Composition and Source Apportionment of Heavy Metals in Aerosols at the Great Wall Station, Antarctica
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Analysis
2.3. Data Processing
2.4. Clustering Analysis of Backward Trajectories
3. Results and Discussion
3.1. Heavy Metal Concentration Analysis
3.2. Multivariate Analysis
3.3. Enrichment Factor
3.4. Air Mass Back Trajectories
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, J.; Barrand, N.E.; Bracegirdle, T.J.; Convey, P.; Hodgson, D.A.; Jarvis, M.; Jenkins, A.; Marshall, G.; Meredith, M.P.; Roscoe, H. Antarctic climate change and the environment: An update. Polar Record 2014, 50, 237–259. [Google Scholar] [CrossRef]
- Marina-Montes, C.; Pérez-Arribas, L.; Escudero, M.; Anzano, J.; Cáceres, J. Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region. Sci. Total Environ. 2020, 721, 137702. [Google Scholar] [CrossRef]
- Braun, C.; Hertel, F.; Mustafa, O.; Nordt, A.; Pfeiffer, S.; Peter, H.-U. Environmental assessment and management challenges of the Fildes Peninsula region. In Antarctic Futures; Springer: Dordrecht, the Netherlands, 2014; pp. 169–191. [Google Scholar]
- Chu, Z.; Yang, Z.; Wang, Y.; Sun, L.; Yang, W.; Yang, L.; Gao, Y. Assessment of heavy metal contamination from penguins and anthropogenic activities on Fildes Peninsula and Ardley Island, Antarctic. Sci. Total Environ. 2019, 646, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Singh, R.P.; Khare, R. Influence of climate change on Antarctic flora. Polar Sci. 2018, 18, 94–101. [Google Scholar] [CrossRef]
- Nielsen, I.E.; Skov, H.; Massling, A.; Eriksson, A.C.; Dall’Osto, M.; Junninen, H.; Sarnela, N.; Lange, R.; Collier, S.; Zhang, Q. Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmos. Chem. Phys. 2019, 19, 10239–10256. [Google Scholar] [CrossRef]
- Abás, E.; Marina-Montes, C.; Laguna, M.; Lasheras, R.; Rivas, P.; Peribáñez, P.; Del Valle, J.; Escudero, M.; Velásquez, A.; Cáceres, J.O. Evidence of human impact in Antarctic region by studying atmospheric aerosols. Chemosphere 2022, 307, 135706. [Google Scholar] [CrossRef]
- Xu, Y.B.; Li, Q.; Xie, S.Y.; Zhang, C.; Yan, F.P.; Liu, Y.X.; Kang, S.C.; Gao, S.P.; Li, C.L. Composition and sources of heavy metals in aerosol at a remote site of Southeast Tibetan Plateau, China. Sci. Total Environ. 2022, 845, 157308. [Google Scholar] [CrossRef]
- Weller, R.; Wagenbach, D.; Legrand, M.; Elsässer, C.; Tian-Kunze, X.; König-Langlo, G. Continuous 25-yr aerosol records at coastal Antarctica–I: Inter-annual variability of ionic compounds and links to climate indices. Tellus B Chem. Phys. Meteorol. 2011, 63, 901–919. [Google Scholar] [CrossRef]
- Osipov, E.; Osipova, O.; Khodzher, T. Recent variability of atmospheric circulation patterns inferred from East Antarctica glaciochemical records. Geochemistry 2020, 80, 125554. [Google Scholar] [CrossRef]
- Jiang, X. The spatial variations of trace elements in surface snow along the transect from Zhongshan Station to Dome A Antarctica. Master’s Thesis, Nanjing University, Nanjing, China, 2018. [Google Scholar]
- Artaxo, P.; Rabello, M.L.; Maenhaut, W.; GRIEKEN, R.V. Trace elements and individual particle analysis of atmospheric aerosols from the Antarctic peninsula. Tellus B. 1992, 44, 318–334. [Google Scholar] [CrossRef]
- Hong, S.-b.; Yoon, Y.J.; Becagli, S.; Gim, Y.; Chambers, S.; Park, K.-T.; Park, S.-J.; Traversi, R.; Severi, M.; Vitale, V. Seasonality of aerosol chemical composition at King Sejong Station (Antarctic Peninsula) in 2013. Atmos. Environ. 2020, 223, 117185. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Bau, S.; Scarchilli, C.; Truzzi, C. Seasonal Evolution of Size-Segregated Particulate Mercury in the Atmospheric Aerosol Over Terra Nova Bay, Antarctica. Molecules 2020, 25, 3971. [Google Scholar] [CrossRef] [PubMed]
- Guo, X. Study of Sources and Pollutions of Heavy Metals and Organic matters in Dry Deposition and PMz.s in Beijing. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2018. [Google Scholar]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Mishra, V.K.; Kim, K.H.; Hong, S.; Lee, K. Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula. Atmos. Environ. 2004, 38, 4069–4084. [Google Scholar] [CrossRef]
- Toscano, G.; Gambaro, A.; Moret, I.; Capodaglio, G.; Turetta, C.; Cescon, P. Trace metals in aerosol at Terra Nova Bay, Antarctica. J. Environ. Monit. 2005, 7, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Budhavant, K.; Safai, P.D.; Rao, P.S.P. Sources and elemental composition of summer aerosols in the Larsemann Hills (Antarctica). Environ. Sci. Pollut. Res. Int. 2015, 22, 2041–2050. [Google Scholar] [CrossRef]
- Correia, A.; Artaxo, P.; Maenhaut, W. Monitoring of atmospheric aerosol particles on the Antarctic Peninsula. Ann. Glaciol. 1998, 27, 560–564. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Truzzi, C.; Mantini, C.; Conca, E.; Malandrino, M.; Giglione, G.; Fanelli, M.; Scarponi, G. Determination of Cd, Pb, and Cu in the atmospheric aerosol of central east antarctica at dome C (Concordia station). Molecules 2021, 26, 1997. [Google Scholar] [CrossRef]
- Mazzera, D.M.; Lowenthal, D.H.; Chow, J.C.; Watson, J.G.; Grubısíc, V. PM10 measurements at McMurdo Station, Antarctica. Atmos. Environ. 2001, 35, 1891–1902. [Google Scholar] [CrossRef]
- Chen, L. Prospect of marine atmospheric chemistry and its observing engineering technologies. J. Appl. Oceanogr. 2019, 38, 12. [Google Scholar]
- Zhan, J.; Gao, Y.; Li, W.; Chen, L.; Lin, H.; Lin, Q. Effects of ship emissions on summertime aerosols at Ny–Alesund in the Arctic. Atmos. Pollut. Res. 2014, 5, 500–510. [Google Scholar] [CrossRef]
- Jakob, A.; Stucki, S.; Kuhn, P. Evaporation of Heavy Metals during the Heat Treatment of Municipal Solid Waste Incinerator Fly Ash. Environ. Sci. Technol. 1995, 29, 2429–2436. [Google Scholar] [CrossRef]
- Chueinta, W.; Hopke, P.K.; Paatero, P. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos. Environ. 2000, 34, 3319–3329. [Google Scholar] [CrossRef]
- Pavuluri, C.; Kawamura, K.; Mihalopoulos, N.; Fu, P. Year-round observations of water-soluble ionic species and trace metals in Sapporo aerosols: Implication for significant contributions from terrestrial biological sources in Northeast Asia. Atmos. Chem. Phys. Discuss. 2013, 13, 6589–6629. [Google Scholar]
- Ji, Y.; Tan, H.; He, J.; Xie, F.; Guo, F.; Chen, A.; Song, G.; Zeng, G. Characteristics of trace metals of atmospheric aerosols in Guiyang City. Guizhou Sci. 2006, 24, 6. [Google Scholar]
- Wang, J.; Chen, L.; Yang, X. Characteristics of the aerosols in zhongshan station, antarctica. Polar Res. 2009, 21, 14. [Google Scholar]
- Duce, R.A.; Hoffman, G.L.; Zoller, W.H. Atmospheric trace metals at remote northern and southern hemisphere sites: Pollution or natural? Science 1975, 187, 59–61. [Google Scholar] [CrossRef]
- Zoller, W.H.; Gladney, E.; Duce, R.A. Atmospheric concentrations and sources of trace metals at the South Pole. Science 1974, 183, 198–200. [Google Scholar] [CrossRef]
- Lihang, A.; Minchao, L.; Jianqiang, Z.; Ling, H.; Zhiliang, C. Sources of arsenic in soil and affecting factors of migration and release: A review. Soils 2020, 52, 13. [Google Scholar]
- Xiang, Z.; Shugui, H.; Hongxi, P.; Ke, L.; Wangbin, Z.; Jinhai, Y. Research progress of trace elements in polar snow and ice. Quat. Sci. 2021, 41, 9. [Google Scholar]
Element | Annual | Summer | Winter |
---|---|---|---|
V | 0.103 ± 0.057 | 0.119 ± 0.072 | 0.086 ± 0.021 |
Cr | 1.766 ± 0.906 | 1.830 ± 1.244 | 1.709 ± 0.409 |
Mn | 1.360 ± 0.639 | 1.479 ± 0.841 | 1.248 ± 0.047 |
Fe | 30.030 ± 19.43 | 35.639 ± 25.12 | 24.055 ± 0.333 |
Ni | 0.811 ± 0.649 | 0.846 ± 0.662 | 0.774 ± 6.709 |
Cu | 0.269 ± 0.177 | 0.299 ± 0.237 | 0.237 ± 0.065 |
Zn | 3.014 ± 1.663 | 3.481 ± 2.199 | 2.557 ± 0.607 |
As | 0.063 ± 0.030 | 0.081 ± 0.036 | 0.048 ± 0.006 |
Cd | 0.013 ± 0.008 | 0.0131 ± 0.011 | 0.0130 ± 0.002 |
Pb | 0.251 ± 0.139 | 0.273 ± 0.194 | 0.235 ± 0.069 |
Antarctic Research Stations | V | Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | Fe | Reference Data |
---|---|---|---|---|---|---|---|---|---|---|---|
The Great wall | 103 | 1.766 | 1.360 | 0.811 | 269 | 3.014 | 0.063 | 13 | 251 | 30.030 | |
Gabriel de Castilla | 864 | - | 1.051 | - | 548 | 4.576 | 0.398 | - | 193 | - | [2] |
King Sejong Station | 36 | 0.114 | - | 0.083 | 143 | 0.13 | - | 1 | 41 | - | [18] |
Mario Zucchelli Station | 22 | 0.059 | 0.147 | - | 394 | 0.109 | - | - | 15 | 6.58 | [19] |
Maitri | - | - | 2.8 | - | 1300 | 5.5 | - | - | 120 | 45 | [20] |
Comandante Ferraz | - | 1.06 | 0.13 | 0.088 | 230 | 1.07 | - | - | 250 | 1.11 | [21] |
Concordia Station | - | - | - | - | 120 | - | - | 0.24 | 21 | - | [22] |
McMurdo (Hut Point Site) | 363 | 0.278 | 2.478 | - | 189 | 1.516 | - | - | 851 | 129.536 | [23] |
McMurdo (Radar Sat Dome Sit) | 528 | 0.396 | 3.463 | - | 200 | 0.863 | - | - | 470 | 164.404 | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Liu, X.; Wu, G.; Wang, J.; Ding, H. Composition and Source Apportionment of Heavy Metals in Aerosols at the Great Wall Station, Antarctica. Atmosphere 2025, 16, 689. https://doi.org/10.3390/atmos16060689
Zeng H, Liu X, Wu G, Wang J, Ding H. Composition and Source Apportionment of Heavy Metals in Aerosols at the Great Wall Station, Antarctica. Atmosphere. 2025; 16(6):689. https://doi.org/10.3390/atmos16060689
Chicago/Turabian StyleZeng, Haiyu, Xiaoning Liu, Gaoen Wu, Jianjun Wang, and Haitao Ding. 2025. "Composition and Source Apportionment of Heavy Metals in Aerosols at the Great Wall Station, Antarctica" Atmosphere 16, no. 6: 689. https://doi.org/10.3390/atmos16060689
APA StyleZeng, H., Liu, X., Wu, G., Wang, J., & Ding, H. (2025). Composition and Source Apportionment of Heavy Metals in Aerosols at the Great Wall Station, Antarctica. Atmosphere, 16(6), 689. https://doi.org/10.3390/atmos16060689