Clouds. Icarus 2023, 395, 115447. [Google Scholar] [CrossRef]
- Kuwayama, S.; Hashimoto, G.L. Meridional Distribution of CO, H2 O, and H2 SO4 in the Venus’ Atmosphere: A Two-Dimensional Model Incorporating Transport and Chemical Reaction. J. Geophys. Res. Planets 2025, 130, e2024JE008596. [Google Scholar] [CrossRef]
- Titov, D.V.; Ignatiev, N.I.; McGouldrick, K.; Wilquet, V.; Wilson, C.F. Clouds and Hazes of Venus. Space Sci. Rev. 2018, 214, 126. [Google Scholar] [CrossRef]
- Fedorova, A.; Marcq, E.; Luginin, M.; Korablev, O.; Bertaux, J.-L.; Montmessin, F. Variations of Water Vapor and Cloud Top Altitude in the Venus’ Mesosphere from SPICAV/VEx Observations. Icarus 2016, 275, 143–162. [Google Scholar] [CrossRef]
- Encrenaz, T.; Greathouse, T.K.; Giles, R.; Widemann, T.; Bézard, B.; Lefèvre, M.; Shao, W. HDO and SO2 Thermal Mapping on Venus: VI. Anomalous SO2 Behavior during Late 2021. Astron. Astrophys. 2023, 674, A199. [Google Scholar] [CrossRef]
- Smrekar, S.E.; Stofan, E.R.; Mueller, N.; Treiman, A.; Elkins-Tanton, L.; Helbert, J.; Piccioni, G.; Drossart, P. Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data. Science 2010, 328, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Shalygin, E.V.; Markiewicz, W.J.; Basilevsky, A.T.; Titov, D.V.; Ignatiev, N.I.; Head, J.W. Active Volcanism on Venus in the Ganiki Chasma Rift Zone. Geophys. Res. Lett. 2015, 42, 4762–4769. [Google Scholar] [CrossRef]
- Herrick, R.R.; Hensley, S. Surface Changes Observed on a Venusian Volcano during the Magellan Mission. Science 2023, 379, 1205–1208. [Google Scholar] [CrossRef]
- Sulcanese, D.; Mitri, G.; Mastrogiuseppe, M. Evidence of Ongoing Volcanic Activity on Venus Revealed by Magellan Radar. Nat. Astron. 2024, 8, 973–982. [Google Scholar] [CrossRef]
Transparency Window | Altitude, km | H2O Content, ppmv |
---|---|---|
1.1 and 1.18 µm | 0–15 | 30 ± 15 [8] 30 ± 15 [9] 45 ± 10 [10] 44 ± 9 [11] 27 ± 6 [12] 32.5 [13] 30 + 10−5 [14] 31 +9−6 [15] 25.7+ 1.4−1.2 (surface emissivity of 0.95) [16] 29.4+ 1.6−1.4 (surface emissivity of 0.6) [16] 29 ± 2 (2009), 27 ± 2 (2010) [17] |
1.74 µm | 15–30 | 50+50−25 [18] 40 [19] 30 ± 7.5 [7] 30 ± 10 [9] 25 ± 5 [20] 33 ± 2 in 2009, 32 ± 2 in 2010 [17] |
2.3 µm | 30–45 | ~40 [19] 25+25−13 [18] 40 (dry profile), 200 (wet profile) [21] 30 ± 6 [7] 30+15−10 [9] 26 ± 4 [22] 31 ± 2 [23] (22–35) ± 4 [24] ~30–45 (35 km), ~50 (50 km) [25] 34 ± 2 (2009), 33 ± 3 (2010) [17] 32.0 ± 1.3 ppmv [26] 27 ± 3.5 [27] |
Radiative transfer solver | Line-by-line computations based on the DISORT4 program package in the pseudo-spherical geometry [31,32] with 16 streams and the wavelength grid with a step of 0.1 cm−1 | ||
Atmosphere structure | Venus International Reference Atmosphere (VIRA) [33] | ||
Cloud model | Aerosol particle number density by Ref. [36] Effective radius and dispersion of aerosol modes 1, 2, 2′, 3: 0.3, 1.0, 1.4, 3.65 μm and 1.56, 1.29, 1.23, 1.28 [7,36] Aerosol composition: water solution of H2SO4 with concentration of 75% Aerosol particle shape: spherical H2SO4 refractive index from Ref. [56] Optical depth, single scattering albedo and Legendre series expansion of the scattering phase function are calculated using the Lorenz–Mie code for electromagnetic scattering by spherical particles [37] | ||
Surface emissivity (ε) | 0.95 | ||
Surface topography | Magellan global topography map [34,35] | ||
Model 1 | Model 2 | Model 3 | |
CO2 absorption and molecular scattering | Line list: HITEMP [44] Line profile: sub-Lorentzian of [14] Line cut-off: 250 cm−1 CO2 continuum coef.: 0.30 × 10−9 cm−1amagat−2 CO2 volume mixing ratio: 0.965 Rayleigh scattering [42,43] | Line list: HITEMP [44] Line profile: sub-Lorentzian of [14] Line cut-off: 250 cm−1 CO2 continuum coef.: 0.30 × 10−9 cm−1amagat−2 CO2 volume mixing ratio: 0.965 Rayleigh scattering [42,43] | Line list: HITEMP [44] Line profile: sub-Lorentzian of [10] Line cut-off: 250 cm−1 CO2 continuum coef.: 0.10 × 10−9 cm−1amagat−2 CO2 volume mixing ratio: 0.965 Rayleigh scattering [42,43] |
H2O absorption | Line list: BT2 [45] Line shape: Voigt profile Line cut-off: 180 cm−1 | Line list: HITRAN2020 [52] Line shape: Voigt profile Line cut-off: 25 cm−1 H2O far-wings correction: MT_CKD model [49] | Line list: BT2 [45] Line shape: super-Lorentzian [10,50] Line cut-off: 180 cm−1 |
HDO absorption | Line list: VTT [47] Line shape: Voigt profile Line cut-off: 180 cm−1 D/H ratio: 127 times the terrestrial value | ||
Free parameters | (1) Scaling factor applied on particle number density vertical profiles of modes 2, 2′ and 3 (2) H2O volume mixing ratio |
CO2 and H2O Line Shape Model | ε = 0.95 | ε = 0.40 |
---|---|---|
Model 1. H2O Voigt profile | 27.1 ± 1.1 ppmv | 27.7 ± 1.2 ppmv |
Model 2. H2O line profile correction by the MT_CKD model [49] | 26.9 ± 1.1 ppmv | 27.0 ± 1.1 ppmv |
Model 3. H2O super-Lorentzian profile [10,52] | 23.6 ± 1.0 ppmv | 24.0 ± 1.0 ppmv |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evdokimova, D.; Fedorova, A.; Ignatiev, N.; Korablev, O.; Montmessin, F.; Bertaux, J.-L. Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus. Atmosphere 2025, 16, 726. https://doi.org/10.3390/atmos16060726
Evdokimova D, Fedorova A, Ignatiev N, Korablev O, Montmessin F, Bertaux J-L. Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus. Atmosphere. 2025; 16(6):726. https://doi.org/10.3390/atmos16060726
Chicago/Turabian StyleEvdokimova, Daria, Anna Fedorova, Nikolay Ignatiev, Oleg Korablev, Franck Montmessin, and Jean-Loup Bertaux. 2025. "Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus" Atmosphere 16, no. 6: 726. https://doi.org/10.3390/atmos16060726
APA StyleEvdokimova, D., Fedorova, A., Ignatiev, N., Korablev, O., Montmessin, F., & Bertaux, J.-L. (2025). Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus. Atmosphere, 16(6), 726. https://doi.org/10.3390/atmos16060726